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Transient homogeneous nucleation is studied in the limit of large critical sizes. Starting from pure mono-
mers, three eras of transient nucleation are characterized in the classic Becker-Ddring kinetic equations with
two different models of discrete diffusivity: the classic Turnbull-Fisher formula and an expression describing
thermally driven growth of the nucleus. The latter diffusivity yields time lags for nucleation which are much
closer to values measured in experiments with disilicate glasses. After an initial stage in which the number of
monomers decreases, many clusters of small size are produced and a continuous size distribution is created.
During the second era, nucleii are increasing steadily in size in such a way that their distribution appears as a
wave front advancing towards the critical size for steady nucleation. The nucleation rate at critical size is
negligible during this era. After the wave front reaches critical size, it ignites the creation of supercritical
clusters at a rate that increases monotonically until its steady value is reached. Analytical formulas for the
transient nucleation rate and the time lag are obtained that improve classical ones and compare very well with
direct numerical solutions.
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[. INTRODUCTION In this paper, we consider the problem of describing the
) ) approach to steady-state nucleation within the classical
~ Homogeneous nucleation occurs in many examples ofycleation theory3]. Thus our starting point is the Becker-
first order phase transitiorid] such as condensation of liq- psring (BD) discrete kinetic model of nucleation and indefi-
uid dropIet; from a supersaturgted. vapor, glass—tq-crystq{ite growth of a stable phase from a metastable state
transformation$2], crystal nucleation in undercooled liquids [3,14,15. The BD model contains two Kinetic rate constants
[3], and in polymers4], colloidal crystallizatior{S], growth that are related to each other by assuming detailed balance.

of s_pherical aggregates beyond the c_ritical micelle conceny complete the description of the BD equatid®DE), a
Lrgtmn (Cl:lMC) [6,7], r?ng .the sr?gregau%nr by coarsening Ofmodel for one of the rate constants, usually a discrete diffu-
me:jry a %ys quenc eI Into the 'IT"SC' Iltt)yfgéﬁ—hlo]. Inl Sivity describing the rate at which a cluster loses one mono-
condensed systems, a long time elapses before the nuc eat'ﬂﬂ%r, is needed. In the classical theory, the discrete diffusivity
rate (at which stable nucleii larger than the critical size arejq given by the Turnbull-FishefTF) expression which as-

gfefnerateh”r eaches a steady statec,l th_eref(()jre thzse systlengames that a monomer has to overcome an activation energy
ofter excellent opportunities to study time-dependent nuclep,ier for its transfer across the interface of a cluster. The

ation [3]. TF discrete diffusivity is therefore proportional to the surface
Understanding the kinetics of nucleation and growth be-, y prop

2 4 ~"area of the clustef16]. Other models are selected so as to
yond the determination of the steady-state nucleation rate 'S)ﬂeld the known expression for the adiabatic growth of a
tall.SIE %f gFreat |mp0r}anc_e _ang not beEt comt?le_tely ac_:Cc’rln'nucleus of critical size by either diffusion or by heat transfer.
plished. For example, It Iis desirable to obtain a simpleryg giserete diffusivity of these later models is proportional
asymptotic description of the transient until the steady—stattle0 the cluster radius
nucleation stage sets in. Moreover, there is no clear distinc- No matter which discrete diffusivity is used, starting from

Eonhbetween nuc(:jleatlon and grodvvth,.and a unified theory of injtial condition of pure monomers surpassing the CMC,
oth processes does not exiS] despite recent attempts at o gynect that cluster size increases and stable supercritical

bridging the gap between nucleation and late-stage coarsefy, e are formed at mucleationrate that will eventually

ing theorieq11-13. become stationary at an exponentially small value. After the
stationary nucleation has set in, the supercritical clusters con-
tinue growing, and the discrete diffusivity of the BDE can be

*Email address: neu@math.berkeley.edu ignored in the description of their growth, which is a pure
TAuthor to whom all correspondence should be addressed. Emationvection in the space of cluster size. For precipitation pro-

address: bonilla@ing.uc3m.es cesses, this will eventually result in late stage coarsening
*Email address: anearpio@mat.ucm.es which we will not study in the present paper.
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The small parameter that informs our asymptotic analysig term proportional to the surface area of the aggregate. Be-
is e:kgl’?’, wherek, is the number of monomers in the criti- yond a critical density no equilibrium size distribution exists
cal nucleus, a “large” quantity that ranges between 20 andnd the aggregates grow indefinitely. The main results of our
1000 for common materialg3]. Using other small param- asymptotic analysis are derived in Sec. Ill and compared
eters, such as the supersaturation, yields particular cases @fth the numerical solution of the BDE with the TF discrete
our results(cf. Chap. 2 by Neu and Bonilla in Re#]). The  diffusion coefficient describing devitrification of lithium di-
analysis of the BDE in the limit as— O distinguishes three sjjicate glass. Our results compare favorably with previous
well defined stages or eras in the approach to the stationageories based on the ZFE, the continuum approximation of
nucleation rate. Starting from the initial state of pure mono-. BDE. However. when compared with experimental data
mers, a continuous distribution of cluster sizes is establishefgr glass disilicate ,the theoretical time lag is about 30 times
at the monomer's expense during the first era. During th%maller. To impro,ve the agreement with experiments, we

second era, the clusters grow to the critical size in such &) co i sec. IV a different discrete diffusion coefficient
way that their size distribution is a traveling wave front in elected so as to yield the known expression for the adiabatic
size space. As this wave reaches the critical size, the forma: I )

growth of a nucleus of critical size by heat transfer. The

tion of supercritical nucleii starts, nucleationignited, and ic th for th itna BDE is simil h
the nucleation rate increases from zero to its stationary valu@Symptotic theory for the resulting Is similar to that

during the third era. We have obtained two different expres€XPlained in Sec. I, and the resulting time lag is much

sions for the nucleation ratevhich is of paramount impor- Closer to experimental data. Section V compares our

tance to compare with experimehtél) a general expression asymptotic results _f(_nr the transient nucl_eat|on rate and for the

in terms of the instantaneous location of the wave front and'Umber of supercritical clusters to previously known analyti-

its instantaneous width, which solve two given differential @l formulas(unfortunately all of them dealing with the con-

equations, andll) a more explicit description of the nucle- finuum ZFE, not with the discrete BDE as ours) §20-24.

ation rate in terms of the solution of the linearized wave frontT€chnical matters are relegated to the Appendixes.

position with an origin of time at the timg, needed for the

exact wave front to advance from pure monomers to a certai

near critical size. Numerical solution of the model confirms

all the theoretical predictions. The model presented here is nucleation in a lattice in
Most previous studies of transient nucleation consideredvhich there are many more binding sitég, than particles,

the Zeldovich-Frenkel equatiofZFE), which is a Fokker- N [7]. We shall consider the thermodynamic limN,— o,

