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The phase diagram at zero temperature of a lattic@Bd¢alar-fermion model in 21 dimensions is studied
numerically and with mean-field methods. Special attention is devoted to the strong coupling regime. We have
developed a new method to adapt the hybrid Monte Carlo algorithm to (8)en©n-lineare- model constraint.

The charged excitations in the various phases are studied at the mean-field level. Bound states of two charged
fermions are found in a strongly couplgéramagneticphase. On the other hand, in the strongly coupled
antiferromagnetic phase fermionic excitations around momehta/2,*+ #/2,+ 7/2) emerge.

PACS numbgs): 11.15.Ha, 02.70.Lq, 11.15.EXx, 11.30.Rd

[. INTRODUCTION strong (PMS) phase. At the MF level we have not found
The model we are going to study was proposed in Refsevidence foffermionicexcitations azerotemperature in this
[1] and[2] as a natural extension of the latticg3Dnon- PMS phase. Another interesting result is the emergence of
linearo model in 2+1 dimensions to include charge carriers. fermionic  excitations around momenta = ¢r/2,= /2,
Itis a lattice model of interacting spins and Dirac fermions in* 7/2) in the strongly coupled antiferromagnetiéFM)
241 dimensions, with only two free parameters in additionphasg4]. Finally, Sec. VI is devoted to our conclusions and
to the temperature: a nearest-neighbor spin coupling and Rrojects.
spin-fermion coupling. The model describes quantitatively
some of the features of the doped copper oxide compound$ THE MODEL: FORMULATION, SYMMETRIES, PHASE

[1.2]. _ _ DIAGRAM
In the present article we want to present a careful, detailed

discussion of the model, its symmetries, and its properties, The model is defined by the followin@+1)-dimensional
and give full technical details and results of the mean-fieldattice Euclidear(imaginary time path integral,
(MF) and Monte Carlo(MC) calculations, some of which
were reported in Ref.1]. In this paper, our mean-field and
numerical studies will be limited to the zero-temperature
case, corresponding to infinite Euclidean time direction.

The remainder is laid out as follows. In Sec. Il we presentwith the action
our model, discuss the choice of lattice fermions, comment
on the symmetries of the model, give its phase diagram and p—
prove the reality of the fermion determinant, even in the S=—2 Kep it 2 Y (= 1)
presence of a chemical potential. In Sec. lll we examine the o o
phase diagram of the model in the MF approximation. Our _
MF calculations are based on small- and laygexpansions + 2 Ny T 2
combined with saddle point methods. The method allows us *

to handle(products of fermionic variables occurring in the We use this expression as our starting point, but it should be
expansion of the fermion determinant in a well defined Way. sred that the modetiepends only on the ratio=yx/p.

In Sec. IV'we use MC simulations to complete the study Oft rough a change in the normalization of the fermion fidhd
the phase diagram. For this purpose we have developed grmsgof the effgective spin-fermion counlinawe et
new method that exactly solves the technical problem relate}Je P pingwe g
to the length-1 constraint on the spin variallg@s Section V 1
is devoted to a study of the relevant excitations in the differ- S=— XZ Kby by o+ E §¢x7”(¢x+,1— U i)
y23

zzf D D yD iy exp(—S) 1)

ent phases of the system, at the MF level. A crucial result is , X

the dynamical generation of spin singlet bosonic bound

states of charged fermions in the so-called paramagnetic +§X: Yy T . 3)
*Email address: buj@gteorico.unizar.es Here x runs over a(2+1)-dimensional cubic Euclidean
TEmail address: phi@qcd.th.u-psud.fr space-time lattice. Eaclf, is a fermionic four-spinor as a
*Email address: Victor.Martin@romal.infn.it shorthand for two flavors of two-component Dirac spinors.
SEmail address: arjan@scsc.ethz.ch Both flavors are taken in the same irreducible spinor repre-
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sentation, with 22 gamma matrices taken as the Pauli ma- K _ T \—
triceso*. The 4X4 matricesy* in Eq. (3) have the form U eXP I e |dx, XD iz ex i, dx— ey
(10

pn=1,23. (4)

ot 0
—y/"“:(

0 o*

The latter symmetry implies that the lattice regularization
o , ) of the non-lineawr model,y=0 (ory=x, see Secs. lll, IV,

The kinetic term for the fermions is of the nearest-jg gqually valid in a ferromagnetic or an antiferromagnetic
neighbor (hopping form. Lattice fermions defined in this ppaqe
way undergo species doubling in the_ perturbative continuum |y order to perform computations in models of this type,
limit [S]. For two reasons we are going to leave this mattef,ng pas to integrate out the fermions. This integration leads
aside in this work. First, we are particularly interested in the;y 4 ¢-dependent fermion determinant. It is important to

strong coupling non-perturbative regime where more of thg oy \whether this determinant is a real number. To study
interesting physics occufd,2]. In this strong coupling re- his “|et us write down the original fermion matritatin
gime all the fermions, the physical one as well as the do“rettersx,y, . will refer to lattice pointsi,j, . . ., will rep-

blers, ‘decouple in the continuum limf6]. Second, this yogent flavor indices, while Greek lettexsg, ... are used
model described qualitatively some of the features of th%r Dirac indices:

doped copper oxide compounids2], where the lattice space

is given by the material. ~

The three-componenp are real scalar bosonic variables, Miaiiygi = Kxaiiypi  Yxaiiypi (1D
subject to the constrainp?=1, as in the @8) non-linearo 1
model. The last term in Eq3) describes the interaction be- Ko o= = S _5 oh S 12
tween ¢ and the Dirac fermions, which is diagonal in Dirac SR LA ; (Ot iy ™ Ox-py) Tap i (12

space. The Pauli matrice$ act in flavor space.

