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Abstract

Wild boar is a recognized reservoir of bovine tuberculosis (TB) in the Mediterranean ecosystems, but information is scarce
outside of hotspots in southern Spain. We describe the first high-prevalence focus of TB in a non-managed wild boar
population in northern Spain and the result of eight years of TB management. Measures implemented for disease control
included the control of the local wild boar population through culling and stamping out of a sympatric infected cattle herd.
Post-mortem inspection for detection of tuberculosis-like lesions as well as cultures from selected head and cervical lymph
nodes was done in 745 wild boar, 355 Iberian ibexes and five cattle between 2004 and 2012. The seasonal prevalence of TB
reached 70% amongst adult wild boar and ten different spoligotypes and 13 MIRU-VNTR profiles were detected, although
more than half of the isolates were included in the same clonal complex. Only 11% of infected boars had generalized
lesions. None of the ibexes were affected, supporting their irrelevance in the epidemiology of TB. An infected cattle herd
grazed the zone where 168 of the 197 infected boars were harvested. Cattle removal and wild boar culling together
contributed to a decrease in TB prevalence. The need for holistic, sustained over time, intensive and adapted TB control
strategies taking into account the multi-host nature of the disease is highlighted. The potential risk for tuberculosis
emergence in wildlife scenarios where the risk is assumed to be low should be addressed.
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Introduction

Epidemiology
The ever-growing impact of wildlife reservoirs in the epidemi-

ology of bovine tuberculosis (TB) has become clear in the recent

decades worldwide [1]. Hence, although the effectiveness of TB

eradication programs in cattle has been considerable [2], success

also depends on the absence or control of wildlife reservoirs [3–5].

Under natural conditions, the multi-host nature of this disease

would render ineffective any control strategy that overlooks the

ecology, susceptibility, behaviour and abundance of the whole host

community [4–6]. As a result, understanding the role of each host

species in the maintenance and transmission of the disease is

essential to designing any measures for TB control [1,6].

In the last decade, a large number of species have been

identified as spill-over, maintenance and/or reservoir hosts in the

wild [1]. Wild boar (Sus scrofa) and, to a lesser extent, red deer

(Cervus elaphus) are considered maintenance hosts of TB in the

Iberian Peninsula and often suggested as reservoirs for livestock

[7–9]. The link between wild and domestic ungulates in the

epidemiology of TB has been confirmed in southern Spain

through genotype mapping [10,11]. This finding along with the

persistence of high TB prevalence in wild boar populations

isolated from livestock for decades and lesion pattern character-

istics indicating infection and excretion routes have been key

factors for recognizing its role as a true reservoir in the

Mediterranean ecosystems [8]. This situation is especially

concerning for EU animal health policies given the huge increase

in wild boar populations [12]. The problem is magnified in

southern Spain mainly by the existence of estates where extensive

livestock coexist with managed wild ungulate populations with up

to 90 individuals/km2 aimed at commercial hunting [12,13]. In

contrast to this, game management of wildlife is anecdotal in the

northern part of the country and generally in Europe [7,9,14].

Management
In line with compulsory tests and slaughter campaigns

implemented in livestock, enormous efforts are underway for TB
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control in wildlife [6,15–18]. Different strategies have been

adopted for this purpose, with culling of the reservoir the most

common in the case of game, feral or pest species. In some cases,

wildlife culling may be socially unacceptable [19], not sufficiently

effective [16] or even counter-productive [20] in such a way that

additional or alternative measures for TB control are necessary

[15,21]. However, since game ungulates are common TB

reservoirs in the wild, this strategy may be a suitable option that

can be applied as major indiscriminate depopulation exercises or

more restricted culling protocols aimed at reducing reservoir

density below the theoretical persistence threshold [15,22] or using

‘‘capture-test-and-slaughter’’ protocols where only positive animals

are culled [23] in order to appease social and economic concerns

[19]. Regarding wild boar, little and contradictory information on

the effectiveness of intensive culling for TB control has been

recently published. Under similar field (fencing and high densities

of ungulates) and treatment conditions, Boadella and cols.

succeeded in decreasing TB prevalence by 21–48% after reducing

wild boar abundance to half [17], while Garcia-Jimenez and cols.

failed to do so [18].

Herein we report the output of eight years of TB monitoring in

wild boar, cattle and Iberian ibex (Capra pyrenaica hispanica) in a

different scenario to that previously described for the Mediterra-

nean ecosystems. Specifically, this is the first high prevalence focus

of tuberculosis in wildlife in northern Spain, occurring in a free-

ranging (non-fenced), non-intensively managed wild boar popula-

tion sharing habitat with cattle and ibexes in a national game

reserve. In addition, this area lacks other known wild reservoirs of

TB in the Iberian Peninsula, red deer (Cervus elaphus) and fallow

deer (Dama dama). This focus of tuberculosis was first detected in

2004 in hunter-harvested wild boar thanks to active disease

surveillance in wildlife. We also show the outcome of the

combination of two different disease management strategies

consisting of intensive culling of wild boar populations and

removal of a sympatric infected cattle herd. This is the first

attempt to address control of TB in a wild boar population

through eradication of sympatric infected cattle (most probably,

the original source of infection for wild boar in our study area) in

the Mediterranean context. Our main objectives were: (i) to

characterize the epidemiology of TB amongst sympatric wild boar,

cattle and Iberian ibexes through both the study of macroscopic

lesion patterns in wild boar and the genotyping of Mycobacterium

tuberculosis complex isolates obtained; (ii) to describe spatial and

temporal TB patterns in this scenario; (iii) to evaluate whether the

implemented disease management strategies succeeded in the

control of TB; (iv) and to explore the effects of the intensive culling

on the wild boar population structure to better understand the

effect of this measure on TB evolution.