Planck-type equation resulting from taking the continuumwith fixed particle density per sitgg=N/M. Let p, be the

limit of the BDE [17]. Zeldovich[17] set the discrete diffu- number of clusters witk particles or, in short clusters, and

sivity equal to its value at the critical cluster size and used aet p,=p,/M be the density ok clusters. Note that the num-

parabolic approximation for the variation of the free energy.ber densities per sitg,andp,, are both dimensionless. Num-

The resulting expression for the transient nucleation rate walser densities per unit volume are obtained dividingnd p,

rather inaccuratg2]. Until the mid 1980s, work on the ZFE by the molecular volume;=V/M. Particle conservation im-

was based on similarly uncontrolled approximatidis). plies that the total particle densipyis constant:

Some of them gave expressions for the nucleation rate and .

time lag close to the values obtained by numerically solving S kpy = )

the BDE for particular parameter values, but were far off for = Pk=p-

other parameter ranggs9]. Asymptotic theories for the ZFE

were elaborated latg20-22. There are two main differ- In the Becker-Doring kinetic theory of nucleationk @luster

ences between asymptotic results obtained for the discretean grow or decay by capturing or shedding one monomer at

BDE and those obtained for the continuum ZKi&the time  a time. Then7]

lags for transient nucleation are different, as explained by

ﬂ. KINETIC EQUATIONS AND STATIONARY SOLUTIONS

Wu [19], and(ii) the width of the wave front and the time to pc= i1 k="D-jo k=2, (2)
ignition are differen{wider for the ZFB. Nevertheless, other _ BT
magnitudes such as relaxation times and the stationary nucle- jk= dde®+=eTp  p — piy1}. 3

ation rate are the same for asymptotic approximations
both, the BDE and the ZFE. Thus our simplified the@lty
yields expressions for the nucleation rate that are similar t

% he monomer density; can be obtained from the conserva-
tion identity (1) that relates it to the other cluster densities. In
ese equationgy=dp,/dt andD.u,= +[u.., - U] are finite

differences.t, dy and j, are nondimensionat and d, are

from Wu's argument§19]. For large critical sizes, our ap- trelated to the dimensional tinte and decay coefficierd, as

proximation(l) is better.

The rest of the paper is as follows. In Sec. Il, we review d;
the Becker-Déring model for nucleation and growth of t=0t, d= QO (4)
spherical aggregates with the Turnbull-Fisi&F) discrete
diffusivity [16]. The binding energy of the aggregate with Here the facto) has units of frequency, it depends on the
monomergk cluste) relative to isolated monomers in solu- particular model we choose fat,, and will be determined
tion is (k—1) times the monomer-monomer bond energy pluslater. j, is the net rate of creation oflat 1 cluster from &
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cluster(thefluxin size spackg given by the mass action law. 1 .
In Eqg. (3) we have made the detailed balance assumption tc .4
relate the kinetic coefficient for monomer aggregation to that (@) 1.2 (o) r=t(1.0) i
of decay of ak+1) cluster,d,. This implies that the equilib- o
rium size distribution solving,=0 has the form 05 1 ,'l ‘ 1
kg = - ;
O ’
In Egs.(3) and(5), ¢ is the binding energy of &k cluster, B8 5
required to separate it into its monomer components. Ther 0 I/
the total energy measured with respect to a configuration ir 0.4t 4
which all clusters are monomers i§kN:2pkgk. For spherical
aggregates, 0.21
£= ((k— Da- So(k2B- 1))kBT. ) %7 2 3 % 05 :
2 Kk, g
This formula holds fork>1, but we shall use it for alk FIG. 1. (a) Scaled activation energy/g,, as a function of the

=1. CVKBT is the monomer-monomer bonding energf  scaled sizé/k.. (b) Scaled dimensionless density pe® as a func-
which, in the case of precipitation of crystals from a solutionijon of the scaled dimensionless monomer densityp;e® for the
or segregation by coarsening of binary alloys, may dependquilibrium distribution(solid line). Data correspond to liquid iron
on the particle densityp (volume fraction through  at maximum undercoolingdot-dashed line whereas for disilicate
some empirical formulas [14]. In Eq. (6), o  glass,p=p; (solid line.

=2y4(4mv?/3)*3/ (kgT), wherey, andv=V/M are the inter-

facial free energy per unit ardaurface tensionand the mo- o\3

lecular volume, respectively. Note that and o are both k=k.= (—) . (11

dimensionless. The corrections#;T/2 in Eq. (6) ensures

thate,=0, and it improves the agreement between the nUCIGEquation(g) can be rewritten as

ation rate obtained from the BDE and experimefi$].

More precise atomic models were proposed by Pernebaé 3/ k\23 Kk 30

[14]. O~ okZ® —(—) -—r+okP-=—. (12
Equations(1)—(3) and(6) and a given discrete diffusivity 2\ke ke 2

dy form a flO;QS Tyster(?tpf etqll]:lgtlprnﬁ thatlwe can solve for aak/ Om as a function ok/Kk. is depicted in Fig. (a).
appropriaté initial condition. Tt Initiaty only Monomers are Rewriting the flux(3) in the BDESs in terms of the activa-
present, we havp;(0)=p, andp,(0)=0 for k= 2. Before we tion enerav. we obtain

obtain formulas for the kinetic coefficiedtf, we shall recall %,

the more salient features of the equilibrium size distribution. i = dd(eP% - 1)p, — D, (13)

A. Equilibrium size distribution Equation(2) is a spatially discrete Smoluchowski equation

The equilibrium distribution5) satisfiesj,=0 and it can with diffusion coefficientd, and drift velocity

be written as vk = di (P49 = 1), (14

= pre %, () Notice thatv, < 0 for an activation energy that increases with
k andv, >0 for decreasingy. Hence,g, indicates how the

e 3 o N discrete advection, transports the clusters in size space:
g=—(k=Dlnp; - T EU(k =1 = (k= Din(e“py), subcritical clusters shrink as time elapses while supercritical
B clusters grow with time.
8 For the equilibrium densitie&), the conservation identity
whereg, is the activation energyequivalently given by (1) becomes
3 o0 oo
=0 (k-De, o= 50(k2’3- 1) k=1, (9 ep= 2, k(epy)e k= >, kel %, (15)
k=1 k=1
e =1In(e%py). (10) This series converges fefp;=e*<1 (¢<0), and diverges

for e*p;>1 (¢>0). At the critical micelle concentration
Hereo;=0=g,. Assumingk> 1, g, achieves its global maxi- (CMC), p;=e"* (¢=0), we obtain the critical density above
mum g,,=okZ3/2+0k;*3-30/2 at the critical size which equilibrium is no longer possible,
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TABLE |. Data for lithium disilicate glass.