Let us now consider the symmetries of E§). First of Y aizy i = Y Ouy(@ 7)i S - (13
all, we have the usual cubic symmetry. Next, there is a dis-
crete parity symmetry, which in-21 dimensions is defined Keeping in mind that for Pauli matrices,oio,=—o07,
as the reflection of one of the spatial axes, sayxf#xis.  \herex means complex conjugation, and that7]=0, one
Under this parity symmetry, the fermions can be seen tqasily proves that, for rea,
transform as

— — 0'2T2(K+Y)0'27'2:_(K*+Y*). (14)
Y—oh, Y——yoy, )
SO ¢ is a pseudoscalar in this sense. In addition, the actiorTherefore’
(3) is invariant under an S@) flavor symmetry in whichy de(K+Y)=de( —K* — Y*)=[de(K+Y)]*, (15

transforms as the fundamental representation éntlans-
forms as the adjoint one. Note that by requiring the two.

fermion flavors to have the same Lorentz struciithat is i.e. the determinant is real. Thus, by doubling the number of
. X . . . fermion families, we obtain a positive determinant. Had we
by choosing they’s as in Eq.(4)] no fermion mass term is

allowed which preserves the above symmetfis introduced a chemical potentigl, the only change would

There are two more discrete symmetries of our medel be the introduction o&** on the temporal links of the ki-
which will be useful in the MF calculation of the phase dia- netic matrix[8]. The essential requirement for EG4) to

. . hold (that the only non-real numbers are j7) is thus not
gram. The first one is endangered by the chemical potential and the determinant is
Z(k,y)=2(k,—y), (6) still real. . .
The phase diagram of the model at zero temperature is
which becomes clear if we make the change of variables shown in Fig. 1. Notice that it is very similar to the phase
diagram of(chiral) Yukawa models for the electroweak sec-
tor of the standard model of elementary particle interactions
[9]. At y=o and aty=0 we recover the non-linear model
(see Secs. lll and IV with its well known paramagnetic
where (PM), ferromagnetic(FM) and antiferromagnetidAFM)
B s x phases. At finitg/, we expect these phases to extend into the
en=1(—1)> u, (8) (k,y) plane. One of its most important features is that there
are two mutually disconnected paramagnetic phases, one at
weak coupling(called PMW and one at strong coupling
(PMS). One sees that the PMW-FM and the PMW-AFM
transition lines meet in a poind, where this disordered

lﬂXHeX[{igéx) Uy, EX_’ex%igEx)ZX! (7

This implies thaiz(k,y) is a function ofy? only and we can
restrict ourselves tg>0.
In addition, there is a symmetry

Z(k,y)=Z(—k,—iy), 9) phase ends. In the strong coupling sector of the phase dia-
gram, a similar behavior is found, with the two transition
as can be seen by making the substitutions lines meeting at poinB. This observation means that one
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I e e L We shall first concentrate on the smwlkegion, and in-
corporate the fermion determinant up@gy?).

In order to apply the saddle-point method, the integration
over the fields must be unrestricted. We therefore need to
replace the integration over the spin vectefs constrained
by the condition|¢|=1, with an integration over uncon-
strained variableg. This is done by multiplying the func-
tional integrand in Eq(1) by

FM(S)

3 o)
1=f peap-o=11 11 f_xd§35(¢i‘—§3)

>ore [ dAd
I I | | :1:[ aﬂl f_mdfi‘f_wz—;exr[iAi(ﬁ—5‘;‘)],
0.0 0.2 0.4 0.8 08 1.0

(y=0) v/ (1+y®) (y=2=)

and replacing a conveniently chosen subset of ¢heari-
FIG. 1. Phase diagram of the acti¢8), for two fermion fami- ~ ables in the actior® with £ fields. We obtain
lies. Dashed lines are from the MF calculation, solid lines from a
MC calculation on an Blattice. - J' DE(DA
(27)

5 exp{ kXE:,L F §X+M—i§X: Ax: §x}

may expect totally different behavior in each of the two para-

magnetic phases. This is indeed the case, as we shall see — 1—
later. XJ’ DLﬂDlﬁeX[{ _XZ El/fﬂ”(lﬂxﬂ}— wxﬁ)}
As there is no evidence for a phase transition between the “
strong- and weak-coupling regions of the FM and AFM depy . — -
phases, we name them FW) and FMS), AFM(W) and Xl:[ [f yp eXF['Ax'ﬁbx—yl/fxcbx'Tl!fx]]. (16)

AFM(S) (note the parenthesesThere may be crossovers

between these regions, though. Note that both thet fields and the auxiliary field#\ are
Between the pointé andB, we find a phase where both nhconstrained.

the magnetization and the stgggered .magneti.zation are dif- Now we have to integrate out the constrained variabfes

ferent from zero. We name this phafserimagnetic(FI). An (55 \ell as the fermionsbefore the mean fields can be in-

appealing possibility is that it corresponds to a helicoidalyqyced. Let us concentrate on a singigintegration in Eq.

phase. We expect the Fl phase to disappear for large enoug%), dropping the subscripts for simplicity. First, we per-

—k, but we have not explored this numerically. form an expansion in powers gf We can write
do , - .
lll. MEAN FIELD CALCULATIONS OF THE PHASE —ZexfiA- p—yid- 4]
DIAGRAM 4m

Our aim in this section is to determine the zero-
temperature phase diagram of the model inytHeplane(cf.
Fig. 1), using mean-field techniques. These calculations al-
ready provide a lot of insight, especially for the strong cou- 3
! X . . . . +0O(y~)
pling region. They will be contrasted with numerical simu-
lations for the phase diagram in Sec. 1V, and they will be
extended to a study of the relevant charggdasi-particle ~ Where we have defined
excitations in Sec. V. do
Our mean-field calculations are based on small- and large- a_ T a Sy ue ;
y expansions combined with the saddle point methods de- Q*=u77, uliA=In f 47TEXF[IA'¢]'
scribed in Ref[10]. This approach guarantees a systematic
expansion in I, which is particularly important for opera- Ta=(p2PP)i A= (HD)ia( A )in,
tors which are zero to lowest-order. Our particular method
furthermore allows us to hand{products of fermionic vari-  and we have introduced the notation
ables occurring in the expansion of the fermion determinant do ”
in a well defined way. These techniques have been devel- _ . .
oped and applied in the context of similar lattice models <O>‘A_fﬂo ex;{|A-¢]/ fﬂexmA-d)].
[11,12 of the electroweak sector of the standard model of
elementary particle interactions, and in the study of the antitn addition, we introduce a Hubbard-Stratonovich vector pa-
ferromagneticp* model[13]. rameter\ to deal with the quartic fermion term in EGL7),

. 1
= exr[u(lA)]exr{ —y Q2 (pP)ia+ EyzQaQbTab

, (17)
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1 , , 1
exp 5y?>, Q*Q° T ~F=22 U(iA) KDY &b i 2 Ak 5 2 A
2 a,b X X X 2 X
, M
da 1 +TrlogM. (20
=f—ex RS S
(27)%2 23 A choice of the mean fields should be done at this point, as

we cannot calculate logl for generalf A, ,\,}. An appropri-
_ (18) ate choice for the study of a PM-FM phase transition is

xexr{yZb (VT)2PQ2\P

A=(0,0~-ia), (21)
(Note that the matriX is self-adjoint, and positive definite if _
A is imaginary, so the square root is well definethus, up &=(0,0yv),
to this order iny?, the action is bilinear in the fermion fields. A= (0,0\)
Carrying out the fermion integration in Eq16) now % A
gives detM, where in terms of which ( is the lattice volumg
M =K SvS.,52 | (P2 FIN=— —kdv2+ +1)\2—£TI M, (22
X,a,i1y, B x,a,i;y,ﬁ,j+y xy©QapB < <¢)x>iA>< =—U(a) V-Tav 2 N riog i, (22

with @, v and\ satisfying the saddle point equations
=2 (NT)*\° |73 (19
b VF|(Q,'V’)\):0. (23)
The matrixK has been defined in E¢L2). The fermion matrixM («,v,\), can be calculated in mo-
The mean fields are the field values at the saddle point afnentum space, where it is diagonal in its momentum indices.
the free energy One easily finds