Materials and Methods

Ethics statement
No approval was needed from any Ethics committee since the

animals used in the present study were not sacrificed for research

purposes. The harvested wild boar and ibexes included in the

present study have been legally hunted (shot) or box-trapped in

their own habitat by authorized gamekeepers and hunters within

the framework of an annual hunting plan approved by the

Departament d9Agricultura, Ramaderia, Pesca, Alimentació i

Medi Natural - Generalitat de Catalunya (DARPAMN -the

Regional authority in charge of livestock and wildlife manage-

ment-). Box-trapping and euthanasia of wild boar was promoted

and approved by the DARPAMN as an exceptional measure for

the control of bovine tuberculosis in the affected area. The bovine

tuberculosis positive cows were slaughtered (shock and bleed) in an

authorised abattoir according to the guidelines of the Council

Directive 64/432/EEC and subsequent modifications on animal

health problems affecting intra-Community trade in bovine

animals and swine. Hence, no animals were harvested in order

to perform this study, but we took advantage of the harvested

animals for this aim. Standard protocols of anaesthesia and

euthanasia were used to minimize stress and suffering of the box-

trapped wild boar and carried out by veterinarians.

Study area
This focus of tuberculosis is located in the National Game

Reserve ‘‘Ports de Tortosa i Beseit’’ (NGRPTB) in north-eastern

Spain (40u489 2899N, 0 199 1799 E) and within the Iberian bio-

region 5, as described in [24]. It is a limestone mountain massif of

about 28,000 ha that shows a high level of orographic complexity,

which results in a rugged and abrupt terrain formed by numerous

canyons, ravines and steep slopes. About 28% of the surface is

above 1000 m.a.s.l., with the highest peak being Mont Caro

(1442 m) and the lower heights around 300 m.a.s.l. The mean

annual temperature in the reserve is 13.7uC (min = 1.6uC in

December – February, max = 30uC in July – August), while the

mean annual accumulated rainfall is 697 mm (min = 536 in 2009,

max = 889 in 2011) [25]. The vegetal stratum is characterized by a

typical Mediterranean forest dominated by Quercus ilex and Pinus

halepensis with dense scrublands of Quercus coccifera, Pistacea lentiscus

and Chamaerops humilis, among others. Patches of non-irrigated

crops are also common in the study area, mainly those with olive

trees (Olea europaea), European carobs (Ceratonia siliqua) and almond

trees (Prunus amygdalus). The average density of Iberian ibexes is

11.1 individuals/km2 (Personal communication; Distance sam-

plingH estimate by the NGRPTB managers) and of wild boar is 3

individuals/km2 (estimate based on hunting bags for the whole

NGRPTB), the only wild ungulates that share grazing areas with

cattle (cross-breed of Spanish fighting bull) year-round. The

farming conditions of cattle in the study area are free-ranging

(extensive farming) with supplemental feeding in the dry season

(summer).

Ravines and other natural barriers may play an important role

driving transmission of infectious diseases [26]. Hence, based on

the local orography and the preliminary observations on the TB

distribution, we defined three different zones within the study area

(Figure 1): TBA (defined as ‘‘tuberculosis area’’), an area of

2,150 ha where the first cases of TB in wild boar were detected

and the disease management has been carried out; OA ("outlying

areas’’) covers 6,380 ha of the surrounding areas that could be

potentially affected by the spread of TB from TBA; and DA

(‘‘distant areas to TBA’’; 8,810 ha.), consisting of two different

zones [DA1 and DA2; 3,920 and 4,890 ha., respectively], where

TB-positive wild boar have also been detected and TB surveillance

has been maintained during the whole study period. No disease

management actions have been carried out in either OA or DA.

Study period
Tuberculosis-like lesions (TBLL) were first detected in the TBA

in December 2004, while performing field necropsies of hunter-

harvested wild boar, and were later confirmed by culture and

isolation of Mycobacterium bovis. Since then, wild boar have been

harvested by hunting and box-trapping captures year-round, with

a peak harvest time in autumn-winter (September – March),

coinciding with the regular game season. For this reason, we

divided the TB study period (2004–2012) into eight harvesting

periods covering July to June of the following year (from 2004–05

to 2011–12). These periods were conceived to include the regular
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game seasons in the middle of every harvesting period. To analyse

the accumulated effect of culling, data regarding hunting pressure

and wild boar abundance was used from 2001 onward. Thus, the

first harvesting period (2001-2002) corresponds to number 1, and

so on.

Animal inspection and sampling
During the study period, 745 wild boar (436 in TBA, 209 in OA

and 100 in DA), 355 Iberian ibexes (throughout NGRPTB) and

five cows (from the TB affected bullfighting herd in TBA and with

a positive result for the tuberculin skin test) were inspected for

TBLL. Wild boar were either hunter-harvested during the regular

game seasons (in the whole NGRPTB; n = 591) or box-trapped

and later euthanatized year-round (only in TBA and in harvesting

periods number 6 to 11; n = 154). Complete post-mortem

examination and, thus, determination of the distribution of the

lesions was possible in 115 (39 box-trapped and 76 hunter-

harvested) tuberculous wild boar. In agreement with the author-

ities responsible for the management of game in the NGRPTB,

their game rangers were trained to identify the normal aspect of

organs and responsible for collecting apparently abnormal organs

and all the mandibular and retropharyngeal lymph nodes of

Iberian ibexes hunter-harvested during the regular game season

for this species (two annual periods in spring -March to June- and

autumn -September to December-, respectively). Finally, the five

cows were inspected and sampled in the slaughterhouse facilities

following the established official channels. Once inspected for

Figure 1. Study area. The study area is located in the National Game Reserve ‘‘Ports de Tortosa i Beseit’’, Catalonia region, north-eastern Spain.
Three different areas were defined according to preliminary apparent TB distribution: the main tuberculosis area (TBA), outlying areas to TBA (OA)
and two distant areas (DA1 and DA2) to TBA.
doi:10.1371/journal.pone.0088824.g001
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TBLL, selected samples were either refrigerated in a cold box

(4uC) and immediately dispatched to the laboratory for detection

of Mycobacteria within the first 48–72 hours (wild boar and cows)

or stored at 220uC until processing (ibex).

