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ABSTRACT

Working with seventeen UK macrosconomic variables, characterized as periodicaly integrated in
Franses and Romijn(1993), we have found that unconstrained periodic models do not beat time invariant
alternatives in forecasting, even when cointegrating relationships among the seasons are taken into accouat.
However, when appropriately constrzined, the forecasting performance of periodic models can be much better
than that of non-periodic models. Homogeneity restrictions among some seasons seem to be very tmportant in
thal respect, which motivates us to prapose a switching procedure between a periodic model and a non-periodic
univariate AR as a representation of the behaviour of these variables. Once season homogeneity is taken into
account, incorporating the cointegrating refationships among the seasons through periodic erfor correction
models achieves a substantial additional forecasting improvement,

RESUMEN

Utilizando 17 variables trimestrales macroscondmicas del Reino Unido, caracterizadas por Franses y
Romijn (1993) como peri6dicamente integradas, hemos encontrado gue modelos perfodicos no restringidos no
prevén mejor que madelos anivariantes. En ausencia de otro tipo de restricciones, cuaedo s6le se tienen en
cuenta explicitamente las relaciones de cointegracitn entre trimestres, tampoco se mejoran la provisiones de los
modelos univariantes. Sin embargo, cuando los modelos perfodicos se restringen adecuadamente, su capacidad
predictiva mejora notablemente y el resultado negativo anterior se invierte. Las restricciones de homogeneidad
en ¢l comportamiento de los trimestres parecen ser cruciales en este sentide. Este becho nos ha motivado a
proponer la combinacisn de modelos, periodicos y no periodicos, como una mejor representacion del
comportamiento de estas variables. Una vez s ban incorporade las restricciones de homogeneidad, encontramos
que la incogporacitn de las relaciones de cointegraci6n a través de los modelos perfodicos de correccitn de error
mejora adicionalmente la calidad de Jas previsiones.
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1. INTRODUCTION

Modelling quarterly macroeconomic UK time series Osborn et al.(1988), Osborn and
Smith(1989) and Franses and Romijn(1993) have presented empirical evidence against models with
parameters that do not vary over the seasons. These authors conclude that in a namber of cases,
seasonal behaviour is too complex to be captured by standard time invariant coefficient models, and
that periodic models can be more appropriate.

Once a time series has been detected to show a periodic behaviour [see Liitkepohl(1993,
Section 12.3), Franses and Romijn(1993), Franses(1994), Boswijk and Franses(1995,1996) and Flores
and Novales(1996) for useful tests] some important empirical questions arise: Will forecasts improve
using a model with parameters that vary over the seasons, as advanced by Tiao and Grupe(1980)?
Will this improvement justify the cost of carefully elaborating a periodic model? When short run
forecasting is the objective, is {here any gain in forecasting accuracy by explicitly considering the
possible cointegrating relationships among the seasons?

Using a set of seventeen UK quarterly macroeconomic variables, already analyzed in Osborn
(1990) and characterized in Franses and Romijn (1993) as periodically integrated, we investigate these
questions. We carry out a forecasting competitien between several models in two groups: a) time
invariant, univartate ARIMA models with different unit root filters, and b} periodic models with
different types of restrictions. Our approach in this paper is to discuss whether periodic structures are
more adequate representations of seasonality on the basis of the forecasting competition between them.
We are also interested on identifying the types of restrictions that may lead to a significant
improvement in forecasting performance.

In the clags of univariate, single-equation models, some issues related to the appropriate
degree of differencing remain controversizl. Osborn(1990) discussed, for this same data set, the type
of unit toot filters that would be necessary to achieve stationarity, She warned that the full (1-B)(1-B")
filter that is suggested by the standard Box-Jenkins(1976) specification tools for most variables in this
data set might lead to overdifferencing, with a possible efficiency loss in estimation. We start by
analyzing whether the choice between these two unit root filter alternatives significantly affects the
forecasting performance of time invariant models, If that were the case, the choice of filter might bias
the results of our study.

To compare with nonperiodic specifications, we use a variety of periodic models, from the
simpler PAR(1), to the more complex periodic error correction model, defined in Franses and

Romiji{1993).