3

> sirp,+y2(Uu’ (@)= U (a))?

detM=exp 2, IogM_1 3 : (24)
P > sirp,

pn=1

where we have divided out the determinant for free fermions. For larger values ok andy, there is another, non-trivial
We need only the leadin@(y?) contribution to the expo- solution, corresponding to a ferromagnetieM) phase. It
nent, hence the mean field free energy becomes, in the infemerges when a negative mode-ifN starts to develop, as a

nite volume limit: function of the mean fields, and the transition between the
two regions is given by the conditionF( is the Hessian
2 1 2 2 matrix)
FIN=—u(a)—kdv-+av+ E)\ —2y“(u' (@)
MU (@))2Co, (25) detF"|(4=oy=0r=0)=0. (27
where This condition is satisfied foF/N of Eq. (25) if
& 1 3 2c
-m(2m)3 , 2d d 7
> sirp,
n=1

This curve defines the phase transition line between the
PM and FM phases in the smallregion. Using the symme-
try (9), we deduce that there is a similar transition separating
the PM and AFM phases,

Incidentally, the above integral can be explicitly sol\sde
Ref. [14]).

Next, we shall discuss the actual solutions to E@S).
From u(a)=In(sinha/a), one easily finds thaw=v=A\
=0 always fulfill them. For smalk, y, it is a true minimum
of the free energy. This characterizes a paramagrEtit) 3 2Co ,

phase, since none of the fields develops an expectation value. k=~ 2d Ty ' 29
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Let us finally remark that in the presenceMf such fermion
fields we would haveé\; factors of de, leading to a mul-
tiplication of Cy by N; in Egs.(28) and (29).

The largey region is easier to deal with. Here it is con-

venient to integrate out the fermions directly in H46),
leading to(summation over repeated index is carjied

detMy aizy.g.]
=det(nya'i;yﬁ'ﬁyéaﬁﬁxy; ¢3Tﬁ) (30
=det<y5a75ﬂ§ ¢§Tiak)
1
X det 6zy5yﬁ5kj+§zb ¢STE'KZ"";V’BJ)' o

Here we have used thaB{¢®r%)?=1 (recall the ¢'s are
unit vectors. Now we can expand log(ddt) in powers of
1/y. The O(1ly) term vanishes by virtue df,,=0. To sec-
ond order one obtains

log detM =logy*N+Tr

1
- 2_y2 ; b5 ThiKxai:ty)
SRR TN @

1
=logy"™N+ = X by by (33)
Yy X

PHYSICAL REVIEW D61 034501

7 dd 1 e
Co(d)= 2 F;d g :Zfo ds(e S1y(s))?
ner 21 sinfp,,
' (36)
_2 1 1
—a 1+E+O E , (37)

where |o(s)=/7 (d6/2m)explscosh) is the modified
Bessel function. In fact, the second equality in E2f) was
used to obtain the numerical res(@6) for C,,.

Keeping only the leading-order termd2for C, we find
that the phase transition lines would meeyat 2/d.

Now we are ready to map out the phase diagram of the
model, as predicted by the MF method for the weak and
strong coupling regions. This is done in Fig. 1. The vertical
axes aty=0 andy=« correspond to the @) model, with
its disordered(PM) and ordered(FM and AFM) phases.
These phases extend into thelirection, both fory>0 and
y<oo. Note that all the phase transition lines bend down-
ward. This can be understood intuitively by assuming a MF
value for the fermion condensate, which would act as an
external field tending to align the spirsin parallel.

IV. MONTE CARLO ALGORITHM: METHOD
AND RESULTS

A well established method for dynamical fermion simula-
tions is hybrid Monte CarldHMC) algorithm [15]. How-
ever, the implementation of this algorithm in a model with
constrained variables is not straightforward. This has been

Here, logy*N is an irrelevant constant that can be dropped.satisfactorily achieved for models with variables belonging

Notice also that this expression will acquire a prefatdoif

to a Lie group[16], such as SUY{) gauge theories or some

there areN; identical fermion flavors. One sees that, up toSPin models, such as the B¢ 2,4) non-linearo models.
O(1ly?), the only effect of the fermion determinant is a However, for other spin variablésot in a Lie group, as in.
renormalization of the scalar hopp|ng parameter of tma)o the q3) non-linearc model, this had not been Sat|5faCt0r|Iy

model,

1
k—>k+Nf—2. (34
y

Note that we did not introduce any mean fields to deriv

this result. The usual MF treatment of thé3Dmodel with

this renormalized coupling now immediately gives us the

required phase transition lines in the langeegion of our
model:

3 1
k=% —N;>.

2a M (35

It is interesting to compare the small- and largeesults,
to leading order in 4. As is well known, the first order in

(S

solved yet, although the problem arose already in the first
simulations using the Langevin algoritH3]. Our solution is
a generalization of the strategy [ith6].

We shall first discuss our solution in the quenched ap-
proximation, where comparison with other algorithms is pos-
sible (Sec. IV A), and then deal with the full theory in Sec.
IV B. Finally our Monte Carlo results for the phase diagram
of the full theory will be presented in Sec. IV C.

A. The HMC method for the quenched approximation

For the purpose of discussion it will prove convenient to
briefly describe the HMC method for unconstrained bosonic
variables¢(x) with actionSg(¢) (see Ref[17] for a peda-
gogical presentation

(1) Introduce uncorrelated Gaussian variable6x) of
unit variance(the conjugate momentéor the fields¢) and

this expansion is equivalent to any MF approximation, up todefine a Hamiltonian

higher-order terms. For this purpose, we need tldeekpan-
sion of the constant, in Eq. (26), which can be calculated
as follows:

1
H:; E772(x)+ss(¢). (38)
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One can then use the Hamiltonian equations of motion (1) Both ¢? and ¢- L are conserved through the time evo-
lution. If the initial condition verifies the constraintg?
d(x,7)=m(X,7), =1,¢-L=0, this will not be spoiled by the dynamics.

