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Abstract—The propagation of partially coherent and partially
polarized beams after a linear deterministic periodic structure
is investigated. Spatial irradiance, degree of polarization and
state of polarization across the transverse plane are obtained
at the exit plane of the structure as well as after paraxial
propagation beyond it.

1. Introduction

There are a lot of optical set ups in which diffraction
gratings are used. Generally, this kind of elements are stud-
ied within the scalar theory of light and assuming completely
coherent light [1], [2]. The influence of the lack of coherency
has been considered for the far field [3], [4] and small
shift from the Bragg condition as well as broadening have
been predicted. Recently, it has been shown that when the
vectorial nature of light is taken into account, different and
surprising results are obtained [3], [5], [6]. In this work we
consider the propagation of partially coherent and partially
polarized beams through and after a generic periodic linear
deterministic structure (PLDS), i. e., a periodic structure that
can be represented by a Jones matrix. Analytical expression
of the propagated beam after the PLDS is given. As a
particular example of PLDS, a sinusoidal amplitude grating
is analyzed in detail. Different effects on the polarization
pattern are obtained for a radially polarized input beam.

2. Theory

Under paraxial propagation conditions, coherence and
polarization characteristics of a quasi-monochromatic light
beam can be described by means of its 2 × 2 Beam
Coherence-Polarization (BCP) matrix. Assuming that the
beam propagates along the z direction, the elements of the
BCP matrix are defined as [7], [8]

Jjk (r1, r2, z) = 〈Ej (r1, z; t)E
∗
k (r2, z; t)〉 , (1)

where Ej(r, z; t), with j, k = x, y, are the Cartesian com-
ponents of the time-dependent electric field and r is the po-
sition vector in a plane perpendicular to the z direction. The
angle brackets represent temporal average and the asterisk
denotes conjugation.

By evaluating the BCP matrix at coincident points, r1 =
r2 = r, the irradiance, the degree of polarization (DoP) and
the Stokes vector can be obtained as [9], [10]

I(r, z) = Tr{Ĵ(r, r, z)} , (2)

p(r, z) =

√
1− 4 Det{Ĵ(r, r, z)}

Tr2{Ĵ(r, r, z)}
, (3)

S(r) =

 S0(r, z)
S1(r, z)
S2(r, z)
S3(r, z)

 =

 Jxx(r, r, z) + Jyy(r, r, z)
Jxx(r, r, z)− Jyy(r, r, z)

2Re{Jyx(r, r, z)}
2 Im{Jyx(r, r, z)}


(4)

respectively. Note that I(r, z) = S0(r, z).
A deterministic linear optical element with negligible

thickness, placed at z = 0 plane, transforms the BCP matrix
of an incoming field according to the following rule [8]:

Ĵ (r1, r2, 0) = T̂ (r1) Ĵ
in (r1, r2, 0) T̂

† (r2) , (5)

where T̂ (r) is the Jones matrix of the optical element, Ĵ in

is the BCP matrix of the field across the input plane of the
element, and the dagger denotes Hermitian conjugation.

For a PLDS, the elements of the Jones matrix can be
expressed as a Fourier expansion, that is,

Tjk(r) =
∑
q

aqjk exp
(
iγq

jk · r
)
, (6)

where aqjk are complex coefficients and the vectors γq
jk are

reciprocal lattice vectors. Amplitude and phase gratings, po-
larization gratings [11], and double-wedge depolarizers [12]
are examples of this class of elements.

3. Propagation after a periodic structure
The BCP matrix across any transversal plane beyond a

linear deterministic periodic structure can be calculated if
the BCP is known across the exit plane. In particular, the
following expression can be used for the free propagation
under paraxial conditions [9], [13]:

Jjk (r1, r2, z) = (7)∫ ∫
K∗z (r1,ρ1) Jjk (ρ1,ρ2, 0)Kz (r2,ρ2) d

2ρ1d
2ρ2 .



where ρ is the position vector across the z = 0 plane and

Kz (r,ρ) =
−i
λz

exp

[
i2πz

λ
+

iπ

λz
(r− ρ)

2

]
(8)

is the direct paraxial propagator and λ the wavelength.
On substituting from Eq. (8) into Eq. (7) and using

Eq. (5), the elements of the BCP matrix of the propagated
field can be expressed as

Jjk (r1, r2, z) =

y∑
l,m=x

1

λ2z2
exp

[
iζ

2

(
r22 − r21

)]
(9)

×
∫ ∫

Tjl (ρ1)T
∗
km (ρ2) J

in
lm (ρ1,ρ2, 0)

× exp

[
iζ

2

(
ρ22 − ρ21 − 2r2 · ρ2 + 2r1 · ρ1

)]
d2ρ1d

2ρ2 ,

where ζ = 2π/(λz) and the dot represents the scalar
product.