PHYSICAL REVIEW E71, 021601(2005

Parameter Symbol Value
Melting temperature Tm 1300 K
Entropy of fusion AS 40 JmoftK™?
Surface tension Ys 0.15 J/nt
Preexponential diffusivity Do 2x10° m?s?t
Activation energy for diffusion Q 440 kJ/mol
Molecular volume v 1028 ms3
TF time scalg(703 K) O 0.613 h
Heat capacity per unit volume PrC 10° I 3Kt
Thermal conductivity(703 K) PmCK 3.96x 108 IJmlstK™?
Thermally-driven-growth time scal@03 K) (g 9 6.196 h
Critical size(703 K) [ 18
Undercooling(703 K) ) 4.087
Dimensionless surface tensi¢n03 K) o 10.74
Dimensionless free energy barrig03 K) Om=0/2KRP-30/2+% 25.177
TF time scalg(820 K) O 0.0478 s
Thermal conductivity(820 K) PrCK 1.84x 1018 Jmls ikt
Thermally-driven-growth time scalg20 K) Qe 0.48s
Critical size (820 K) Ke 34
Undercooling(820 K) P 2.817
Dimensionless surface tensié820 K) o 9.207
Dimensionless free energy barrig20 K) Om=0/2KRP-30/2+% 38.181

pe=1+ >, ke %,
k=2

For p> p., the BD kinetic equations predict phase segregas
tion, i.e., indefinite growth of ever larger clusters.

B. The controlling parameters

Let us identify the controlling parametegsand o in a
(16) physical system undergoing homogeneous nucleation. A
good experimental example is the transformation of certain

silicate glasses to crystalgevitrification [3]. In particular,
abundant data exist for lithium disilicate and we have com-

piled in Table | appropriate values of parameters character-

BD equations(1), (2), and (13), with dimensionless activa-
tion energyg=o—(k-1)¢, discrete diffusivityd, (to be

chosen laterand initial conditions

p1(0) = p, p(0) = pg(0) = - -

The only parameters left in this initial value problem are
and o. p controls the long-time behavior of the BDE: pf
<p. given by (16), p,(t) approach their equilibrium values
(7), with monomer density, that solves Eq(1):

=0. (17)

_AS(Ty=T)

izing nucleation[2]. In disilicate, the free energy per mol-
ecule of the crystal phase in the activation ene(@y is
The simplest nucleation problem consists of solving theproportional to the undercooling

, (19

where T, is the melting temperaturé\S; is the molar en-
tropy of fusion, andN, is Avogadro’s number. The dimen-
sionless densitp=e#© can be extracted from Eq19) as
explained in Sec. Ill. In energy units, the activation free en-
ergy is ksTg=yAma’—kgTeok, wherea is the radius of a

* sphericalk cluster. From the expression for the volume of
pe® = f(pe;0) = >, kip,%)ke k. (18)  this cluster,kv=4ma3/3 (v is the molecular volume we
k=1 obtaina=[3v/(47) ]33, and therefore

The graph of this function is either the solid line or the

dashed line in Fig. (). If p> p,, cluster sizes grow indefi-
nitely whereas their density becomes small. Thus there releT

mains a residual monomer concentration whose density
p1€*— 1 ast— oo, Summarizing, the union of solid or dashed
lines in Fig. 1b) and the vertical linep;e*=1 for p>p.

represents the long-time limit of the monomer concentratiorComparing  Eg.

as a function ofp.

3o
(gk o+ 2 ) = 75(477)1/3(311)2/3'(2/3 = AS{(Ty = TK/N,.

(20)

Eq. (9 yields o

=(32mv?/3)3y,/ (kgT), and the critical size
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32wv2>1’3 7Na kzl exlo., — (1 + 1]

13 _
< ( 3 AS(T=T) =1 d

The other parameters in Table | will be used later to mode},, k= Sinces, =0, j can be obtained from this expres-
the discrete diffusivity in the BDE. We observe that the criti- giqy in terms of an infinite series

cal size increases with temperatukg=18 at 703 K andk,

=34 at 820 K. For other materials, such as undercooled lig- = 1

uid metals, critical sizes can be rather large: liquid iron at BRANE _ _ :
maximum undercooling hak,=494, whereak.=2253 for 2, exfoi=(+De-Ind]
liquid rutenium at maximum undercoolif§].

(21) s=1-j (28)

(29)

Substituting this expression back into Eg8), we obtain

S exdong - (1+ De-Ind]

As they stand, the BDE are rather stiff and hard to solve S=1- > exgoni—(+De-Ind] '
. e L =1 1+1 ¢ |
numerically. For example, at equilibrium, Table | indicates
that py / py=€"9m ¢ ~e2>2741=2x 107" for disilicate glass Then, p,=p,e9%s,.
at 703 K, andpkc/p1z1.6>< 1078 for disilicate glass at
820 K. This motivates the following change of variable

C. Equivalent Becker-Ddring system

(30)

E. Turnbull-Fisher discrete diffusivity

= pr€ s = €TV, (22)

according to Eq(10). Note thats,=1 in equilibrium. Since
0:=0, this equation implies

To solve the BDE, we need to establish reasonable models
of the kinetic coefficient, (discrete diffusivity for the de-
cay of the(k+1) cluster. A classical formula due to Turnbull
and Fishef 16] applies to spherical clusters whose growth is
limited by the reaction rate at their bounda(f(:is the prod-
uct of the number of active sites on the aggregate times the
molecular jump rat¢2,16]

s1=1, (23
for all t. For the initial condition17), e#©~*=p,(0)=p, and

the conservation identityl) becomes

e‘P(O) = e+ E ké(‘P_U'kSk’
k=2

(24)

in which we have used Eq22). In terms of thes,, the flux
can be written as

213 213 QI(RT)
d. = 4k2/3eD+gk/26D = OK23eP:92 ()= v _ue
A2 24D,

(31

Here D=Dye"¥R7 is the diffusion coefficient in the liquid,
Q is the activation energy for diffusioiisee Table ), R

N

=kgN, is the gas constant, and=v*® (v is the molecular
volume. If we nondimensionalize time as in E¢) with
this definition of(), we obtain

Jie=di EXF[(k +1De- 0'k+l](sk - Sk+1)’ (25

and the BDE(2) and (13) become
dy = k?3eP+ad2, (32

S+ U(Sie1 = S = — KeS+ Oi-1(Se-1 = 28 + Sird) , (26)
for k=2. Here,
. ASYMPTOTIC THEORY OF TRANSIENT
HOMOGENEOUS NUCLEATION WITH THE TURNBULL-
FISHER DIFFUSIVITY

U = dk—l - dke(P_D*'(rk.

(27)

The termu,D,s, in Eg. (26) representsliscrete advectian
with a drift velocity u,=-v+(d,_,—dy) ~ —v}, wWhich is es-
sentially minus the drift velocity in the original BDE fd¢

In this section, we shall interpret the numerical solutions
shown in Figs. 2—4 by using singular perturbation methods.
> 1. Thus the advection in E426) climbs upthe activation  Our theory will be described using the TF discrete diffusivity
energy barrier, from small values gf to large ones. (31) and compared to numerical solution of the BDE for the

In summary, the transformed nucleation initial-boundarycrystallization of disilicate glass at different undercoolings.
value problem consists of the balance equati®8), the
particle conservation equatig24), the boundary condition
(23), 5;=1, and initial conditionss(0)=0 for all k=2. Its
solution givesep(t) ands(t) for all k=2 and allt>0.