(II) The dynamics is time-reversible.
(111 Although thel; cannot be all canonical variables

5Sg

(X, 7)== — —— (39  [18], the “Liouville” measure, D¢DL
Oh(X,7) (=d¢dp,dgzdL dL,dLs), is left invariant by the time
evolution.
to perform a microcanonical molecular dynamics evolution (V) The Hamiltonian is a constant of the motion.
in “Monte Carlo time,” 7. After a certain period of MC time Now let us forget about the constraigh- L=0, i.e., we

(called “trajectory”), new random momenta(x) are cho- introduce a new field® which can have a “radial compo-
sen (“refreshing” the momenta The crucial properties of nent” (it is no longer an angular momentynbut we keep
Egs. (39) are their time reversibility, and the invariance of the equations of motiori41). Obviously, statements 1-IV
the Liouville measureD ¢ D, under time evolution. will still hold. Whether a symplectic structure is hidden un-

(2) In practice, the molecular dynamics equations of mo-der this new dynamical system is unclear, but also irrelevant
tion for a trajectory are discretized intd stepsA7. Thisis  (properties Il and Il are the essential ones for HMC to be a
done using a leap-frog algorithm which éxactlytime re-  correct algorithn{17]).
versible, but does introduce a systematic error which shows So, we introduce three momenta per spit®
up as a non-zeraH = O(A 7%). Thedetailed-balancés not =(P,,P,,P3), and write down the Hamiltonian
endangered by this error, because a Metropolis acceptance
step is performed. For fixed trajectory lengbthcan then be
tuned to optimize the overall efficiency. H= ; 2" Se( ). (42

To generalize the method to constrained variables, one
needs to appropriately define the conjugate momenta and tligguations of motion respecting properties 1-IV are easily
equations of motion in order to preserve the constraint andgeneralized:
most importantly, not to spoil the time reversibility. Each
spin variable,¢, lives on the surface of a two-sphere, and - —P. % P % 0Sg
correspondingly one could imagine an algorithm with two P =P X Porys Poun== bon Sy
independent conjugate momenta, maybe living in the perpen-
dicular plane ¢- 7w=0). However, changing the constraint AS expected, the evolution equations for Bfefields ¢ take
from the field ¢ to the momenta is not very appealitand,  the form of(infinitesima) rotations, while the conjugate mo-
from the practical side, one would need to worry abouw ~ mMenta can be considered as living in the Lie algebra of
constraints in the numerical integratjorA different ap- SO(3). The discretized leap-frog form of these equations is
proach, the use of spherical coordinates, has the drawback 8ferefore naturally formulated in terms of finite @Drota-
a non-planar integration measure. Our very simple algorithniions,
avoids constraints and non-planar measures, by introducing

2

(43

three conjugate momenta per spin. ¢X(nAT+AT):eX[{ATPX n+ E AT> .J} S (nAT),
We shall start from an analogy with the dynamics of a 2
particle living in the sphere, a potenti@l) acting on it. The (44)
Hamiltonian is
1 1
L2 PX n+§ AT :PX n_z AT _¢(X,nAT)
HSPheres — 4+ V/( ¢p). (40)
’ x—gSB A (45)
T!
5¢(x,nA-r)

HereL is the angular momentumpXx ¢. The equations of
motion can now be obtained from the Poisson Bra¢k&8f  whereJ are the X 3 generators of S@), satisfying
with the Hamiltonian(40):

(exd 6n-J])i; = &jjcos0+n;n;(1—cose) — € NsSin 6

: . Y 41 (46)
=LX¢, L=—¢X——. 41
¢ ¢ ¢ o for unit vectors n. Again, the length constraint on théields
is preserved by construction.
In this expression  6V/é¢p stands for This final result is reminiscent of the elegant solution for
(6VIE¢p1, VI 6p,, NI E¢b3). models with variables belonging to a Lie group and conju-

This formalism is still inconvenient for us, because thegate momenta in the group algekica vice versa[16].
constraint¢p-L=0 complicates the generation of random In our caseSg quenched™ ~K=n, . Pn" @dn+ ., SO the HMC
momenta according to a Gaussian distribution. However, thalgorithm can now be implemented in a straightforward
following simple facts can be straightforwardly establishedmanner. To test the algorithm, we have simulated tl8) O
from Eq. (42): model on an 8 lattice atk=0.693<~k, [20] with our HMC

034501-6
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TABLE I. Values for several observables in the quenched m@@ebn an & lattice atk=0.693<k,,
obtained with our implementation of HMC and with Wolff's single cluster algoriftir8].

Algorithm (E) I(E) x/V 3 B
HMC 0.35085) 1.51(2) 0.14289) 4.472) 0.8006)
Wolff 0.35061(13) 1.501(10) 0.14322) 4.48Q9) 0.803118)

algorithm and with Wolff's single-cluster embedding algo- 1 9

rithm [19]. Let us first define the measured observables, and E=3v PR KNz (52

then compare them. on
In this work we have only measured bosonic observables,

as our sole objective was the numerical determination of the

phase diagram. We have constructed our observables in

We also measure its fluctuation, given by

. . Jd
terms of the Fourier transform of the spin field: 3V(<E2)—<E)2): ﬁ<E>' (53
- 1 . .
m(p)=v E exp(—ip-X)dy, (47 In Table | we compare the values obtained for these ob-
X servables, using our HMC algorithm and the single-cluster
Yy ) algorithm. We find excellent agreement. Of course the effi-
whereV=L"is the lattice volume. __ciency of our implementation of HMC is not competitive
_ We define the non-connected finite-volume susceptibili,iih 4 cluster method in the @) non-lineare model. But it
ties as could be useful in other models where cluster methods are

sy s not effective in reducing the dynamical critical exponent
x=V(m<(0,0,0), xs=V{(m(m,m,m)). (48)  (for instance, when some kind of frustration is preJeai),

. ~ while HMC is expected to yield=1 for any bosonic model.
The subscript “s” ony, stands for “staggered,” and this

term is used to label quantities which are taken with a weight
—1 for the odd lattice sites, corresponding to momentum
(7,7, 7). Notice thaty/V is a pseudo order parameter, The only restriction imposed on HMC is that the fermion
which should be of order one in a ferromagnetically brokenbilinear in the action should be given in terms of a positive
phase, and of order \I/in a paramagnetic or antiferromag- definite matrix. This will be the case if we consider two

B. The HMC algorithm for the full theory

netic phasdand similarly fory¢/V). identical fermion families Kl;=2) as is usually done in lat-
Another quantity of interest is the Binder cumulant tice gauge theories. After integrating them out we obtain
(detM)?=det(M M), whereM is the fermion matrix for a
5 3((m%0,0,0)% single fermion family. As we are mainly interested in the
=575 m (49 strong spin—ferr_nion com_JpIing. region, it makes sense to per-
T form the following manipulation:
with an analogous definition for the staggered varBut dethl =de( Y+ K) =y*Vde(1+ Y~ 1K) (54)

One expect8B8=1 in the FM phase, wherg/V is non-
vanishing in the thermodynamic limit, while it should be of .t Eos (30)(31)1. The constant factor®V
order 1¥ in the PM phase, far from the phase transition. gnd V\?e 'éeﬁ)r'](eM)i'lJrYflK' o

For the correlation length, we use a definition which is Next, one re-exponentiates tiimverse fermion matrix
easy to measure and gives accurate results: by introducing the so-calledseudo-fermions,z which are
complex four-component c-number fields. The partition
function is then

can be dropped,

(50

xIF-1 |\
4sird(w/L))

- | e _MIMY-L
where F is the squared Fourier transform at minimal non- z f D$DzDzexp(~Ss~2(M M) 72). 59

zero momentum,
For further details we refer to Ref17].