Sex and age of the animals was recorded. Wild boar were aged

by tooth replacement and by dental attrition [27] but ultimately

assigned to four age classes for minimizing determination errors:

piglets (0–6 months; n = 115), juveniles (6–12 months; n = 152),

yearlings (13–24 months; n = 95) and adults (over 24 months;

n = 383). The age of ibexes was determined in years by counting

horn segments [28].

Bacteriology
Selected samples (mostly head and cervical lymph nodes and

including TBLL if present) from every animal were subjected to

bacteriological culture regardless of TBLL presence or not.

Samples from each animal were pooled, homogenized with sterile

distilled water and decontaminated with 0.35% hexadecylpyridi-

nium chloride for 30 minutes [29], centrifuged at 1300 g for

30 min and cultured onto Coletsos and 0.2% (w/v) pyruvate-

enriched Löwenstein-Jensen media (Biomedics, Madrid, Spain) at

37uC. Isolates were heat-treated and identified by PCR amplifi-

cation of Mycobacterium genus-specific 16 S rRNA fragment and

the MPB70 sequence for the M. tuberculosis complex (MTBC)

isolates [30].

Fingerprinting
The DVR-spacer oligonucleotide typing (DVR-spoligotyping)

method was later performed as previously described [31] to

identify the mycobacterium species of the MTBC and to

characterize the isolates. In addition, data of spoligotypes detected

in cattle grazing in our study area were obtained from the Spanish

Database of Animal Mycobacteriosis (mycoDB) [32] and the

authorities in charge of the compulsory test and slaughter

campaigns. Mycobacterial Interspersed Repetitive Units - Vari-

able Number Tandem Repeats (MIRU-VNTR) typing was also

performed using nine VNTR markers (ETR-A, ETR-B, ETR-D,

ETR-E, MIRU26, QUB11a, QUB11b, QUB26 and QUB3232)

[33].

For further analysis, TB infection status was based on both gross

tubercle-like lesions (TBLL) and/or microbiological culture, in

order to alleviate disease underestimation [34].

Increase of wild boar harvesting
Once bovine tuberculosis was detected (in 2004), it was decided

to increase wild boar harvesting in the affected area with the aim

of disease control. Specifically, the strategy was based on the

authorization of additional hunting battues and the implementa-

tion of a box-trapping system in the TBA. This consists of six box-

traps permanently baited with acorns and activated monthly. Box-

trapped boars were anaesthetized with a combination of xylazine

(3 mg/kg IM; XilagesicH, Calier Laboratories), zolazepam and

tiletamine (3 mg/kg IM each; ZoletilH, Virbac Laboratories)

delivered by blowpipe and then euthanized with T-61 euthanasia

solution (0.1 mL/kg IV; T-61H, Intervet Laboratories).

Cattle removal
Bovine tuberculosis is subjected to compulsory tests and

slaughter campaigns in cattle (EC No 64/432 and the Spanish

transposition R.D. 2611/1996) with the higher infection rates

occurring in beef and bullfighting cattle, mainly in south-central

Spain [35]. Due to repeated TB positive cases amongst tested

cattle (bullfighting) in the TBA area, compulsory removal and

slaughter (‘‘stamping out’’) of the entire herd population was

officially decreed by May 2008 and, after a 13-month period, a

new TB-free herd was reintroduced into the TBA.

Statistical analysis
Different statistical analyses were performed depending on the

objectives of the study. To assess the spatial pattern of TB in the

game reserve, the differences in TB prevalence among TBA, OA

and DA zones were analysed by a Fisher’s exact test [36]. To

assess the effects of disease management on TB control, we first

checked whether the yearly increases in harvesting pressure,

including both hunting and box-trapping sessions, resulted in an

increase in harvested boars. This was checked by a linear

regression between the number of harvesting sessions and the

number of wild boar harvested. After that, we fitted a set of

generalized additive models (GAM) [37] that explored the effects

of the disease management strategies on TB control. In this case,

TB infection status (the categorical dependent variable with two

modalities: 1 if TBLL were present or a positive culture obtained,

and 0 otherwise) was analyzed taking into account as dependent

variables the harvesting season, the number of harvested wild

boar, age of animals (only juveniles, yearling and adults were

retained for this analysis due to the chronic character of bovine

tuberculosis and because few TB infected piglets were captured

during the study period), cattle removal (a categorical variable with

two modalities: pre-cattle removal and post-cattle removal) and

their two-way interactions. The variable harvesting season was

included in all models given that we aimed to explore temporal

trends in TB infection rate.

Since the effects of harvesting pressure on TB occurrence would

not be immediate, we considered several harvesting pressure-

related variables by accounting for the accumulated number of

wild boar harvested in one, two, and three harvesting seasons

previous to the current one. It was impossible to consider beyond

the three previous seasons because these data were not available

for harvesting season 4. Nevertheless, owing to the correlation

between these variables (e.g., R2 = 87%, t = 6.3, p.0.001 for the

correlation between the accumulated number of wild boar

harvested three and two seasons before the current one), only

two explanatory harvesting pressure-related variables were

retained for the analysis: the number of wild boars harvested in

the previous harvesting season (Harv1) and the accumulated

number of wild boar harvested in the three previous seasons

(Harv3). Following the same rationale, no model simultaneously

included harvesting season and the Harv3 as explanatory variables

due to high correlation (R2 = 79%, t = 4.83, p.0.001). Finally, we

explored whether the observed TB trends in TBA differed from

those in OA and DA by a model (GAM) including the interaction

between harvesting season and zone (TBA, OA and DA).