Unconstrained periodic models turn out nat to produce much better forecastin resulis th;
non-periodic alternatives but we find evidence that, when appropriately constrained for{gec 1 s t' N
series which have been detected to be periedic can significantly improve using 1::8’1'jodicas sdm;nme
particular, equality of coefficients among some seasons as well as cointegration constra —
bhe potentially very effective, e

'll"he temaining of the paper is organized as follows. Section 2 presents the periodic model
Wwe consider and their different representations. In Section 3 the forecasting competition betwe:

alternative i i
representations of seasonality on the sample of seventeen quarierly UK variables is carried

out. Section 4 concludes.
2. PERIODIC AUTOREGRESSIVE REPRESENTATIONS

Let X, denote 2 quarterly ti i iodi
Y time series. A periodic autore, f
gressive process of order h
can be represented: ’ o
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ere ¢, follows a white noise process, although possibly with season specific variances. D, is a
dumny i i b
y variable for quarter s, being equal to 1 when X, is an observation from that quarter and bein
0 otherwise, Index ¢ vaties from 1 to 4N, N being the number of years *
Let x; be the 41 vector of quarters in a year: x, = (X, Kepa Xpp Xg), T=12.. N
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- e annual time series of data for a gi
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where aris a 4X 1 vector white noige process with variance-covariance matrix I
The di izatj = i ‘
agonalization of £, A,%A4," = A, where Ay is 2 lower triangular matrix with ones in the
nwin diagonal, is uniquely defined i i i
and is consistent with interpreti
A A rpreting the contemporaneous correlation
o gnd g7 (1= J = 4}, two any components of ar, 28 intra-year effects from quatter

i to quarter f; Residuals can be orthogonalized by premultiplying (2) by 4,
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where 4; = AP, for j=1,2,....p, p = A and uy = Ay, with Var{uy = A, diagonal. We call (3)

an orthogonalized VAR model, and refer to it as GVAR(p).
Any PAR model can be written as a restricted OVAR. For example, a PAR(1) process can be

written as an orthogonalized VAR(Y) with the following matrix structure:

1 0 ¢ 0 000 ¢
-4, 1 0 0
PR 4,=0000° @
10 -4 1 0 000 0
0 0 -, 1 0000

The opposite proposition is also true: an unrestricted OVAR(p) is just a restricted PAR(h) with
h = (p+1)s-1 [see Tiao and Grupe(1980), p.367 for both statements]. Hence, the OVAR(p) and the

PAR[R) can be considered as equivalent represeptations of a same process. In what follows we will

refer to both of them as periodic models.

Tn a further step of the modelling process we might want to consider the likely presence of
cointegrating refationships among seasons. Under the assumptions that (1) all seasons are K1)
variables and (2) their levels are generated by a VAR (p) process, the number and type of colntegration
relationships can be investigated with the techniques developed in Johansen and Juselius(1990). The
presence of cointegrating relationships leads to the error correction model:

®
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where the rows of the rxd mairix o’ ate the r cointegrating vectors, and Varf{ay} = L.

Again, diagonalizing E, an orthogonalized error correction model is obtained:

AVx, = b - BBty + ATV, + ALY, + o+ AT, Y, vy @

which is called by Franses and Romijn(1993) the periodic error correction madel (PECHM). Non-
significant coefficients in (6) can be set to zero, which can safely be done on the basis of their #-
statistics, leading to what we call the constrained periodic error correction model (CPECM}.
Periodic models (3) and (6) are not fully comparable. While (3) relies just on a decision on
the autoregression order p, (6) additionally requires determining the number and type of cointegrating
relationships, implying a liigher specification cost. Theoretically, the more elaborate models should

produce better forecasts, but it is not obvious that this will be the case in practice. One of the



objectives of this paper is to evaluate whether the gain in forecasting performance exists and is enough

to offset the higher specification costs.

3. FORECASTING PERFORMANCE OF ALTERNATIVE REPRESENTATIONS
OF SEASONALITY

3.2 The forecasting exereise: Description of competing models,

We compare the forecasting performance of time varying versus time invariant representations
of seasonality on a data set of quarterly UK macroeconomic variables, already analyzed in
Osborn(1990) and Franses and Romijn(1993), selecting among them the seventeen variables that the
latter authors characterized as being periodically integrated!.