\VARS Now the HMC Hamiltonian becomes
F= §(<|m(27r/L,O,O)|2)+ permutations.  (51)

H=> E|:’2—|<Z O by, 2T (MTM) 1z, (56)
Again, the generalization to staggered quantities is straight- X 20X T X T ’

forward. Another kind of observable, needed for the standard
extrapolation method[21], is the normalized nearest- and the time reversible, constraint and energy preserving
neighbor energy equations of motion are
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TABLE Il. Comparison of observables in the full theo¥) at (k=0.693y=10.0) and in the quenched
model both at the corresponding valuekSf' and atk.=0.693. We have 140 000 unquenched trajectories
(N=10,A7=0.3) on a 4 lattice. The Metropolis acceptance rate was 65—70 %, with an autocorrelation time
of 3—4 trajectories.

Couplings (E) I(E) x/V 3

k=0.693 ,y=10.0 0.41646) 1.1346) 0.31117) 2.3784)

k=0.713 ,y=0 0.4158414) 1.1304) 0.31082) 2.377918)

k=0.693 ,y=0 0.39283) 1.1744) 0.28364) 2.2142)
. 2 . ~
By =Pix) X Py (57) (4) We have checked thaiHx(A7)“ in the leap-frog

integration, for constant trajectory lengtii 7.
In addition, we compared simulation results for the full
Pon=— kE (Do pry T P ) P theory at k,y), Wlth the output of a_quenched S|mglatlon at
© the corresponding effective coupling value obtained in a

T largey expansion,

_ZT(MTM)l[(ﬂXd’( )
X, 7T)

5¢(x,r) keff: k+ E +0

x(MTM)~ 1z, y?

M+H.c.

(59

4

y

[cf. Eq.(34)]. In Table II, we give the mean value of several

For the inversion of the fermionic matrix, we have em- : . - ~
ployed the conjugate gradient algorithm. To formulate theoperators as obtained on & kattice atk=0.693, y=10.0

stopping criterium, let us defina=(MM)~1z, h, being and in the quenched theory. The agreement is excellent. No-

. : . ; . tice that even if the shift in the effective coupling is only 3%
th ,
?&?Qioérﬂtﬁomnon' We continued the conjugate gradlentthe effects of the dynamical fermions can be clearly mea-

sured as the observables change quite significantly at the
critical pointk.=0.693.
[(M™M)h,—2|?
— <R (59 .
|h,|? C. Phase diagram

The phase diagram in Fig. 1 was obtained on &fagice.

In the simulation, we need the inverse matrix both for theAs there is no true phase transition on a finite lattice, a cri-
leap-frog and for the Metropolis accept-reject step. It is cleaterium is needed to locate the phase boundaries. We looked
that R does not need to be the same in both cases. For ther the point where the relevant Binder cumulant equals the
Metropolis step, lack of accuracy in the inversion will bias valueB=0.8 it has at k= +0.693~k.,y=0). SinceB=1
the simulation. To control this, we have checked that thedeep in the broken phase aBe 1/L° in the symmetric one,
Creutz parametefexp(—AH)) equals 1 within errors. In this provides a clean quantitative criterium which yields a
some regions of parameter spa&ealues as small as 18°  point definitely inside the critical region. The width of the
were needed. The essential requirement on the leap-frog @itical region decreases as ¥, therefore the systematic
full reversibility in the numerical integration of the equations error in the critical coupling will be at most of order 18
of motion (up to the numerical precision reachable with 64-However, since the Binder parameter is a universal quantity,
bit floating point arithmetig As first noticed in Ref[23], which should stay constant along much of the critical lines,
this has no relation witiR if the seed for the conjugate- the error rather goes as (“*") [i.e. ©(1072)]. Thus, this
gradient algorithm is chosen to depend on #utual con-  systematic error is under control in the full theory as well.
figuration only hp=z, for instancg. However, ifRis too  We used the standard reweighting mettadi] to determine
large, the numerical integration will produce large changes inhe precise location of the points wheBe=0.8.
the Hamiltonian, and the Metropolis acceptance will be poor. The total simulation time was 16 days of the 32 Pentium
We have found thaR=10"" during the leap-frog steps al- Pro processor parallel computer RTNN based in Zaragoza.
lows for a 50% acceptance. To allow for a correct thermalization, we discarded 100 in-

In a first implementation of a new MC algorithm, some tegrated autocorrelation times of the relevant susceptibility.
consistency checks are extremely useful. In addition, ther&@his may look utterly conservative, and the MC history in-
are three parameters to be adjusted for optimal performancdeed seems to stabilize long before that. However, not much

N, 7andR. We have carried out the following tests: is known about theexponentialautocorrelation time of fer-
(1) We have explicitly checked reversibility of the leap- mionic algorithms and one should be cautious.
frog algorithm. As Eg.(54) shows, both ay= and aty=0 we recover

(2) We have checked thdexp(—AH))=1 within errors.  the non-linearc model with its well known paramagnetic,
(3) The gaussian expectation valuég!(MTM) 1z)=4  ferromagnetic and antiferromagnetic phases. At figjteve
and(P?)=3 have been checked. expect these phases to extend into thgy) plane. In fact
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one can quite precisely anticipate the critical coupling fromline at y=1.15. We find a strong change in the staggered
the strong coupling formul@s9) and the quenched critical quantities, while the non-staggered ones show a smoother
points k=)= +0.693. Using the reweighting method, the evolution. However, the non-staggered order parameter is
phase transition lines can be determined dowg#®.0. In  much smaller than its staggered counterpart. This may indi-
Fig. 2 the variation of the Binder cumulant and the suscepeate that, although the non-staggered sector is non-critical
tibility around the two critical couplings is shown for (B~1), it will eventually undergo a phase transition at
=2.0. lower k. A similar behavior is found when traversing the
In the smally region, the effective action up t&(y*)  AFM(W)-FI line atk=— 1.6 (see Fig. 5, but now the non-
does not only renormalizk, but also introduces additional staggered quantities show a more pronounced signal. The
couplings, due to the non-locality of the mathk * occur-  getailed study of these transition linésrder of the phase
ring in the vyeak-couplmg expansion. _Therefore, we _do NO%ransitions, critical exponents, etcequires a finite-size scal-
have an estimate fd°" as reliable as in the largeregion ing analysis, which is left for future work. This study will be

