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Abstract - Autonomous mobile robots usually require a large number of sensor types and sensing modules.
There are different sensors, some complementary and some redundant. Integrating the sensor measures implies
several multisensor fusion techniques. These techniques can be classified in two groups: low level fusion, used
for direct integration of sensory data; and high level fusion, which is used for indirect integration of sensory

data.

We have developed a system to integrate indirect measures of different sensors. This system allows us to use any
type of sensor which provides measures of the robot’s environment. It is designed as a Belief Bayesian Network.
The method needs that the user creates a low level fusion module and an interface between that module and our

Sfusion system.
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1. Introduction

Data fusion refers to an essential technology
in the problem of the information treatment to
improve the quality of sensing systems, data
bases, communications, etc. Data fusion
technology is used by military applications [1]
to efficiently collect, extract, manage, and
distribute information to several systems at all
levels of command. Data fusion is also broadly
used by non-military environments, such as,
robotics, traffics control, medical diagnosis,
remote sensing, etc. Examples of  these
applications can be found in [2], [3], etc.

Data fusion uses various data sources to
provide a better understanding of the
phenomenon taken into consideration. The
information proceeds from two types of data
sources: sensors of the same type (equal
sensors) and different type of sensors. In the
first case, data from sensors of the same type
are integrated, such as, ultrasonic transducers
of a ultrasonic system [4], chambers of
stereoscopy vision, somar ([5], [6], for
example), etc. In the second case, usually
named multisensor data fusion, [7] [8],
different sensor observations to construct our
environmental model are used.

We have focused on fusion, or integration,
of multiple sensing data in robot applications (a

review of different techniques for sensor fusion
in robot applications can be found in [9]).
When a mobile robot operates (usually in real
time) in a uncertain or unknown dynamic
environment is necessary to provide a
perception system to determine reliably the
absence or presence of an object in the vicinity
of the robot. Perception function for a mobile
robot needs to consider integrating the data
from a variety of different external sensors so
that the environment can be quickly perceived.
Mobile robot designers use different types
of sensors due to the advantages and limitations
of each sensing type, such us limitations in a
particular environment, technical or economical
factors, or range and scan rate. The limitations
of each type of sensor are solved using
redundant sensors and/or complementary
sensors. There are lots of multisensor data
algorithms that solve the problem of perception
of a mobile robot, but generally they are
conditioned by the sensors used in each case.
We have developed a simple and effective
method that permits to merge measures of
various sensors environment without the need
of large modifications or adjustments in our
fusion system. In this way, the same system can
make use of some given sensors which can be
increased, decremented or changed at any
moment. This permits, without important
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changes, to accomplish the study, or
development, of different sets of sensing
systems depending on the availability on the
sensors, the environment or, the application of
the mobile robot.

Of course, all generalisation requires a
greater degree of abstraction and so a loss of
the observed information, but that is supplied
through the improvement that is produced upon
integrating information of different sources.

Several architectures are used in multisensor
information fusion, [10], {11], we have chosen
a distributed sensor network with different
abstraction levels: (1) the treatment of raw data
will be accomplished by the user. The user can
use any typical techniques and the result of all
observations will be provided to the fusion
system so that it will be merged with the
observed data by other sensors. (2) the
decision-level identity fusion system will be
designed through Bayesian networks ([12],
[13]) where the estimates of the sensors will be
integrated. The user can design the information
to merge, the manner of merging it and, the
information that the system finally will provide.

The organisation of this paper is the
following. In next section the structure of the
fusion system is described. In section 3 we
show which operations are necessary to use the
Bayesian networks in the fusion of the
uncertain information originated from each one
of the used sensors. In section 4 an example on
how to integrate environment information of
two sensors of a mobile robot (vision and
ultrasonic) is presented. Finally, the fusion
system is designed and is accomplished with
our robot. It follows a simple real trajectory in
our laboratory to show the improvement in the
belief of detected targets starting from the
fusion of the individual measures.