A. Initial transient

Initially, p;(0)=p and there are no multiparticle aggre-
gates. There is an initial transient stage during which dimers,
trimers, etc. form at the expense of the monomers. This ini-
tial stage is characterized by the decay of the chemical driv-

The stationary solution of the BDE has a flux independening force ¢=a+In p, to a quasi-stationary valtig, given by
of cluster size, so thgi=d, exg(k+1)¢-oy1l(Sc—Se1) =),  Eq. (19 in the case of disilicate glass, and the emergence of

D. Stationary solution

from which (s,1—-5)=—j exd o1~ (k+1)¢]/d,, and there-
fore

a continuum size distribution. Knowing thigje choose the
initial chemical driving forcee(0) so that the quasistation-
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FIG. 2. (@) Comparison ofs,(t) evaluated(at different times FIG. 4. Same as in Fig. 3 for disilicate glass at 703 K,

from the numerical solution of the discrete equati¢®6) to the =18.
asymptotic resul(54) (solid line). (b) K(T) calculated from Eq(41)

with K(0)=¢® (solid line) is compared to the numerically obtained . . . . .

position of the wave front. Data correspond to disilicate glass ae\L/"atlon of the transient stage to .qua5|-stat_|o.n.ary nucleation.

820 K. All variables are written in dimensionless units. e shall show Iate_r that the duration of t,he m_'t'al stage com-
pared to the duration of the overall transient is of orkgéf,

ary value given by Eq. (19) is attained at the end of the @ very small quantity for materials with large critical sizes.

initial stage.

In materials such as disilicate glass at the temperatures we B. Wave front advancing towards the cluster of critical

consider, the critical size is relatively small. Thef0) =, size

and the initial stage is very short. As the critical size in-  After the first era, clusters of increasing size are formed.

creasedas in the case of undercooled liquid metaks(0)  For sufficiently small clusters, the continuum size distribu-

may differ appreciably fromip, and the initial stage lasts tjon approaches the equilibrium distribution wighe%. This

longer. However, even in such cases, the duration of the inisjtuation can be observed as an advancing wave front in the

tial staget., is negligible if we are interested in the overall variables,(t), satisfyings,~ 1 (equilibrium) behind the front
ands,~ 0 ahead of the front. This second era is described by

3x10" [ Egs.(24)—(27) with ¢="p and ¢=0. The critical sizes,
3
g
i ke = (:) : (33
25 ?
ol for disilicate glass are relatively small, between 10 and 50,
but they are large for undercooled liquid metals, generally
= between 100 and 1000. Hence we shall use as a small gauge
=13 parameter
1 =2, (34)
g
0.5 Our asymptotic analysis will be carried out in the linit
—0, and thereford,= e 3—o. Thend,, u,, anday in Egs.
) (32), (26), and(27) are smooth functions d¢>0:

d(k) - k2/3e[D+rr(k)-?p]/2, U(k) — §0‘(k2/3— 1)’ (35)
FIG. 3. (a) Evolution of the dimensionless flux at critical size 2
j(t), and (b) number of clusters surpassing critical si¥gt) as a
function of dimensionless time for disilicate glass at 820K, uk)=d(k-1) -d(klexde - o(k+ 1) + o(k)]. (36)
=34. Solid lines correspond to numerical results, dashed lines to the
approximation given by Eq58), dot-dashed lines to the lineariza-
tion approximation(67), and dotted lines to the approximati¢@8)
corresponding to linearizing the equations K{T) and A(T) as in In the numerical solutions shown in Fig(a®, the graphs
Appendix C. of s, vsk at fixed time have clear inflection points at sokje

1. Position of the wave front
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wheres,~1/2. The inflection point is taken as tip@sition  Carrying out the straightforward expansion in powerseof
of the wave front. In the continuum model, the front position Eq. (44) adopts the following asymptotic form
k=k;(t) is a smooth function which obeys

JS 5 dK | dS S
- e-+eP|UK)-— | +eU (KX
Scalingk; as —¢ 2p—2|: K2/3ge(K3-1)/2 _ EU(K)] (?2_3 +0(e2P?),
K 2 oX
k= 3 (38) (45)
(same scaling a&.=e3), the right-hand side of Eq37) ase— 0 with X, K fixed. HereU(K) is given by Eq.(40). To
becomes obtain Eq.(45), we have used Eq$38) and(39):
K + e 3PX
1 nTE Ao 2 3-
u(ky) = 5U(K) +0(e), (39) U( 3 )—e UK +€7PX) +O(e)
= e 2U(K) + € PU'(K)X + o' P).
U(K) = 2K?3 siny—<f(|<-1/3_ 1)), (40) The dominant balance of diffusion and convection in Eq.
2 (45) yields 20-2=1, orp=3/2.Hence Eq(43) yields
Equation(37) can be rewritten as K
— _3/2
dK 7 X=e€ (k‘—3>, (46)
€
— = U(K) =2K?3 sinh(f(K-m— 1)) , (41)
dT 2 and the limit of Eq.(45) ase—0 is
provided we define the slowly varying time scdle et, and s S PS
take the limit ase— 0. Figure 2b) compares the position of ot U (K)Xg( = D(K)ﬁ, (47)

the wave front calculated by solving E@t1) with K(0)=¢€

to the value obtained from the numerical solution of Eq.
(26). Note that the solution of Eq41) presents a time shift D(K) = lim {d(e‘3K) _ }u(e—sK)}ez

with respect to the numerical solution of the discrete model. 0 2

This time shift reflects the breakdown of the continuum limit ~

asK—0, due to discreteness, and also the transienri(in =K?23 cosr(f(K-m— 1))_ (48)
before it settles ta@. If the solution of Eq.(41) is forced to 2

agree with the numeric&l(T) when the latter is, say, 0.1, the Had we carried out the same analysis for the ZFE, we would
comparison fares much better. have foundD(K)~ d(e3K)e. This would have resulted in a
2. Shape of the wave front wider wave front and a longer time to ignition than those