On the other hand, the free-space propagation of the
unperturbed input field can be evaluated as

J in
jk (r1, r2, z) =

exp (iζ s · t)
λ2z2

Hjk (s, t) , (10)

where the auxiliary functions Hjk (s, t) are introduced as

Hjk (s, t) = (11)∫ ∫
J in
jk (ρ1,ρ2, 0) exp

[
iζ

2

(
ρ22 − ρ21

)]
× exp [−iζ (r2 · ρ2 − r1 · ρ1)] d

2ρ1d
2ρ2 ,

being s = (r1 + r2)/2 and t = r2 − r1. The explicit
dependence of Hjk on z has been omitted for brevity.

Therefore, from Eq. (9), the BCP elements correspond-
ing to the propagated field behind the optical element can
be expressed as

Jjk (r1, r2, z) =
1

λ2z2
exp

[
iζ

2

(
r22 − r21

)]
(12)

×
y∑

l,m=x

jlmjk (r1, r2, z) ,

where the functions

jlmjk (r1, r2, z) =
∑
q,q′

aqjl

(
aq

′

km

)∗
(13)

×Hlm

(
s−

γq
jl

2ζ
+

γq′

km

2ζ
, t+

γq
jl

ζ
+

γq′

km

ζ

)
are linear combinations of the auxiliary functions Hlm (s, t)
and different tilted versions of them. The particular set of
linear combinations and tilts depend on the specific optical
element considered.

Then, for any PLDS, Eqs. (12) and (13) allow to
calculate irradiance and polarization characteristics of the
diffracted beam at any distance, if the free-space propagation
of the incident beam is known.

Figure 1. Intensity, normalized to its maximum, and normalized Stokes
parameters, S1, S2, and S3, from left to right and top to down, for a
radially polarized partially coherent beam at the exit plane of a sinusoidal
amplitude grating. Lenghts in Lx units

4. Example

As a particular case, we consider a sinusoidal amplitude
grating represented by a Jones matrix of the form

T̂ (r) =
1

2
[1 + cos(γx)] Î , (14)

where Î is the 2D identity matrix and γ = 2π/Lx, with Lx

being the grating period.
As the input beam, we consider a radially polarized

partially coherent beam, with Gaussian degree of coherence
and donut-like intensity profile, described by the following
BCP matrix [14]:

Ĵ in (ρ1,ρ2, 0) = (15)

I0
4σ2

exp

[
−ρ

2
1 + ρ22
4σ2

− (ρ1 − ρ2)
2

2µ2

](
ξ1ξ2 ξ1η2
η1ξ2 η1η2

)
.

Here, I0 is a positive quantity with irradiance dimensions,
σ gives the spot size of the irradiance profile, and µ is the
width of the degree of coherence at the z = 0 plane.

Substitution of Eq. (15) into Eq. (9) leads to the BCP
elements of the propagated field after the diffractive element.
Irradiance, DoP and Stokes vector of the propagated field
can be calculated by substituting the values of Jjk (r1, r2, z)
into Eqs. (2), (3) and (4) respectively. Since the resulting
analytical expressions for such quantities are rather cum-
bersome, we omit them, and limit ourselves to show results
obtained from them.

Figure 1 shows the Stokes parameters of the beam at the
exit plane of the grating (with σ = 5Lx). Note that S0 is
proportional to the intensity. The DoP (not shown) is unitary
everywhere at the exit plane, regardless the values of the
input beam parameters σ and µ, and the state of polarization
corresponds to that of a radially polarized beam. The only
effect at the exit plane is the sinusoidal modulation of the
intensity.

When the output beam propagates, its polarization state
changes in different ways for diverse values of µ. Figures 2
and 3 show the Stokes parameters of the beam of Fig. 1 at
a propagation distance z = 2L2

x/λ.



Figure 2. As Fig. 1, for z = 2L2
x/λ and µ = 106Łx.

Figure 3. As Fig. 1, for z = 2L2
x/λ and µ = Łx.

Figure 4. DoP for quasi coherent (left, µ = 106Łx) and partially coherent
(right, µ = Łx) source at z = 2L2

x/λ.

Figure 2 corresponds to a practically coherent beam
(µ = 106Lx). The DoP turns out to be unitary at any point
across the transverse plane (see left part of Fig. 4), while the
polarization state is no longer radially polarized, specially in
those regions where the intensity is appreciably large. Note
that the polarization characteristics of radially polarized
perfectly coherent beams (µ → ∞) remain invariant under
propagation through homogeneous linear optical systems.

Figure 3 corresponds to a partially coherent input beam
(with µ = Lx). It can be noted that the fringe visibility
of the intensity profile is lower than for the coherent case.
Near the center of the beam, the polarization state is not
radially polarized (compare with S1, S2, and S3 in Fig. 1),
and the DoP appreciably decreases in two vertical lobes (see
right part of Fig. 4). However, outside the central area (the
central area has low intensity), the DoP is nearly one and
the polarization is approximately radial.

5. Conclusion

In this work, we study the behavior of a partially coher-
ent and partially polarized beam when it passes through a
periodic linear deterministic structure. The general case is
developed for any beam with known free space propagation
properties and for any periodic structure that can be rep-
resented by a Jones matrix. An example is presented for a
particularly simple periodic structure (a sinusoidal amplitude
grating) and a radially polarized input beam. Changes in
the polarization characteristics with propagation are more
evident for a coherent beam than for a partially coherent
one.
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