Finally, we explored the potential mechanisms through which

increased wild boar harvesting influenced population structure and

hence TB dynamics. For this purpose, we fitted a set of linear

models (LM) to explore whether total wild boar abundance or the

percentage of juveniles were influenced by Harv1 or Harv3.

Closed scrublands on steep slopes predominate in our region,

which hinders census through direct observation of animals as well

as application of indirect methods based on faecal droppings for

abundance estimates [12]. For this reason, the number of sighted

wild boar (including those hunted) divided by the number of

participating hunters in the hunting journey was considered a

proxy for wild boar abundance (see [38] for a revision on census

methods for wild boar).

In all cases, we followed a model selection procedure based on

the information-theoretic approach and the Akaike’s Information

Bovine Tuberculosis in Free Ranging Wild Boar
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Criterion [39]. Subsequently, we estimated the Akaike weight (wi,),

defined as the relative probability that a given model is the best

model among those being compared. Once the best model was

selected we confirmed the general assumptions of GAM and LM

following the previously published recommendations [37,40].

Statistical analyses were performed using ‘‘mgcv’’ package version

1.7-12 [37] of the statistical software R version 3.0.2 [41].

Results

Prevalence of TB and genotype mapping
Twenty-four percent of wild boars showed TBLL (179/745).

Sixteen percent had a positive culture of Mycobacterium sp. (121/

745) and, based on both TBLL and/or a MTBC positive culture,

the overall prevalence of TB in the NGRPTB was 24.7% (21.6–

27.9 at 95% CI; n = 184). Distribution of isolates into mycobac-

terium species and spoligotypes is presented in Table 1. Tuber-

culous infection by members of the MTBC was confirmed in 103

wild boars (97 M. bovis y 6 M. caprae isolates). The remaining

eighteen isolates corresponded to species of the genus Mycobacterium

other than MTBC. Moreover, eighteen wild boars without TBLL

displayed positive mycobacteria cultures (four to M. bovis, one to

M. caprae and 13 to non-tuberculous mycobacteria), and no

mycobacteria were recovered from 76 wild boars with TBLL. Two

wild boars detected in DA with miliary TBLL in the lung

parenchyma were ultimately diagnosed as pulmonary botryomy-

cosis due to infection with Staphylococcus aureus. None of the ibexes

harvested had TBLL or a positive Mycobacterium sp. culture.

Ten different spoligotypes have been identified from the 103

MTBC-infected wild boar and the most frequent profiles were

SB0121 (n = 36) and SB1195 (n = 31), detected in the reserve from

2004 to 2012. The remaining eight spoligotypes were sporadically

isolated in wild boar (n = 36). In the five isolates from cattle, four

spoligotyes were identified (SB0121, SB1095, SB1192 and

SB1685) and three of them (SB0121, SB1095, and SB1192) were

also shared with wild boar. Five of the spoligotypes detected in

TBA (SB0121, SB0294, SB0415, SB1095 and SB1192) have also

been isolated from wild boar harvested in OA, whereas only the

Mycobacterium caprae (SB0415) has been detected in DA. Ninety-

nine out of 103 MTBC isolates (no DNA was available for four

isolates) were also characterized by MIRU-VNTR typing with 9

loci, and 13 MIRU-VNTR types were obtained when ETR-A,

ETR-B, QUB11a and QUB322 loci were analysed, with the most

frequent being MIRU-VNTR (MV) type MV0006 (n = 59)(see

Table S1). In general, the five remaining VNTR markers (QU11b,

MIRU4, MIRU31, MIRU26 and QUB26) did not provide

additional information and the isolates were clustered using only

the four most polymorphic loci (see Table S2).

Attending to age classes, the prevalence of TB was 58.6%

amongst adults, 32.2% in juveniles and yearlings and 6.3% in

piglets. The occurrence of TBLL in different anatomical regions

(localized versus more extended or generalized) are presented in

Table 2. Most tuberculous wild boar had lesions in the head lymph

nodes (109/115, 95%), while only 14/115 and 6/115 had lesions

only in intrathoracic (mediastinic or bronchial) or mesenteric

lymph nodes, respectively.

Spatial pattern of TB in the game reserve
85.3% of the TB positive boars (168/197) were harvested in

TBA, which accounts for an overall prevalence of 38.5% in this

zone (33.9–43.2 95% CI, 168/436 examined wild boar) and

results between 4 and 6.42 times higher than in OA or DA,

respectively (Fisher test = 85.62, d.f. = 2, p-value ,0.001,

Figure 2).

Effects of disease management on TB control
Harvesting pressure nearly tripled (e.g., increased 2.6 times); in

fact, only 3.7 beats per game season occurred previous to TB

detection (period 2001–2004), whereas 9.6 harvesting actions per

game season (including both hunting and box-trapping) occurred

after TB detection in wild boar. In general, the increase in the

number of harvesting sessions resulted in a higher number of

harvested boars during the whole study period (b= 4.3, SE = 0.22,

t-value = 19.36, p,0.001, R2 = 36.9%, Figures 3a and 3b). But

the number of harvested boars in every harvesting period was also

positively correlated to their abundance in the corresponding

period (b= 218.14, SE = 9.26, t-value = 23.55, p,0.001,

R2 = 60.7%, Figures 3c and 3d). Hence, the peak in the number

of harvested wild boar in the game season 3 would be more related

to the high abundance in this season whereas the peak observed in

harvesting seasons 7 and 8 would be more related to harvesting

effort.

On the other hand, the prevalence of TB infection displayed a

temporary pattern in TBA (Figure 4). According to our model

Table 1. Distribution of 121 isolates into mycobacterium species and spoligotypes in eight harvesting seasons.