. . described below.
The leading edge of the wave front is a layer centered at

K(T) in which s, decreases from 1 to 0 &sncreases through 3. Flux and wave front width

it. The continuum representation gf in this layer is : - .
P & y Besides determining the shape of the wave front near its

s.=S(X,T;e), (42) location, Eq.(47) yields the behavior of the fluxcreation
rate of clusters larger thak) j, neark=k;. If we substitute

whereSis a smooth function of its arguments aKkds the Egs.(32), (42), and(46) into Eq. (25):

scaled displacement from the wave front location kat

=K/é&, i.e., i = - dek* VP oD, 5,
K 1
X=ep(k——3>. (43) :—k2’3exp[<k+—>2,b
€ 2
The scaling exponerd, presumably with & p<3, is to be 30 23 213, 3T
determined. The descriptio@2) and (43) should hold ase T2 [(k+ D)2+ k2] + 2 D.sq,
— 0 with X fixed, so that the layer thickness scaleseds )
Substituting Eq(42) into Eq. (26) yields we obtain
S dK S K X i ~ € 12K 21363%1(2¢)
e—-—eP?——+ u<—3 + —)[S(X +ePT;e)—SXT;e]
aT dTox \& eP G(K) G'(KX G'(K) G'(K)_,|dS
X T3 T 32 - X
€ € 2 2 oX

K X
:d(§+5)[s(x—ep,T;e)—ZS(X,TJG)"‘S(X (49)

+eP o). (44)  Here
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~(3
G(K) = ¢<5K2’3— K) (50)
is a scaled version of the activation enelgy.
Sincej, is proportional todS/JX, it is convenient to dif-
ferentiate Eq.(47) with respect toX in order to obtain an
equation forJ=-9S/dX,

aJ a(XJ)

P
UK == =D(K) . (51)

Notice thatJ is locally conserved, and the following integral

conservation identity holds:

1:—[5]i°w:—f &dx:f JdX.

—00

(52)

Equation(51) has Gaussian solutions satisfying E5§2),

JX,T)= ! exp{— S } (53)
© 2VrA) 4A(T) |
which yields
1
SX,T) = > erfc{ 2\”@} (54)

for the wave front profile. Inserting E@53) in Eq. (51), we
find the following equation foA(T) > 0:

dA o
o7~ 2V (KA=D(K).

SinceK(T) is an increasing function, we can exprésss a
function of K. Inserting Eq.(41) in Eq. (55), we get

(55)

dA 2U'(K D(K
dA_20(K), _DIK) -
dK  U(K) U(K)
Direct integration of this equation yields
~ K—l/3_ 1
3K4’3<1 +q sinhz[—‘p( )])
o o [ ~dK 2
A=qU?+U? | D= - ,
) 20
(57)
in which g is an arbitrary constant.
After insertion of Eq.(53), the flux (49 becomes
KR | G(K) _G'(KX_G'(K)
e enn € B 2
GII(K)
X2 58
[0 2} s

Here K=K(T) and A=A(T) are found by solving the differ-
ential equationg41) and (55) with initial conditions K(0)
=€ andA(0)=3¢€*/(29), respectively. We have to sgt0 in
Eq. (57) for A would become exponentially large #s=e®
—0 otherwise. AST—«, K—1 andA—-D(1)/[2U’(1)].
The definitions(40) and (48) of U(K) and D(K) imply
U’'(1)=-¢/3, D(1)=1. Hence, A—3/(2¢) asT—x, or as
K—1 in Eqg. (57). The definition (500 of G(K) implies

PHYSICAL REVIEW E71, 021601(2005

G(1)='p/2, G'(1)=0, andG"(1)=—¢/3. Hence, the limit as
T— o of the creation rat€58) is

\/:eXp< 28" 2)

Notice that the terms proportional % and X? have disap-
peared from this expression and therefpreis asymptoti-
cally uniform forX=0(1). Equation(59) is the classical qua-
sisteady nucleation rate of supercritical clusters due to
Zeldovich[17], and it can be directly obtained from the sta-
tionary flux (29) in the limit ase— 0.

(59

C. The nucleation rate of supercritical clusters

Let us now study the transient creation rate, in whjch
EjkC increases from 0 to the steady Zeldovich valb®). As
we have just seen, our theory predicts tha wave front
profile is given by Eq. (54) , where(K) and AT) are solu-
tions of Egs. (41) and (55), respectively. The flux of clusters
with sizes larger than k is then given by Eq. (58gttingk
=k.= €2 (critical size and X=(1-K(T))/€? in this equa-
tion, we obtain the nucleation rate predicted by our theory,
j(t). Its integral over time yields the number of supercritical
clusters,N.(t). We shall consider now a different and more
explicit approximation of these results.

1. Linearization of the wave front speed about the critical size
Let us fix k=k,=¢€ 3 (critical size in the definition(46)
of X:

We now setX=k in Eq. (58) and perform the limit as
— 0 with « fixed. The result is

. . _~ 2~ 32~ . _~ 2
j~j.e oKk16—€”“pKkl6 __ joc€ PK /G, (61)

provided we use the limiting stationary valugtA)™
=-G"(1)/2.
The transient turns on whee= (1-K)/e¥2=0(1). Since
U(1-€¥2k) ~ € 3%pk13, the wave front equatioft0) yields
d« o
—=-% 62
dar~ 3" 62

ase— 0. The solution of this equation is

K= KMe—Tpe?a(T—TM)/s — KMe—(t—tM)/(ZT)’ (63)
2.
7i= 3% (64)

It is convenient to choosey, as the value ok at which the
flux j reaches its inflection point. Then we may consider that
the wave front has ignited the nucleation of supercritical
clusters. Straightforward use of E¢61) and(62) shows that

6
Km = o (65)

¢
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Moreover, Ty, = ety is thetime to ignition at which the wave solution of the BDE. The overshoot decreases as the critical
front K(T) reaches the valuk=1-¢%2,,. From Eq.(41), size increases. Another approximation consists of linearizing

we obtain the equations folK(T) and A(T) about the critical sizeK
=1 as suggested in R¢R4] and further explained in Appen-
3 P(1-€3? dix C. This latter approximation is the worst one. This is not
ty=te+ —|In{ ———— surprising as such approximation provides the same result
2p€ 6e® for both the discrete BDE and the continuum ZFE.

For disilicate glass at a lower temperature of 703 K, the
critical size is smaller and our approximations deviate more
from the numerical solution of the BDE, as shown in Fig.