2. System of measures fusion of
environment

The principal purpose of our system is to be
general. Here, we use general in the sense that
it will be valid for any sensor used to observe
the robot’s environment, provided that some
instructions are followed: defining the model
cause-effect of the bayesian net, and designing
the necessary interface between the assessed
information of the sensor and the one used by
the network in order to accomplish their fusion.

Fulfilling these instructions correctly the fusion
system can be used with any type of sensor that
will be capable of estimating the features of the
objects that are considered interesting for the
system. These features do not need to be
estimated all by apiece of the sensors, but they
can even cover complementary spaces (in this
case it would not exist fusion, but integration).
The architecture suitable for this

multisensor fusion system will be processes

distributed in a network. Each process

represents a fusion node. These nodes of fusion

can be either virtual sensors, represented by
sensor node in the figure 1, or nodes of fusion
of features, represented by fusion node in the

figure 1.

Thus, the system consists of the following
parts:

- Physical sensors: correspond to the real
sensors. They observe values of its
environment to detect all the objects
surrounding the robot. Their observations are
raw data that should be processed and
interpreted.

- Drives and interfaces: they are the routines
that permit to read and to handle the data that
are obtained directly from the sensors. They
include data alignment, manipulation of data,
A/D signal processing, etc.

- Low level fusion: a treatment of the data
received is accomplished to obtain the sought
characteristics. Here, any data fusion
algorithm can be used to integrate physical
sensors that belong to this node, figure 1. This
level knows the physical model of the sensor
and reduces the number of measures of all
receivers of the same type to a set of valid
estimates, performs data association, updates
observed entities, etc.

- Sensor Node: In this node the results of the
user fusion system are converted to
understandable assessment by the distributed
Bayesian network. For this, the results
obtained in the previous level are taken and
prepared in the necessary format to be merged
with similar inferences of other sensors. It
corresponds to the interface between the raw
data fusion and the decision-level identity
fusion of multiple sensors.

iy
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Figure 1. Multisensor fusion system.

- Fusion Node: each one accomplishes the
fusion of some different assessments about
some interesting characteristics from each
sensor. This fusion is performed using a
Bayesian inference through a belief Bayesian
network. It is explained in the following
section.

3. Distributed Bayesian Network

We have implemented a Bayesian network
with a distributed sensor network. The topology
of the sensor network is obtained from the
Bayesian network used to define the
dependence model of sensors. Each net node,
see figure 2, corresponds to one of these two
types: a virtual sensor that transforms data of
sensor in assessment (sensor node); and a cause
node, or feature node that merges assessments
of sensor which can influence the credibility of
other sensors (fusion node).

The user is free of designing the network of
the system. The structure of the network, that
will depend on each sensor and on how the
designer uses it, will show the relationship
between each node and its dependency with
respect to the others. Nodes represent variables
and arcs represent probabilistic dependencies
between these variables. For example, if our
robot makes use of a photometer, two cameras
(stereoscopic vision) and ultrasonic transducers
around it, we could design a Bayesian network
as is shown in the figure 2. There, three nodes
can be seen which correspond to our three
sensors; and also two fusion nodes that
represent causes, factors, or symptoms that
provoke a determined measure in each sensor.
Thus, the intensity of the light will influence
the measure of the photometer and the

stereoscopic vision, but also the measure of the
photometer can be used to modify the
credibility of the vision sensor. For example, a
poor illuminating or not homogeneous light
indicates a bad quality of the images. The upper
fusion node represents the occupation state of a
cell of our occupancy grid, which is used to
store the result of the fusion of assessments of
sensors about each cell of the environment.