Harvesting
season Mycobacterium bovis

Mycobacterium
caprae

Non-MTBC
mycobacteria

*4 SB0121 (2) SB1095 (2) SB1192 (1)

*5 SB0119 (1) SB0120 (1) SB0121 (7) SB1095 (1) SB1192 (2) SB1336 (6) SB0415 (1) NA (2)

*6 SB0121 (4) SB0295 (2) SB1095 (4) SB1192 (1) SB1336 (4) NA (3)

*7 SB0121
(15)

SB0295 (2) SB1095 (5) SB1192 (1) SB0415 (3) NA (6)

8 SB0121 (2) SB0140 (1) SB0294 (1) SB0295 (1) SB1095 (7) SB0415 (1) NA (2)

9 SB0121 (1) SB0294 (3) SB1095 (1) SB0415 (1)

10 SB0121 (2) SB0294 (1) SB1095 (3) NA (1)

11 SB0121 (3) SB0140 (1) SB1095 (8) SB1192 (2) NA (4)

TOTAL 1 1 36 2 5 5 31 6 10 6 18

Mycobacterium tuberculosis complex spoligotypes and number of isolates (in brackets) in 121 harvested wild boars in eight harvesting seasons starting in the period
2004-05 (4th) and ending in 2011–12 (11th). Asterisks indicate those harvesting seasons in which TB-infected cattle were present in TBA. In bold, TB spoligotypes also
isolated from cattle in the respective season.
doi:10.1371/journal.pone.0088824.t001
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selection procedure, the cattle removal, the accumulated number

of wild boar harvested in the last three harvesting seasons (Harv3)

and the age of wild boar were the main factors for explaining the

probability of TB in the wild boar (Wi Harv3 * Cattle removal + Age = 1;

that explained 15% of the observed variability in the probability of

TB infection; Table 3). The second competing model, which

included Harv3 and age, was at 31.23 units from the best model,

and thus a candidate with little support for explaining the observed

patterns [39]. On the other hand, both juveniles and adults

followed the same temporal pattern (the model including the

interaction with age was at 32.13 units from the best model), but as

expected, the probability of TB infection for the young animals

was half that for the adults (b Yearlings = 21.0023, SE = 0.2231,

Z = 24.492, p-value ,0.001). Concerning the effect of TB

management, neither cattle removal nor wild boar harvesting

were able to shape temporal TB dynamics independently (models

including the single effects of these management strategies were

more than 54 units from the best model).

In general (all age classes included), the TB prevalence before

cattle removal was 49% (42–56 at 95% CI; n = 221) and decreased

to 28% (22–34 CI 95%; n = 215) after cattle removal, with an odds

ratio of 2.46. Such odds ratio increases to 3.3 when considering

only individuals aged over 1 year (69% TB prevalence before vs

40% after cattle removal).However, only the interaction of the two

measures resulted in the decrease in the probability of TB

infection. Furthermore, intensive wild boar harvesting was more

effective in reducing TB infection rates before (deviance explained

= 16 %) than after cattle removal (deviance explained = 9%),

perhaps because the TB prevalence was 1.9 times lower after cattle

removal (e.g., for an accumulated number of wild boar harvested

of 500, the probability of TB infection was 1.2 times greater before

cattle removal; Figure 5). Finally, TB dynamics differed between

TBA, where the management actions were carried out, and OA or

DA, as shown by the significant interaction between harvesting

season and the study area (Chi-square = 12.38, p-value 0 0.005,

28.5% deviance explained).

Effects of intensive harvesting on the wild boar
population structure

The intense harvesting of wild boar in TBA had an effect on

that wild boar population. The age structure of the TBA wild boar

population varied over the study period due to an increment of

young (juveniles + yearlings) animals and a decrease of adult boars

(Figure 6). This was not reflected in OA or DA. Actually, this trend

could be a consequence of TB management because of the

relationship between the harvesting pressure in the previous

seasons and the increment of young boars harvested in the TBA (b

Harv1 = 0.05, SE = 0.02, Z = 2, p-value ,0.05, R2 = 35.2%). On

the other hand, the increment of harvesting pressure did not

influence wild boar population abundance (b Harv1 = 20.0003,

SE = 0.0003, Z = 20.9, p-value = 0.4).

Discussion

Whereas southern Spain is a hotspot of tuberculosis in wildlife,

reports of the disease are scarce in the northern part of the

country, where conditions of wildlife are more similar to those in

the rest of Europe (no fencing, no artificial feeding and lower

densities). This study provides evidence that high TB prevalence is

also possible in free-ranging and non-intensively managed (i.e., not

overcrowded, non-fenced and without supplemental feeding) wild

boar populations living in the absence of deer (fallow deer and red

deer). In fact, deer are present in most of the tuberculosis scenarios

in which wild boar is implicated [13,42], including large natural

protected areas (e.g., Doñana National Park (DNP)) [43]. Instead,

the Iberian ibex, a wild caprinae, is present in the scenario

considered here. Previous studies have suggested that this wild

caprinae does not play a significant role in the epidemiology of TB

[44], and the presented results increase the previous sample size

Table 2. Occurrence of tuberculosis-like lesions in different
anatomical regions of wild boar.