(59), but we can nevertheless obtain an estimatekify)  muych easier if the transition line is crossed varyiggs we
from the MF approximation. We have simulated at severajack an analogue of the reweighting method yor

values of the coupling, for fixedy, until the corresponding
Binder parametefr. crossgd its critical value. A_more a}ccuratevl QUASIPARTICLE EXCITATIONS AT THE MF LEVEL
result for the critical point was later on obtained with the
reweighting method. In Fig. 3, we have plotted the relevant In this section we explore the relevant excitations involv-
Binder parameter and susceptibility fowalues near the two ing fermions, with emphasis on the strong-coupling region of
critical couplings withy=0.5. our model.

In Fig. 4 we show the variation of both order parameters The smally regime has been studied in relation with the
and Binder cumulants when crossing the BAFI transition ~ mechanism by which leptons and quarks acquire their mass

1.00 - —E — 1.0
0.75 — HF — o8
™ 0.50 aF = 06
F 1B -3 04
0.25— —F E
F 1 — o2
0.00 7 | | | 3E . | | N FIG. 3. Binder cumulant(49) and non-
L1 | I | | | I | L1 o1 | B | | I | | I | LT . .
T T T T T T T T T T oss connected susceptibilit§48) as a function ofk,
C 1E R around the two critical points 3t=0.5. The data
0.2— dF - 0=z0 points are from different simulations.
. i 1 — 015 x
< r 1E 3 <
X b 1 — o010 <
L ] — — 005
00 I_\ | | | | | I | | L1 ‘ I_I TI | L1 | | I | | | | | \7 000
0.1 0.2 0.3 0.4 -12  -11 -10 -09
k k
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through symmetry breaking in the electroweak sector of thén terms of the new variable@ropping the primesthe ac-
standard model. Due to the weak coupling there are no sution takes the form

prises. This situation will change dramatically when we con-

sider the strong-coupling region, though.

S=—k§ ¢x-¢x+ﬂ+x2y DKoy (by- D) +Y B )y,

A. Fermionic excitations in the FM(S) and PMS phases 63)
At very largey, it is natural to attempt a largg-expan-
sion. This can be achieved after carrying out the following

change of variables: where the fermion kinetic term is the usual lattice kinetic

Dirac operator, defined in Eq12). After a further rescaling
_ of the ¢ fields, the couplingy can be moved to the kinetic
b=y, (60)  term, where it appears asyl/
Note that this change of variablé&0),(61) was implicitly

, present in the MF calculations of the phase diagram in the
y=(¢ D (61) strong-coupling region as wellcf. Egs. (30),(31)]. This
transformation is the reason that explains that the model is
(partly) analytically tractable. The interest of finding reliable

. 2_ . . 2
Because of the constrainp™=1 and the identity &-7) analytical approaches to strongly coupled fermion systems
= ¢°1, this transformation has unit Jacobian and its invers§,qeq not to be stressed.

satisfies . — . .
The fermion propagatofiyy) is given by the expecta-
tion value of the inverse fermion matrix, which in a large-
p=(- 7' (62 expansion becomes
R A [ R RS RSN
0.75 = =4 F —J o097
0.50 — = ]
E 1B — 0.96
m 0.25F —F 3 &
E 1 — 095
0.00 —F 1
—0.252— _i = — o094
:: : | — | — | — :: : | — | — | — 0.93 FIG. 5. Binder cumulants and susceptibilities
£ | | 1T | | 3 o026 when crossing the AFKW)-FI transition line at
0.020 — —F ] _
: 1F ] k=—1.6.
0.015 — qE - 0.24
S F J1F ] =
R 0010 1t — ozz Y
0.005 b -] oz0
oooof T o AE S
0.42 0.44 0.46 0.42 0.44 0.46
¥ /(1+y?) y?/(1+y%)
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_ 1 1 1
(xhy) = (Mt =<§<1—§K(¢.7)+FK(¢.7)K(¢- 7)— ) > (64)
xy

This can be viewed as a sum over paths of increasing lengfiwith e,=(—1)*"*2"*3], Hence
connectingx andy (recall thatK is a nearest-neighbor ma-

trix). Vexzp)((l)

In the FM(S) phase, there is a non-zero magnetization (¢ T)‘/lﬁ( Cve (2))1 (67)
=|{ ¢)|. Expectation values of products &f fields on dif- XX
ferent sites are replaced by the appropriate powers.of wherey(), i=1,2 labels the twdlavorsin ¢, . So after the

Corrections to this approximation as well as contributions - L :
from paths visiting a given site more than once are of highefhange of variableg50),(61) the kinetic operator in EG63)

. . s still diagonal in flavor. The only effect of the new vari-
order in 1l and are ignored at the'MF level. The seri6g) ables is to change the lattice Dirac operator from @@) to
can thus be resummed and one finds a propagator

VEyT3ny .

(VYems= (65

K+ylv Due to this diagonal structure in flavor space, we can con-
centrate on one flavor, say®); the other flavor is obtained
which is that of a fermion with a masgv. Note that, since by taking—v instead ofv. In Fourier space, the kinetic term
v<1, this is a huge massyfis large. The propagator for the for %) is given by

original fermion, before the change of variableg&0),(61),

corresponds to the same physical particle; the only difference —ivsinpdy g« 7 (68)

is in the wave function renormalization.