In the design of the Bayesian network, the user
only needs to introduce either the
reliability/sensibility model of each sensor, or
the relationships cause-effect. This model can
include all the deterministic variables that the
user wishes to consider, but lots of variables
imply a greater degree of the complexity of the
model, and an increase of the difficulty to
obtain a correct model. In our case we will use
a dependent model on the distance of the object
(or cell) to the robot. The precision of the
vehicle position is known with a precision
greater than our grid, therefore the distance for
each cell is well known so, the nodes of sensors
can be conditioned with respect to this variable

without incurring in excessive mistakes.
Map Model

(a prioci probabili

Vision

effoct 7 effict of
the % light
Sensor Sensor
photometer, ultrasonic

Figure 2. Example of a Belief Bayesian
network model

To accomplish the fusion of vision and
ultrasonic data is necessary to define the
conditional probability  distribution  that
describes the relationship between sensor nodes
and theirs parents (fusion nodes). These
probabilities are function of the distance
between the sensors and the observed cell. This
is:

P(rul+e) = £,(r)
P(-ul-e)=f,(r)

where u stands for the ultrasonic sensor and
e for the state of the observed cell. The signs (+
and —) represent the affirmative case (detected
object or occupied cell) and the negative case
(object not detected or empty cell).

Vision sensor follows similar expressions:

1)
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P(+v]+e)=£,(r)
P(-v|-e)=1,(r)

With these functions, the probabilistic
model cause-effect between the ultrasonic and
vision sensor nodes and the fusion node of each
cell can be built. That is, in the ultrasonic
sensor, we obtain the next matrix of conditional
probabilities,

)

M(occlultras)=(P(+x‘+“) P(—xl+u)) 3)

P(+x|-u) P(-x|-u)

This process is continued to obtain the other
necessary cause-effect relationships. In any
case, studies about the behaviour of each sensor
and the whole system should be made in order
to tune in correctly the network. Table 1 shows
how the conditional probabilities, sensibility
and specificity are widely known.

Table 1. Conditional probabilities of a sensor s.

Expression | Conclusion
True positive (sensibility): P(+s|+e) Thereis a
To accept the hypothesis object
when it is true
False positive: P(+s|-e) Failure:
To accept the hypothesis mistake of 1*
when it is false kind
False negative: P(-s]| +€) Failure:
To reject the hypothesis mistake of 2*
when it is true kind
True negative (specificity): P(—s{—e) | There is no
To reject the hypothesis when it object
is false

Following the using of the Bayesian
network will be shown. We will use two
sensors: ultrasonic transducers and stereoscopic
vision sensors. These sensor are examined to
obtain the model necessary for the Bayesian
network of our fusion system. This designed
fusion system is tested in a real experiment.

4. Experimental results

As an example of the utilisation of our
multisensor fusion system, the method followed
to accomplish various fusion environment
measures in our mobile robot is showed briefly.
The experiment is accomplished with real
measures of two different sensors: stereoscopic
vision (vision sensor) and a belt of ultrasonic
transducers (ultrasonic sensor).

As it has been indicated previously, first we
should design the dependency cause-effect of
our sensors and the conditional probability
distributions. Figure 3 shows the designed

fusion system. That is, the Bayesian network
where the relationships cause-effect between
variables are taken into account. The estimates
of both sensors are considered independent.

Map model
(A priori probabili Map

Vision :
trasonic
f——
mod¢ model

Sensor
ultrasonic

Figure 3. Example of a multisensor fusion
Bayesian network.

Now, it is necessary to find the sensibility
and specificity model of each sensor. To obtain
these models several tests in our laboratory are
to be done. Our sensors are tried and observed
when they detect a object in different
situations. So, a function of the distance
between the object and the robot is chosen as a
simple model of each sensor. Figure 4 shows
the models obtained from laboratory tests,
where the probabilities of detecting or not an
object with respect to distance between the
occupied cell and the robot are presented.

This functions are fitting of each sensor.
Normally, object detecting depends on many
effects as distance, surface of object,
environment noise, etc. We have chosen a
function depending on distance to simplify the
example. It is necessary to note that always
P(+u|+e)>P(+u|-e) and the same happens
with other sensors. Beside, figure 4 draws the
following conclusion: ultrasonic sensors detect
objects better than vision sensors when the
object is near, but if it is far, further than 5
metres, vision sensors are better than ultrasonic
Sensors.
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Figure 4. Occupancy Probabilities of sensors.
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Note that the difference between sensibility,
P(+u|+e), and specificity,  P(+u|-e),
represents the quality and precision of sensor,
see figure 5. So, a sensor with the difference
between sensibility and specificity as large as
possible is aimed to get it. That is, it is
desirable a sensor with high skill probability
(sensibility) and low false positive probability
(specificity). However, when sensibility is
increased, specificity grows too. So, it is
necessary to reach a compromise.