1-€ 32, @ 2 4(a). Integratingj(T) over time, we find the number of su-
+f , + dK{, percritical clusters as a function of timk(t), which is de-
€ ® K-1 picted in Figs. 8) and 4b). At 703 K, the numerical solu-
3K#3sinh| —(K™*3-1) tion of the BDE with the TF diffusivity yields a time lag
2 =2.6. This value is close to those provided by the lineariza-

(66) tion approximation,f=2.2, and by Eq(58), #=2.3. Thus
these analytical approximations to the numerical solution are
wheret,, is the duration of the initial stage. We could have reasonably good even for a relatively small critical size.
expanded the integral in this expression, but &) is bet-  However, §=2.6 gives 1.6 h according to Table |, whereas
ter suited for numerical calculation. The nucleation rate isthe experimentally measured time lag is about 50 h; cf. Fig.

found by inserting Eq(63) in Eq. (61): 5 of Ref.[3]. This discrepancy is due to having used the TF
. (= discrete diffusivity, which yields an excessively small time
—_~ _ (t=t\p)/ ’
J~ J exp - e, (67) unit, as shown in Table I.
in which a term of ordek *2 has been ignored in the expo-
nential.
Integratingj(t) over time, we find the number of super- V. TEMPERATURESS&XEBSROWTH OF THE
critical clusters as a function of time. In the limit &s-o°,
this number isNc(t) ~ j.(t—-6), where tf;e time lag is ap- To improve agreement with experiments, we need a dis-
proximately given byg=ty,+ ry+7E,(e™7), or crete diffusivity different from the TF one. We shall no
_ 30 longer assume that cluster size changes due to the activated
3 e(l-€) o transfer of a monomer through the cluster surface as in the
f=t,+—|[In +y+ TEi(eM) TF theory. Instead, we shall assume that the discrete diffu-
2p€ 6e 3 sivity in the BDE agrees with an adiabatic temperature

driven growth of the nucleus. This yields a different formula
for dy, which, presumably, is not physically justified for very
small cluster sizes. Nevertheless, the numerical solution of

1-¢ %%y % 2 the BDE corresponding to thermally driven growth provides
+ , - + dK |, a time lag which is much closer to the experimentally mea-
¢ @ K-1 sured value for disilicate glass than the TF diffusivity.
3K?Bsinh| —(K3-1)
2 A. Discrete diffusivity
(68)

Let us assume that there is a nonuniform temperature field
where y=0.577215... is Euler's constant amg(x) is an  about a spherical crystal of radias(k cluste) that is grow-
exponential integral, see the derivation in Appendix B. Theing at the expense of the surrounding glass. Equatain
time lag ¢ can be directly compared to experimental valuesshows that a nucleus of critical size grows(#,,—T) de-

[3]. creases. The same equation yigliis—T) at the surface of a
critical nucleus withk monomers:
2. Comparison between different approximations

Fi ] i 32m?\ 2y N
igure 3a) comparesj(t) calculated from the numerical T -T. =( ) Mk—l/s_ (69)
solution of the BDE for devitrification of disilicate glass at " 3 AS

820 K, from Eqgs(67) and(66) with t,,=0, and from Eq(58)

with X=(1-K(T))/e%2 We find that the more precise ex- At the surface of the crystal=T.(k), whereas far from it
pression, Eq(58), captures better the width and location of there is a smaller temperaturé=T.. Heat transfer from
the transition region betweep=0 andj=j., as compared crystal to glass, pnCrd4ma’dT(a,t)/dr (x, c andp,, are ther-
with the simple approximation given by Eq®&7) and (66). mal diffusivity, specific heat and mass density, respectiyely
Both approximations present a small overshoot and yield ahould equal the increase of energy due to crystal growth,
smaller time lagé than that obtained from the numerical T.ASN, dk/dt". We find
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dk _
dt'
The temperaturdl(r) is the solution of Laplace’'s equation

with boundary condition§ =T atr=a, andT=T.. infinitely
far from the nucleus. The corresponding solutionTisT,,

CkNp T
_M‘_ 4’7Ta2. (70)
TAS o | =4

+(T.—=T,)alr, which, together with Eq(70), yield
dk PmCKNA
s =4r———— (T — T.)a. 71
at - Tas ) 71

Using Eq.(69) and the expressions for the radimsnd Eq.
(21) for the critical sizek., we obtain

dk _ 2(67%0) " prckNa(Tr ~ T-.)
§ T.AS

(k1/3_ kél:./?:). (72)

dt

As k— o, the flux (13) in the BDE becomeg, ~ d, (€ /9<%
-1)py (written in dimensional unijs and therefore

% a'k u
dt’ 3)

Using Eq.(11), this equation can be written as

~ di( er K q) = de

dk
g~ et -, (73)
Comparing Eqgs(72) and(73), we obtain
1/3
@{1‘<§) } 20\ 13 2
= Okl k _ 2(67v)"“prcrkgNy
“ erl1-0 ™ _q 7 (AS)?

(74)

As before, we shall absorb the constéhin the definition of
time according to Eq(4), which yields the following value
of the dimensionless discrete diffusivity:

A

de= 17 (75

1 — gel1-(kdk

Here we shall assume that the thermal diffusivity follows the
same Arrhenius law as the diffusion coefficient in the liquid

k=DyeQMNakeT): see Keltonet al. [2]. With this choice of

discrete diffusivity, a numerical solution of the BDE yields a

time lag of #=46.5 h at 703 K compared t6=1.6 h previ-

ously obtained using the TF diffusivity. The experimentally
measured time lag is 50 h, as shown in Fig. 5, p. 94 of

Kelton’s review[3]. Thus we feel justified in using our for-
mula (74) to solve the BDE for disilicate glass.

B. Asymptotic theory

PHYSICAL REVIEW E71, 021601(2005

When necessary, we shall add the labels TF or TDG to the
corresponding variables. After the initial discrete stage, our
asymptotic theory yields the following results for tempera-
ture driven cluster growth, applicable to devitrification of
disilicate glass.

The wave front profileS(X,T), with X=[k- e 3K(T)]e %2
andT=e%, is given byS(X, T)=(1/2)erfc(X/[2y/A(T)]). The
front location and its width solve

dK iy = =1 Kl
7o UK =%(1-K 3, (76)
d_A _ = T 1/ @ -1/3 _ :|
e 2U'(K)A=D(K) (1 K 3)coth{2 K 1) |,
(77)

with initial conditionsK(0)=€3, A(0)=€3/2. The latter con-
dition corresponds tg=0 in Eq. (57). ThenA~K/2 asK
— 0+, which yields the initial condition foA if K(0)=¢€. In
Egs.(76) and(77), U(K) and D(K) are defined by

o=t of 3]} 000-tmd5)- 3]«

Instead of Eq(49), we get the following approximation for
the flux near the wave front:

12p(1 — KL3) /29 p{ G(K)
exp) - —3 -
€

[1-eC <K>]\f4wA
G//(K) X2
2 4A
in which G(K)=9(3K?3/2-K) and Eq.(53) has been used.
Inserting X=[1-K(T)]/€¥? in this equation, we obtain the
nucleation rate:
iMm
joo

G’ (K)X
&2

Jk~ -G'(K)

(78)

|3 UK
2Kp1 -

% GK)+G'(K)(1+e-K)
XeXp{ 26 e

G'(K) , 1 ]@-Kp?
_{ 2 +4A] 3 } (79
_ e 3 ¥

== sweXp<ze 263)' (80

The simplest approximation for the nucleation rate and
the time lag yields

j = Jo exp{- eI, (81)

We have to repeat the arguments given in Sec. Il using

the discrete diffusivity(74) instead of the TF expression.

One important difference is that time needs to be rescaled as

T=¢% instead ofT=et. Here we shall also use the symbiol
for the slow time scale, but remembering tiapg= €t (for
thermally driven growthinstead ofTyg=€t (TF diffusivity).