TB LESION DISTRIBUTION PATTERNS (n = 115)

One anatomical region 89%(102)

Head only 83.5%(96)

Thorax only 4.3%(5)

Abdomen only 0.8%(1)

Two or more anatomical region 11%(13)

Head an thorax 7%(8)

Head and abdomen 3.5%(4)

Thorax and abdomen 0

Head, thorax and abdomen 0.9%(1)

Submandibular lymph nodes 92%(106)

Retropharyngeal lymph nodes 16.5%(19)

Bronquial or mediastinic lymph
nodes

12%(14)

Lungs parenchyma 1.7%(2)

Mesenteric lymph nodes 5%(6)

Abdominal viscera 0

Percentage of wild boars showing localized of generalized specific TBLL in
different anatomical regions amongst 115 individuals in which complete post-
mortem examination was performed.
doi:10.1371/journal.pone.0088824.t002

Figure 2. Spatial pattern of tuberculosis in the National Game
Reserve ‘‘Ports de Tortosa i Beseit’’. Prevalence of tuberculosis in
wild boars harvested in the National Game Reserve ‘‘Ports de Tortosa i
Beseit’’ in three defined areas: the main tuberculosis area (TBA), outlying
areas to TBA (OA) and distant areas to TBA (DA1 and DA2 were pooled).
Confidence interval at 95% is represented.
doi:10.1371/journal.pone.0088824.g002
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Figure 3. Relationship amongst hunting pressure, wild boar abundance and the number of wild boar harvested. Number of harvested
wild boars (a) and abundance (b) per game season; Graphical representation of positive correlation between the number of harvesting sessions (c)
and abundance (d) and the number of harvested wild boars.
doi:10.1371/journal.pone.0088824.g003

Figure 4. Temporal evolution of tuberculosis prevalence in wild boar. Overall prevalence of tuberculosis (a), prevalence in adults (b) and in
juveniles (c) per harvesting seasons in TBA from 2004 to 2011. Cattle removal occurred in May 2008 (this is by the end of harvesting season 7).
doi:10.1371/journal.pone.0088824.g004
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reinforcing this idea. The TB prevalence (TBLL and/or culture

positive) found in our study area is amongst the highest described

in wildlife, reaching values around 70% in adults in some

harvesting seasons (see Fig. 5). Similar values have been observed

in overcrowded and intensively managed wild boar populations in

the central Iberian Peninsula [9], and higher, up to 92% in free-

ranging wild boars from DNP [43] and 100% in feral pigs from

New Zealand [6]. The post-mortem examination is an easy-to-

perform and inexpensive first option for the presumptive diagnosis

of TB in game species. However, prevalence of TB in our study

may have been slightly underestimated since histopathology was

not routinely performed and a low percentage of infected wild

boar with microscopic lesions and a false-negative bacteriological

culture result could have gone unnoticed. Actually, a negative

culture status is not a guarantee that a wild boar is not infected

[34], as reinforced in our study by animals with TBLL and a

negative culture (76/179) or vice versa, positive culture without

TBLL (18/566). Overestimation of TB prevalence based on TBLL

has been suggested due to infection by other pathogens [9]. The

Staphylococcus aureus causing pulmonary botryomycosis was detected

in DA, far from TBA, whereas infection by MTBC was confirmed

in a significant percentage (90/157) of the wild boar with TBLL in

TBA, and thus overestimation is improbable.

Generalized lesions in wild boar from the NGRPTB were rare

(11%) as compared to populations from south central Spain, where

values around 60% have been repeatedly observed and attributed

to the early infection of young animals favoured by unnaturally

high densities and spatial aggregation [9,45]. In fact, disease

progression is likely to be more severe in immature individuals

because of reduced immunocompetence [45,46]. The importance

of the route of infection on the TB lesion pattern is still unclear. De

Lisle, for example, associated the localized lesions in the head

lymph nodes of feral pigs from New Zealand to infection through

scavenging of tuberculous carrion [46], whereas Martin-Hernando

and cols. attributed both localized and generalized patterns to

either respiratory (air-borne infection by frequent direct oronasal

contact behaviour between wild boar) or digestive (food and water)

infection routes [45]. Based in the literature and our own data, we

could hypothesize that lesion distribution may be positively

correlated to exposure, as it would increase the probability of a

wild boar getting infected in early life and by several routes. But

Table 3. Models considered for explaining the probability of
tuberculosis infection in the wild boar.

Biological models K AIC Di wi

Harv3 * Cattle removal + Age 8 590.09 0.00 1

Harv3 + Age 5 621.32 31.23 0

Harv3 * Age + Cattle removal * Age 8 622.22 32.13 0

Harv3 + Age + Cattle removal 6 622.94 32.85 0

Harv3 * Age 6 636.89 46.80 0

Game season + Age + Cattle removal * Harv1 8 641.6 51.51 0

Game season + Age 5 642.7 52.61 0

Game season + Age + Cattle removal + Harv1 7 643.07 52.98 0

Game season + Age + Harv1 6 643.17 53.08 0

Game season * Harv1 + Age 6 644.03 53.94 0

Game season + Age + Cattle removal 6 644.54 54.45 0

Game season + Age * Harv1 7 644.85 54.76 0

Game season + Age * Cattle removal 7 645.59 55.50 0

Game season + Cattle removal * Age + Harv1* Age 9 646.16 56.07 0

Mo 1 774.22 184.13 0

Model selection based on generalized additive modelling for exploring the
temporal variation in the probability of tuberculosis infection determined in 267
adult, 97 juvenile and 70 yearling wild boars harvested in the main tuberculosis
area and outlying areas (TBA and OA) in the National Game Reserve ‘‘Ports de
Tortosa i Beseı̈t’’. Harv1 means the total number of wild boars harvested in the
previous harvesting season, whereas Harv3 is the total number of wild boars
harvested during the three seasons before the current one. K = effective
number of parameters in the additive modelling, AIC = Akaike Information
Criterion, Di = difference of AIC with respect to the best model, wi = Akaike
weight, Mo = null model only with the constant term. In bold the best model
for explaining the observed TB probability of infection.
doi:10.1371/journal.pone.0088824.t003