Sensibility-Specificity

Before showing the fusion of our two
sensors in a real environment, it is necessary to
test the fusion system to well tune in our
design. Figure 6 shows the bayesian network
working well with simulated measures. It
shows that estimation of fusion system is better
than each simple sensor estimation.

Sensor Estimate vs. Fusion
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Figure 6. Fusion of occupancy probability
(o ultrasonic, + vision, * fusion of both)

Finally, our perception fusion system is
tested in a real case. An experiment is executed
in our laboratory, figure 7. Our robot is moved
through the laboratory, and then vision and
ultrasonic sensors detect obstacles around the
robot. The trajectory carried out by our robot is
showed in figure 7.
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Figure 5. Sensibility and specificity.
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Figure 7. Laboratory map and robot trajectory.
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The fusion system accepts measures and :
merges them at concrete periods of time. In the :

example, the robot fusion system merges 10
measures of sensors at 0.5 metres on its
trajectory. Vision sensor needs great processing 8
of the captured images, so it spends more time.
Thus, system fusion uses 16 environment scans 6 |_—J —
of ultrasonic sensor compared to 4 images of
vision sensor. 4
In figure 8, the assessments of vision and |
ultrasonic sensors are showed. They are 2
obtained in the same positions of the robot. The X
fusion system uses a occupancy grid [5] to store 0
the accumulated occupied probabilities. The 0 2 4 6 8
pictures represent the cells that the sensor
believes to be occupied in the moment of the 10 ‘
measure.
Figure 8a shows estimates of ultrasonic 8
sensor for the positions 1 and 2 indicated in
figure 7. This sensor take measures around the 6 ‘————-‘ .
robot, but its range is short. Figure 8b ‘
represents estimates of vision sensor in the 4
same positions as in the ultrasonic sensor. It has X
a great range, but it only can observe the front 2
of robot.
0
10 0 2 4 6 8
. Figura 8b. Assessments of vision sensor in (1)
4 and (2) positions.
6 )
Neither a map nor another priori knowledge !
4 is used by the bayesian network of our fusion )
system in this example. It allows to emphasise ‘
2 8 the fusion process of our sensor data. Of
2 course, fusion system permits to update cells :
0 % - from measures of an only sensor. Figure 9a !
0 5 4 6 8 presents the map obtained only from fusion of
ultrasonic sensor measures.
10 o 12
. 10} Ao = ;
8 . f
6 8 -
o, of ¢ :
4 . 4l ; .
2 % 2 £
oP %Qb\ - ! ’@55 0 pga i @.‘p’
0 2 4 6 8 0o 2 4 & 8 10
Figure 8a. Assessments of ultrasonic sensor in Figure 9a. Laboratory map obtained using

(1) and (2) positions. fusion of ultrasonic measures.
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Figure 9b. Laboratory map obtained using

fusion of vision measures.

Figure 9b presents the map obtained only

from fusion of vision sensor measures. Vision
sensor has a opening of 60 degrees and it is
located at front of the robot. It cause that the
robot back side is not detected by this sensor.
Besides, vision sensor needs a lot of processing
time. Because of this, less samples of
environment objects are taken, that is, the
fusion system uses less observations of around
robot.
When both sensors are merged a more precise
map of our laboratory is obtained (figure 10). In
this map of the laboratory two obstacles and a
column detected by the robot are showed.

12

10}

Figure 10. Laboratory map after fusion process

In conclusion, a new high level fusion
procedure is designed. It permits the user to use
different sensors with a little effort. Precision
of estimates are associated with measure error
of sensors and size of occupancy grid.
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