1- e KM
:_f 1- Kl/3
3\ 1/2
{l (3‘P> 3+2<66> }+O(e), (82)
2e3 ¢

2<pe
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FIG. 5. () Evolution of the dimensionless flux at critical size /G- 6. Same as Fig. 5 for disilicate glass at 703 K, which has a
j(t), and (b) number of clusters surpassing critical siigt) as a  cfitical sizek.=18.
function of time (in dimensionless unijsfor disilicate glass at .
820 K, k.=34. Solid lines correspond to numerical results, dashed. olnome.rs,.or more general ones, evolve tov_vards the equi-
lines to the approximation given by Eq@6)—(79), and dot-dashed llorium distribution. In many cases of polynomial growth for
d,, equilibrium is reached via a wave front profile fey,

lines to Eqs(81)—(83). ALkt g
which is similar to Eq.(54) with AxK? and K« T#, for
~ appropriate positive and u; see Ref[25] and references
-1 _ 2¢e — -1 (83 cited therein. This advancing and widening wave front leaves
TTDG €TTE ) - L . S
3 in its wake the equilibrium size distribution.

In the more complex case of phase segregation and indefi-
nite aggregate growth considered in this paper, a quasicon-

0=ty +[y+Ey(eVN)]7
_ 3\ 12 tinuum wave front of, emerges after a short transient which
= 3 |n(3_‘P) —3+y+ 2<6L) +0(e). is governed by the discrete BDE. After this, the leading edge
2¢€? 2e8 ¢ of the wave front advances towards the critical size, and it
slows down and stops there, leaving behind it a quasi-

84 e
&9 equilibrium state. The arrival of the wave front to the critical

To obtain these expressions, we have followed the same prgize marks thégnition of nucleation of supercritical clusters,
cedure as in the case of the TF diffusivity. In particular, Eqswhich ends when the stationary Zeldovich rate is reached.
(61)—(63) hold with T=€ %, ty, given by Eq.(82) and7given  Previous asymptotic theories have been derived for the con-
by Eq.(893). tinuum ZFE, not the discrete BDE, and thus their results
Figure 5 compares the numerical solution of the BDEsystematically misrepresent two things: the time lags for
(solid line) for devitrification of disilicate glass at 820 K transient nucleation, as explained by W8], and (i) the
(critical sizek,=34) with the more accurate asymptotic for- width of the wave front and the time to ignition in the nucle-
mulas: Eqs(81)<83) (dot-dashed lineand its linearization ation rate. The latter discrepancies occur because the diffu-
about the critical size, Eq476)—79) (dashed ling Simi-  sion coefficient appearing in the continuum equation for the
larly, Fig. 6 corresponds to 703 K. We observe that our twowave front satisfie®gpe(K) =D,ee(K)-U(K)/2, and there-
approximations, Eqg76)—(79), and Eq.(81), describe quite  fore the width of the ignition stag@r of the wave frontfor
accurately the numerical solution. Notice that our asymptotiche BDE issmallerthan the corresponding one for the ZFE.
formulas for thermally driven growth yield worse approxi-  Let us briefly mention several existing asymptotic theo-
mations to the numerical solution of the BDE than in theries for the ZFE. Shneidmdi21] and Shiet al.[22] Laplace
case of the TF diffusivity. The stationary nucleation rate istransformed the continuum ZFE and matched a first stage of
approximated less well b, in the case of thermally driven pure advection of clusters to a local expansion about the
growth because of the avoidable singularitydpfat the in-  wave front when it is near its final position at the critical

tegerk,, which is slightly different frome™2, size. They obtained our simplest formula for the nucleation
rate, Eq.(67) with the same relaxation timese Or 7pg,

V. DISCUSSION except that their values fdy, were different from Eq(66).
' This can be expected from Wu’'s arguments about approxi-

In this paper, we have studied the case of phase segregarating the discrete BDE by the continuum ZFE)]; see the
tion resulting wherp > p.. Previously, other authors had car- systematic shift of approximations of the ZFE with respect to
ried out asymptotic studies of the BDE in the simpler case ohumerical solutions of the BDE in Fig. 20 of Rdf19].
subcritical densityp < p., in which initial conditions of only  Trinkaus and Yod20] studied a ZFE with a drift term lin-
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earized about the critical sizgarabolic barrier as an ap-
proximation to the full ZFE. Their results are comparable to
those found by means of the Laplace transform and matche
asymptotic expansions; see Wu's revigi®]. All these au-
thors obtained a transition region for the nucleation jéte
that was wider than observed in the numerical solution of the
BDE. Several authors also found a nucleation rate for super-
critical clusters that did not tend tp, ast—o if k#k.
[20,22,24, which is often called thasymptotics catastrophe
[26]. Our theory is free from this deficiency: E@B5) in
Appendix B provides the flux &> k. using the TF diffusiv-

ity

PHYSICAL REVIEW E71, 021601(2005

APPENDIX A: GENERAL SOLUTION OF EQ. (51)

d It is convenient to rewrite this equation in terms of the
variablesK and X, as

9 U'(K)IX) _D(K) #I
K UK) X  U(K)aX?

(A1)

to be solved with the homogeneous boundary condition

e, U106, 600

U(K) U(K) 9X 0 (A2)

(at X=X;,= € %?-Ke 32 corresponding t=1 in the defi-

. . _= _~ 2
K= e <pX0K/3e QK6 _

oty

= j.. exp — Xo\2p/3e )/ 27)]g . (89

in which X,=€*%(k-k;). Notice thatj,~j.. ast—oe, even
after making our simplest approximation: linearization of the
wave front about the critical size. To get rid of the asymp-

niton of X), and with initial condition J(X,Kg)
-3dS(X)/ dX. The boundary condition is obtained by differ-
entiating

S(Xin, T) =1 (A3)

with respect tol and then using the definition dfand Eqgs.
(41) and (47). The solution of the initial-boundary value

totics catastrophe, Maksimoet al. [26] assumed that Problemis

SX, T)=(1/2)erfc[Ae V@D +B(X)]/y1-¢e 7}, in which the
new functionB(X) obeyed arad hocself-consistent equation
that ensuredy,~j.. ast—« even ifk# k.. Note that if we
use Eq(63) for X=« and the linearization approximation for
A as in Appendix C, we obtain the previous formula ®r

9SH(Xo)

JXK) = - J . G(X,K; Xo,Ko) 2220, (Ad)

IXo

where the Green’s functioB(X,K; Xy, Kg) satisfies Eq(AL)

with ¢=1, A=e™@7 and B=0. Shneidmar{27] criticized with initial condition G(X,K0+;XO,KO);5(X—XO) and the
Maksimovet al’s result and extended his earlier asymptotic S8Me homogeneous boundary condition) @ X=X;,. In a

formula for the nucleation rat®3] to noncritical sizes. The Simple application of the method of images, the Green's
previous criticism of using approximations to the ZFE in- function for this BVP can be written in terms of the Green’s

stead of approximations to the discrete BDE apply to thes&!Nction G..(X,K; Xo,Ko) for the infinite real lineX, as

works. Our more precise approximation using EsB) plus

the exact equations for the wave front location and its instan-
taneous width improve upon these approximations and per-
form better for materials with large critical sizes.