Figure 5. Effect of wild boar harvesting on the probability of tuberculosis infection. Effect of wild boar harvesting before (a) and after (b)
cattle removal on the probability of TB infection in wild boars harvested in the main tuberculosis area (TBA) in the National Game Reserve ‘‘Ports de
Tortosa i Beseit’’, Catalonia, north-eastern Spain.
doi:10.1371/journal.pone.0088824.g005
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other factors may also determine lesion pattern. Garcia-Jimenez

and cols., for example, described a higher load of mycobacteria in

lesions caused by M. caprae (scarce in our study), which could result

in higher excretion rates and, subsequently, exposure for other

individuals in the population [47]. Additionally, genetic factors

have been related to the ability of both wild boar to limit infection

(host resistance) and Mycobacterium bovis to circumvent host immune

responses and establish infection (pathogen mechanisms of

virulence) [48]. Furthermore, climate and food availability would

also be key factors driving disease severity. In fact, the problem of

tuberculosis in wild boar seems to be concentrated in south-west

Spain [9], where long dry summers [49] and the homogeneous

habitat and high densities of ungulates [24] often result in food and

water shortages for nearly half the year. Our study is located in the

northern third of the Iberian bio-region 5 [24], corresponding to

coastal areas where seasonal food shortages are not likely to lessen

the ability of wild boar to cope with TB infection. The landscape

composition may also play a role, as the heterogeneous habitat of

our study area could revert to greater availability and variety of

food and water resources, thus minimising shortage periods and

improving micronutrient intake. Altogether, these factors may

determine fitness, immunocompetence and even coinfection-

related variations in susceptibility to infections by regulation of

the pathogen community and pathogen load of animals [50,51].

However, all of these arguments are to date speculative, and hence

further research is necessary to explain the lack of generalized

lesions in our study area.

To our knowledge this study reveals a local MTBC spoligotype

diversity never before described in the scientific literature

[10,52,53]. The strains shared with sympatric livestock point to

cattle as the original source of infection for wild boar in the TBA.

This diversity of spoligotypes may suggest repeated introductions

of infected cattle in TBA in the past, which favoured the spread of

new spoligotypes to the wild boar population. On the other hand,

the genotyping analysis grouped several spoligotypes within the

same MIRU-VNTR type. The MV0006 type (n = 59) included the

majority of the isolates with the spoligotypes SB0121, SB1095, and

SB1685 (only found in cattle), and the loss of spacers within the

DR locus could also suggest the evolution and fitness of the new

strains in this area, as previously described in other regions [52].

The fitness of the SB0121 and SB1095 strains in wild boar became

clear when TB increased at seasons 10 and 11, and these profiles

were maintained in the area whereas other genotypes disappeared.

The SB0121 is the most prevalent spoligotype in the Iberian

Peninsula in cattle, goats and wildlife [53,54] and also the most

frequent profile in our study area. By contrast, the second

predominant spoligotype in our study area, SB1095, may be

biased toward northern Spain [54]. On the other hand, the

appearance of only one spoligotype of M. caprae, SB0415, and in

distant areas probably indicates that past infections remain from

infected flocks of domestic goats, very common a few decades ago.

Currently, the presence of caprine livestock in the NGRPTB is

anecdotic.

The marked spatial pattern of TB in the present study is, at

least, unexpected given the absence of physical barriers in the

Figure 6. Temporal evolution of wild boar population age structure. Percentage of adult (a) and young (juveniles and yearlings) b) wild
boars harvested in TBA per harvesting season.
doi:10.1371/journal.pone.0088824.g006
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study area other than orography. This concentration of tubercu-

losis reinforces the hypothesis of cattle as a source of infection for

wild boar in TBA. The intensive culling of badgers has been

observed to produce unexpected effects such as TB dispersal or

increased prevalence both in cattle and badger populations in the

UK [16] due to increased movements of surviving individuals [55].

In our study, the spatial concentration of wild boar TB in our

study was maintained throughout the study period despite culling.

This is probably due to their preference to staying in TBA, where

water springs and food (fruit trees and farming by-products) are

available year-round. Moreover, wild boar leaving the TBA can be

hunted in OA or more distant areas since wild boar is hunter-

harvested everywhere in the surrounding areas.

As mentioned, the efficacy of the culling method for disease

management in wildlife is subject to some controversy [16,19], also

in the specific case of the European wild boar [17,18]. In our

study, a temporary reduction of TB prevalence in wild boar as a

result of both increasing harvesting and removing cattle was

achieved between harvesting seasons 7 and 10. For comparison,

the prevalence of TB in feral swine decreased from 20% in 1980 to

3.2% in 1983 in the Hawaiian island of Molokai, after an infected

cattle herd was removed and intense hunting pressure reduced

feral swine density [56]. Our model selection supported the same

temporally decreasing pattern in TB occurrence for both juveniles

and adults, which could be due to the reduction of force of

infection in juveniles, to the incorporation of young TB-free

animals and the reduction of infected adults, respectively.

However, it was impossible to disentangle the effects of wild boar

culling and cattle eradication on TB reduction. Nonetheless, the

role of cattle as a source of TB infection appears clear as the

prevalence in wild boar fell to half after livestock removal. On the

other hand, intensive culling did not result in a reduction of wild

boar abundance, maybe due to the dispersion of young animals

from neighbouring areas or to increased turnover derived from

compensatory reproduction observed in intensively-hunted wild

boar populations [57,58]. Hence, the use of culling as a measure

for reducing density of infected animals and consequently

opportunities for disease transmission did not seem to work in

our study system. Thus, the rejuvenation of wild boar populations

and the reduction of force of infection would be the most plausible

mechanism for explaining the reduction observed in TB preva-

lence. This highlights the need for integrated holistic control

strategies.