In the PMS) phasey =0, so at the MF level the fermion Where
would be infinitely massive, or in other words, non-
propagating. Beyond this naive MF level, however, a large
but finite mass will be found. This is due to the next-to-
leading contributions to the seri¢84). The dominant terms
are now those involving the expectation value for the
nearest-neighbor energy={¢y- . ;,), which is of order Soqen=11 Sp,, ., + mmod 27 - (70
1/2d and therefore absent at the MF level. The resummation K’
of contributions in Eq(6_4) now leads to a fermion propaga- So we obtain for the inverse of the MF propagator in the
tor with a massy/z, which is even larger than the mass of AFM(S) phase
the fermion in the FNIS) phase. However, one should keep '

sip=2> o,sinp,,, (69)
w

in mind that the above arguments only hold deep in the PMS M. =—ivsinps +vS 71
phase, far from the phase transition lines which, for large pa~ ~VSPOpa=aTYpa: 7D
are second order. or, in matrix notation for the subspace of the modes coupled

The conclusion of this analysis, which is similar to that in;, Eq. (7, p andp= (w7, )
(chiral) Yukawa models in the Electroweak thedi34], is ’ B

that the elementary fermion excitations in the laygeegion y —ivsinp
are very heavy(hence essentially non-propagatingand Mp,pt(ﬂ',ﬂ',w)z(- o ) (72
therefore play no role in the spectrum of light excitations. Ivsinp y

This holds even more strongly in the PMS phase than in the

FM(S) phase. To find the quasiparticle excitations in the AFS] phase

we diagonalize the fermionic part of the actign2). One

obtains
B. Fermionic excitations in the AFM(S) phase

Here our point of departure is again the form of the action S= J - —v-s 73
(63), which is tailored for studying the largebehavior. In pw(p)(y visinp) 4 (p), 73
the AFM(S) phase, we have a staggered expectation value

for the ¢ field at the MF level, which can be taken in the where

3-direction,
1
0 t//(p)=E[w“)(p)ﬂt/f‘”(pw)],
d=ey| 0 (66)
1 or, in positionspace,
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Bj e kA

1 .

= LU+ i) " ai S

The momentum space propagator corresponding to Eq
(73) is thus
1 y+vsinp
S(p)=————= . (7 .
ymvsIp 2 23 giep, ]
A

FIG. 6. A typical double-chain diagram, connecting sitesnd

. . L . . . The chains are parallel in position space.
Since we are working in imaginary time, one would expecty P P P

quasiparticle poles ir5(p) to appear at negative values of Let us concentrate on the firéM M%) term in Eq.

p2. The unusual relative minus sign in the denomin&feh (76). Using the 1y expansion oM ! as before, we find the
therefore does not seem to allow for a quasiparticle interprex '

. ’ . series
tation, at first sight.

However, Eq.(74) suggests the possibility of light exci- (M -1 oMol
tations with a relativistic dispersion relation around momenta' <Ay K xabypl

(£ 7l2,=7/2,=m/2). To see this, consider the denominator * b H\N b & N’
in Eq. (74) for smallk,,=p,* 7/2: = 2 [—( K—) } —( K—) ,
N,N"=0 y y X,B.J:Y.\ K y y X,a,i;y,p,l

(77

where we have writtenp as a shorthand for¢h- 7). It is
clear that only terms wittN+ N’ even survive in a paramag-
Shetic phase, due to théé— — ¢ symmetry, thus a factor

n(—l)“*“' has been dropped. Since the matkixconnects

y2—v2>, sirfp,=(y?—v2d)+v2Y, k2 +0O(k%), (75)
A A

whered=3 is the space-time dimension. As long as we ar
at large enougty, such thaty?>dv? (recall v><1), this

dispersion relation corresponds to a relativistic excitatio . . . . .
with m?=(y2—dv?)/v2, in this naive MF calculation. Sev- nearest-neighbor sites only, each term in this series can be

eral comments are in order: seen to represent a product of two paftisaing of lengthsN

(1) For v=0, we recover the MF result for the PMS an.dN’ respectively, connt_acting sitewith sitey [so, if t_he
phase: the kinetic term in EG75) is suppressed. “distance” betweerx andy is everjodd), bothN andN" will

(2) At the MF level, only for (/2—dv?) small enough be everodd) . . .
compared tov? these fermionic excitations,=(¢)y, can We_ will atlempt to sum the. complete_senes, o Iez_idmg
propagate easily. Sinog?<1, this can only happen fo2 ~ ©'der in 14, whered=1+2=3 is the Euclidean space-time
not too large. Q|mgn3|on. qu th|§, we need the spin-spin propagator, which

(3) These would-be excitations are characteristic of thd" this approximation is extremely short ranged
AFM(S) phase. Let us recall that in the PMS phasdigbt 1
fermionic excitations have been identified at the MF level. <¢§¢g>: §5ab_ (79

C. Light bound states in the PMS phase Expectation values of the tydap,- ¢y ;) are of order id,

We have seen above that the fermionic excitations in th@nd others are suppressed even more strongly. Thus, assum-
PMS phase are very heavy. We will now show that there arég Eg. (78), we observe that any term in the series which
bound states of elementary fermions, however, which aréontainse, for a given sitex only once or an odd number of
light. This is done by means of a MF calculation of the times will vanish due to(¢)=0. When the site is visited

double-chain typé25]. twice, it follows from ¢?=1 that the contribution from the
Consider the propagator for a fermion pdiy, ¢ fields is proportional to} 62°. Thus each site along the
o chains connecting andy must be visited an even number of
<‘/’f<l,i‘/’f,j¢§,k'ﬁ§,|>:<M>Zple,j;y,x,kM;i,i;y,p,|> times. One class of diagrams fulfilling this requirement con-

., . sists of the so-called “double-chain” diagrams, where the
(M aiyakMxgjy.on)-  (76)  propagation of both fermions betweanandy follows the
same path in position spacsee Fig. 6. As was convinc-

Here M1 is the single-fermion propagatot;, 3,\,p are ingly argued in Ref[25], this class saturates the dominant
Dirac indices, andl, j,k,| are flavor indices. Thus, this propa- diagrams in the o expansion. Indeed, one can easily check
gator is really a 1& 16 matrix. For the moment we keep all by concrete examples, how deviations from double-chain be-
these indices as they are; later on we will discuss how pairbavior induce additional powers ofdl/ We shall also as-
of them decompose into quantum numbers for the compositeume that these double chains are self-avoidthes is al-
state. lowed at first order in H).
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J k 1
:><:::><:: Kfy:i(ayyx+/;_ 5y‘X7/:\L). (83)
i l o
One readily finds that
FIG. 7. A matrix-product term contributing to the flavor struc-
ture. AQyE4K§<‘yK§(‘y= (Oyxtpt Oyx—7)- (84
Our task is thus to sum up all double chain diagramsThus, we need to calculate
connectingx andy. Let us first consider the flavor structure. L
Using Eq.(78) one finds that {E} 1 ZA”““G”““@ ohn , (85)
Hn n

1 a a 1
<(¢x'7’)jk(¢x'f)i|>=§ Ea: Tjk7'n=5(_5jk5i|+25j|5ik)-
(79

X,B,a;Y,\,p

where the sum is extended to all the lattice pdtenoted by
{mn}) of lengthN connectingx andy. Now, we can extend
the sum toall lengthN lattice paths starting at, because

From this and from the ultra-local correlations we are Con-paths not Connecting toy will contribute a zeroxy entry.

sidering[cf. Eq. (78)], it follows that the product of 2Y
+1) factors of - 7) along a double chain of lengtN
visiting the pointsx=xg,X1, ..., y=Xy [cf. Eq.(77)] is

| L], )

N

II (o -7

n=0

IT (¢,

n"=0

X,j;y.k

:Péjk5i|+Q5j|5ik' (80)

To calculateP andQ, it is convenient to represent the gen-
eral term contributing to the above matrix product as in Fig.
7. A graph contributing tay; 6 will have an even number

of crossings, while diagrams contributing & J; jump an

This can be also understood by realizing that once the chain
has arrived ax; , there are @ possible directions to continue
the chain. These are added up by summing(Bg). over w.
At the next site, we do the same for the next step along the
chain. The contributions of all double chains are therefore
added up when we take the product of thessums along
the chain. Corrections due to backtrackingi22d—1) are
down by 14.