The time lag obtained from the numerical solution of the
BDE with the TF diffusivity (or from our asymptotic ap-
proximations using jtis too small as compared with experi-
mental results(about thirty times smaller for disilicate at
703 K). The TF discrete diffusivity yields an excessively
small time unit, as shown in Table I. We have greatly im-
proved the agreement of theory and experiments by using a
different formula for the discrete diffusivity, which is found
by imposing that the growth rate of a critical nucleus result-
ing from the BDE be the same as obtained by heat transfer.
In this case, our asymptotic approximations have a slightly
different scaling of time and different expressions &(K)
andD(K).
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+¢(Xo; K, Ko) G.o(X, K; 2XiUg/U = Xo,Ko) s

(A5)
(-2
U U
! +1
<e'3’2+—u Xi”)zus
U
C(XO= K1 KO) = ’ (A6)
-2
u u
! O _1
<e—3/2+—u Xi”)zus
U
B(K,Ko) = * D(dk (A7)
1 INQ KO U(K)3 .
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(XU ~ Xg/Up)74B(K Ko)

Goo(X,K; X0, Ko) = (A8)

U\4mB(K,Ko)

Given the initial condition Sy(Xo) =H(2€%2-Kqe 3?=X,)
(pure monomers Eqg. (A4) yields

/ / e—X2/4UZB(K,KO)
JX,K) = G(X,K;2e%? - € 3Ky, Kg) ~ —————,
o0 UVATB(K Ky)
(A9)

which is Eq. (53), up to exponentially small terms. Here
Ko=€®, Ug=U(Ko) =2€% sinH o/ (2e) -3/ 2] ~ 2e¥/297%2
=U(K), andK=K(T).

APPENDIX B: CALCULATING THE TIME LAG

The timeTy, can be estimated from E¢41) with initial
conditionK(0)=¢€® (pure monomepsas

T . _J1_63/2KM dK
M€ T .3 U(K)

fl_e 3/2KM
e3

+fl‘€3/2M|: 1 1
.3 UK) U (Q)(K-21)

dK
U'(1)(K-1)

|

(B1)

wheret, is the duration of the initial discrete stage in the
original time scale. After straightforward calculations, we

obtain Eq.(66).
The number of supercritical clusters is

t t
Ng ~ J j(t)dt:jw{t+ f [exp(- e-“-tw’f)—l]dt}
0 0

~ju(t=6), (B2)
0= J [1 - exp— e W/7)]dt
0
etM/T 1- e—x
. f ity + 4 (), (B9
0

whereE;(x) is an exponential integral ang=0.577215... is
Euler's constanf28]. Notice that7E;(x) ~ 7€ */x~ 9¢ ¢(1

—e3)] 2906 < e<1, asx=eM7~3/(663)>1 [28]. Thus
we can ignore the exponential integral in E&3), which

simplifies somewhat more E¢68).

Sometimes it is interesting to calculate the creation rate of

clusters of sizek>k.. If k is close to critical size, we can
write

K
X=63/2<k—_3>ZESIZ(k—E_3)+K. (B4)

€
ThusX=Xy+ , with Xo=€?(k— €3). InsertingX=X,+ x and
K=1-¢%2« in Eq. (58), we obtain the creation rate of clus-
ters of sizek=e3+Xe %2
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. . = _~ 2
k= e <pXOK/3e oKrl6

= j.. exf— Xo\V2¢/3e /20 ]gme

(t—tM)/T. (B5)
Notice thatj,~j, ast—o. Thus our asymptotic result for
the flux over any cluster size is free from thgsymptotics
catastrophd 26]: several authors found that their expressions
for the flux tend toJ# j., ast—» if k# k.. These catastro-
phes are due to inappropriate assumptions they made in their
derivations.

APPENDIX C: LINEARIZATION OF THE EQUATIONS
FOR K(T) AND A(T) ABOUT THE CRITICAL
SIZE

A possible approximation of the wave front equations
consists of linearizing the equations #(T) andA(T) about
the critical sizeK=1:

K v@K-,

dT D
dA
7~ 2V (WA=D(), (C2)

with K(0)=¢ 2 and A(0) =0 (initial condition of pure mono-
mers. Both for the TF discrete diffusivity and for tempera-
ture driven growth of the nucleus, we have

U'=--, DO

=1. (C3)

w |6

The solutions of EqS(C1) and(C2) can be written in terms
of the time scald as

K(t) =~ 1-(1-e3et?@, (C4)

AW ~ (1 -, (CH)

2¢
for the TF diffusivity, and the same formulas withpg in-
stead of ¢ for thermally driven growth. Near the critical
size, these equations would give an explicit expression of the
wave front profile(54), with X=e 3%- e %2K(T). The nucle-
ation rate of supercritical clusters is then obtained from Eq.
(58) with X=(1-K)/e %72, together with Eqs(C4) and(C5).
For the TF diffusivity, j EjkC is

j [1 _ (1 —€ 3)e—t/(27')]2/3

joc \‘1’1 _e-t/T
~|¥vM @-1- 63)e‘t/(27'))—1/3_ 1
Xexp) — ¢ 3 + S ,
€

(Co)

‘I’(t) - [1 _ (1 _ E.'.’:)e—t/(27')]2/3_*_ [1 _ (1 _ 63)e—t/(27')]—1/3_ 2
_ 32, tIT
N (1-€°%€ { 1

6 1l [1-(1-€ 3)e—t/(27)]—4/3} _

(C7
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Notice that the same results would have been obtainedtion timerg, and an extra factor of 9 in the argument of the
from the ZFE because the difference between®@() and exponential in Eq.C8). Moreover, their exponential con-
the corresponding one for the ZFE i§K)/2, which van- tains a facto(1-e) instead of(1-€3). Demo and Kozisek's
ishes atkK=1. If we replace 1 instead ¢fL.—(1-€%e¥??]  Fig. 3 shows that their formulas do not improve as the cluster
in the previous formulas, we find size increases, as one would expect of correct asymptotic

expressions. Instead, they seem to optimize the nucleation
= ox _p(1-€¥? e c8) rate of crystals in disilicate at.=27 (T=800 K), as com-
J1-et7 6e3 1-el7|" pared with numerical solutions. The earlier theory by
Trinkaus and Yod20] calculated the Green function for a
Demo and Kozisek’s theory for the ZFE4] would yield Eq.  time-dependent ZFE with a quadratic barrier and also used a
(C9) for the nucleation rate once a couple of errors are corlinear equation for the position of the wave front. Thus their
rected. They foundpk =77¢/5 instead of the correct relax- results are related to those in this appendix.
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