It is important to highlight that the wild boar harvesting was

more effective before cattle removal, indicating that intensive

culling is an effective first intervention measure, especially in areas

with high TB prevalence [17]. It is also interesting to observe that

the disease still remains in our wild boar population several years

after eradication in cattle. This fact lends clear support to the role

of wild boar as a true reservoir of TB in the Mediterranean context

[8], even at low densities if other risk factors take place. Apart from

that, the re-introduced herd in TBA remains negative based on the

periodical skin tests performed to date, probably due to the

improvement of farming practices. Despite the efforts made, TB

increased in wild boar at the end of the study period (e.g.,

harvesting period 11 or 2011-2012), which would confirm the lack

of effectiveness of intensive harvesting for TB control when

prevalence is low. This could be attributed to the collateral

increase of juveniles and to the decrease in the harvesting efforts

during the last years after peaking in periods 7 and 8. This

supports that disease control measures must be continued over

time and intensively enough to achieve the required efficacy and to

counteract the temporary nature of beneficial effects. Intensive

culling has achieved TB eradication in the wild only through

massive and sustained programs [59]. This is crucial if we bear in

mind that we are dealing with an abundant species such as wild

boar that locally reaches pest levels and whose ecological elasticity

and behaviour allows them to cope with high harvesting rates

[57,58]. In fact, some authors propose more selective harvesting

strategies to improve efficacy for achieving population reduction

[57]. For example, Bieber and Ruf propose that reducing juvenile

survival will have the largest effect on population growth rate

under good environmental conditions, whereas strong hunting

pressure on adult females will lead to the most effective population

control in years with poor conditions [60]. Box-trapping was quite

selective for young animals in our study (70% of box-trapped wild

boar in our study were below 2 years old), hence this could be a

good methodological option for the first assumption.

Concluding remarks
Active disease surveillance in wildlife makes clear its value and

discloses the first high prevalence focus of tuberculosis described in

wildlife in the northern half of the Iberian Peninsula. Until now,

this focus went unnoticed despite affecting a high percentage of the

local wild boar population. Moreover, although TB in wildlife was

not assumed to be a cause of concern in these latitudes, the

conditions necessary for the onset of this focus have occurred

within a protected area where risk factors such as fencing, feeding,

overcrowding and/or varied host communities are lacking. Hence,

the potential risk for tuberculosis emergence in wildlife populations

under certain conditions should not be neglected in the future.

Both our evidence and that found in the literature point to

exposure as a key factor to understanding lesion patterns of

affected individuals. Nevertheless, a better understanding of this

question as well as of other factors determining susceptibility and

virulence could derive implications for management aimed at

reducing generalized patterns and, consequently, curbing infected

individuals and exposure of healthy susceptible ones. Factors

determining the movements of wild boar may also be of interest to

TB management in unfenced areas.

Active disease surveillance in wildlife makes clear its value and

discloses the first high prevalence focus of tuberculosis described in

wildlife in the northern half of the Iberian Peninsula. Until 2004,

this focus went unnoticed despite affecting a high percentage of the

local wild boar population. A TB in wildlife was not anticipated to

be of concern in these latitudes since the assumed conditions

necessary for the onset of the disease such as fencing, feeding,

overcrowding and/or varied host communities were lacking.

Hence, the potential risk for tuberculosis emergence in wildlife

populations under more natural conditions should not be

neglected in the future. Both, our evidence and documented cases

in the literature point towards early and intense exposure as a key

factor to understand lesion patterns of affected individuals.

Nevertheless, a better understanding of this question as well as

of other factors that drive susceptibility and virulence, it will help

to design management practices to reduce generalized patterns

and, consequently, reduce exposure of healthy susceptible ones.

Factors determining the movements of wild boar may also be of

interest to TB management in unfenced areas.

Some evidence suggests that poor farming practices may have

occurred in this area in the past. This should be noted especially

by the managers of natural areas where interaction between

livestock and wildlife may occur, in order to apply preventive

measures. Once again, but for the first time in TB, we have shown

that it is possible to address the control of a multi-host pathogen in

a wild host population via the management of the domestic

counterpart [61]. However, the need for holistic control strategies

is highlighted, as reduction but not eradication was achieved with
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the applied measures. Culling is probably the least expensive

measure that can be applied, which makes it valuable in the

current scenario of economic shortages in the EU (affecting

countries in the Mediterranean basin more severely, where this

problem [TB in wild boar populations] occurs). Our ‘‘culling’’

experience in TB-infected wild boar adds to the recent ones

[17,18] with clarifying intermediate results. As observed by

Boadella and cols., culling seems to be an effective first

intervention measure to be applied in high prevalence foci,

whereas efficacy tends to decrease as prevalence does [17].

However, estimating the threshold required for a significant

reduction under natural conditions can be difficult. Hence, to

achieve either eradication or a significant decrease of prevalence,

culling must be continued over time and intensively enough to

achieve the required efficacy and to counteract the temporary

nature of beneficial effects. Alternatively, the applicability of more

selective harvesting strategies to improve efficacy for achieving

population reduction are another area to explore.

Supporting Information

Table S1 MIRU-VNTR results and analysis of the M.
bovis and M. caprae isolated from wild boar. a MIRU-

VNTR loci with corresponding alias. b MIRU-VNTR types

obtained with the four-loci approach including ETR-A, ETR-B,

QUB11a and QUB3232. Table is arranged according to the

MVtype in ascending order. c Eight out of 99 isolates are not

included in the table due to failure in one or more loci or multiple

bands in some loci. Grey indicates the MIRU-VNTR profile of the

five cattle isolates. The bovine isolate with the SB1685 profile (not

included in the table because was only present in cattle) showed

the most frequent MV0006 type and the SB0121 spoligotype.

(XLSX)

Table S2 Genotyping analysis of the M. bovis and M.
caprae isolated from wild boar. Genotyping analysis

(combination of spoligotypes and MIRU-VNTR types) of the M.

bovis and M. caprae isolated from wild boar. a Eight out of 99

isolates genotyped by MIRU-VNTR are not included in the table

due to failure in one or more loci or multiple bands in some loci. b

MIRU-VNTR types obtained with the four-loci approach

including ETR-A, ETR-B, QUB11a and QUB3232. Grey

indicates the season and genotype of the cattle isolates. The

bovine isolate with the SB1685 profile belongs to season 7 but is

not included in the table since no wild boar were detected with this

spoligotype.

(XLSX)
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