So we need to calculate powers of the matrix

1
1 E Atot® at. (86)
I

odd number of times. Each crossing contributes a fagtor One way to do that is to write it out explicitly as ax4

while non-crossings yield factors 3 [cf. Eq.(79)]. Now, P
andQ can be easily obtained using binomial summation:

N N
<LHO (¢, 7 11 <¢xn,-f>l >
X,i;¥,1

n"=0

MBS

1\M W1
=1 3] 20k + 1 6i) + (= 1)75 (ki = 8ji diw).

(81)

where we have separated in a term symmetric under

(ji)«(ij) and an antisymmetric or{¢his will be needed for
separating the contribution to different quantum numpeéts

matrix in the space spanned by the vectogN)=(1,1),
(2,2, (1,2 and(2,1), in that order. One finds that it equals

A Al-A? 0 0

1| Al=AZ A3 0 0

4| o0 0 ~A3 Al A2 7
0 0 Al+A2 —A3

It can be diagonalized in this>4 space. The eigenvalues,
up to the factor 1/4, are found to be

is remarkable that the flavor contribution only depends on
the double-chain length, but not on its shape. This allows fowhere

a total factorization between flavor and Dirac indices.
Next, consider the Dirac structure. Let us dengtethe
lattice unit vector given by, ,;—X,. At each step of the
double chain the first line of it contributes a matrbgnk ,
while from the second line we ha\a{:"p . The Dirac indices

nn

verify Bo=0, @p=0 and\y_1=\,pny_1=p, in addition to

the matrix product conditionx,=8,,+1,Pn=@n+1. SO, We
have factors

K,U«n Kﬂn O_Mn Mn

g
X Xn+1 XnXn+1 Bpln anpp’

(82

along the double chain, where

AM=A-2A* (u=1,2,3), (88)
A= —A, (89)
3
A= A*=[+2d, (90)
pu=1

and [J is the lattice discretization of the d’Alembertian
2,9,9,. TheNth power[see Eq(85)] of the matrix(86) is
now easy to calculate.

In order to collect the factors and sum up the contribu-
tions, let us go back to Eq.76). We see that we need to
antisymmetrize each term M ~*M 1) with respect to the
simultaneous interchange afi with 8,j. This gives a sum
of two terms, one symmetric in< B8 and antisymmetric in

i< ] (corresponding to a composite state which is a Dirac
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vector and a flavor singlgtand one vice versgsinglet in  interactions with the spin waves. These composites are
Dirac space, vector in flavor spacéote that Eq.81) has lighter than the elementary fermions in this phase, wihen
already been written as a sum of symmetric and antisymmetoves away from the value.
ric terms. The symmetric and antisymmetric parts of the
Dirac structure correspond to Eq&88) and (89), respec- VI. CONCLUSIONS
tively.

Cz)llecting the various factors, we can carry out the geo- In this work we have concerned ourselves with the gen-
metric sum ove in Eq. (76) and we find the following eral features and the analytical and numerical study of the

propagators for the composite states: lattice model given by expressid@).
a Dirac vector—flavor singlet with propagator From the numerical side, we have developed a new
method that exactly solves the technical problem related to
8SHY the length-1 constraint on the spin variable.
(92) The model describes qualitatively some of the properties

_ _Ay2—
D+2A-4y*-2d of the doped copper oxide compouridsZ] and has interest-

ing properties in the strong coupling regime. In fact, at the
mean-field level, no light fermion excitations have been
identified in the FMS) and PMS phases. However, in the

wherea,b are the Dirac vector indices
a Dirac singlet—flavor vector with propagator

~85), AFM(S) phase, see Sec. V B, light excitations around mo-
— (92 menta ¢ w/2,= w/2,+ w/2) have been found. Its possible
—0-12y°—-2d relevance for the doped copper oxide compounds has been

noticed in[1,2,4.

Concerning the PMS phageee Fig. 1, the situation is
so interesting. While the fermionic excitations in this phase
are very heavysee Sec. V Awe have found light bound
Jtates of fermiongsee Sec. V€ They are spin singlet

wherel,J are the flavor vector indices.

These have the form of massive bosonic propagators, upy
to the following caveatof course, higher order corrections in
1/d may induce shifts in the precise location of the poles, a

we_lll_r?s their resildue_s EdO1 tain th trix 2% in th bosonic states of charged fermions bound by the strong in-
€ propagators In q _)con ainthe matrx 27 I e~ taractions with the spin waves. A similar result has been
denominator. However, this term must be ignored since it 1%ound in the model of Ref[25]

sub-dominant in M, compared with the (lattice
d’Alembertian].

The numerator of the propagat@al) carries a delta func-
tion only, instead of the usual tensor structus,,
- aMa,,/mz. This is also an artifact of the d/approximation.

Notice also that the terms which would play the role of a
mass squared in the denominators have an apparently wrong
sign. However, it is easy to check that the composite field
exixihy [Wheree,=(— 1)+« as usudldoes lead to a mas-  We are indebted to L.A. Fefndez for very helpful re-
sive Dirac singlet—flavor vector propagator with massmarks and stimulating discussions. We also acknowledge in-
squaredmf ;= 12y?—2d=12y’~6. Similarly, one obtains teresting discussions with A. Cruz, Ph. de Forcrand, M.A.
a massive Dirac vector—flavor singlet with a mass square&tephanov, and A. TaraneoWe thank the RTNN collabo-
m(21’0)=4y2—2d=4y2—6. We thus conclude that the right ration for computing facilities. This work is financially sup-
interpolating field ise, i, [25]. ported by CICYT(Spain, projects AEN 96-1670, AEN 96-

The conclusion is that we find massive bound states 01674, AEN 97-1680 and by Acaio Integrada Hispano-
fermions in the PMS phase. They are bound by the strongrancesa HF1996-0022.

The next step is to study the model in the presence of
chemical potential and at finite temperatyedter going to
3+1 dimensions In fact, as we have proved in Sec. Il, the
fermion determinant is still real after the introduction of the
chemical potential.
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