In the class of univariate models, the appropriate order of differencing is far from cbvious.
On the one hand, Osborn{1990) relied on unit root tests to propose specific unit root filters for this
samie set of variables. In relation to them, standard {ools recommended by Box and Jenkins(1976) lead
to a higher order of differencing®. It has been suggested {Osborn(1990)] that this apparent
overdifferencing may lead to an efficiency loss, and a possible deterioration of forecasting ability.
Before we compare the forecasting performance of time varying versus time invariant models, we
want to test whether the strategy used to select the number and type of unit roots in univariate modets
has, in fact, any significant influence on forecasting performance. The methodology proposed by Box
and Jenkins(1976; to identify ARMA structures lead to different specifications, depending on the unit
toot filters applied. Under those supgested in Osborn(1990) we obtain, in our data set, pure AR
structures, while the alternative filters mentioned in footnote 2 lead to mixed ARMA models. This is
to be expected, since in the standard practice of ARIMA modelling, overdifferencing usually requires
compensating moving average terms. Thus, the two non-periedic models whose forecasting results
we compare with those from periodic alternatives are: a) AR models estimated with Osborn unit root

filters, and b) ARMA models obtained with the unit root filters suggested by Box and Jenkins(1976)
methodology.

Additionally, we consider four periodic models: (1) unrestricted OVAR (p) models on the levels

of the seasons (quarters), {2) constrained OVAR(p) models where all par'aﬁiefets"with a t-statistic lower

! Our Data Appenidix containg a br:ef descrlptm of the: variables. See Osbnm(1990) for more
details on the data set. AH vanabies are in:lops, ex Pt ate and the yield on Treasury
b:ils

.2 In most: vanables ool datz’set; smlple and partial uto_ aticn funcnons together with
graphs of the differeniced variables suggest a VV“ f It Columns 6 and 7 in Table 1 in Section 3.b
contain detailed information on this issue. -

than 1 have been removed’, to which we refer as COVAR models, (3) periedic autoregressive models
of order 1, PAR{1), {4) periodic error correction models (PECM) where cointegration relationships
among the quarters have been explicitly considered, and {5) periodic error correction models where
coefficients in lagged differenced quarters with a f-statistic lower than I have been removed; we label
these CPECM.

OVAR models are simple to elabozate, but they are possibly overparameterized. PAR{1) and
COVAR models incorporate ltess parameters, but they may be misspecified: We have reached the
COVAR specification by first choosing from the outset a minimum level of one for the éindividual t-
ratios. This was chosen with the aim to be conservative in a context where the actual significance
level is unknown. We then simultaneously removed all coefficients which did not fulfill this eriterion.
In addition, the strategy lacks a rigurous justification since nonstationarity of the seasons produces
a non-standard distribution for the £-ratios, Misspecification in PAR(1) meodels may come from being
too simple to capture all the dynamics of the seasomal characteristics of the time series. With
independence of these possible sources of misspecification, these three models share a quite low
specification cost, which is why we consider them in cur forecasting exercise.

Since the seasons are likely o be cointegrated [see Franses and Romijn(1993)}, considering
error correction models is an attempt to gain efficiency. As we mentioned in Section 2, they should
also be expected to have a better forecasting performance. Our consideration of PECM models tries
to check whether that is the case. Once the cointeprating relationships among the seasons are
introduced, there may be non-significant coefficients, In theory, their removat should increase
efficiency and improve forecasts. Whether or not this is the case in practice is the reason why we
consider CPECM models. As in COVAR models, we again use an automatic rule to remove
coefficients, althongh the #distribution is well justified in this case.

Univariate 4R and ARMA models have been estimated using the Marquardt algorithm with
backforecasting as deseribed in Box and Jenkins(1976). OVAR and COVAR, as well as PECM and
CPECM models, have been treated as a seemingly unrelated set of equations and jointly estimated by
generalized least squares. This procedure takes into account the fact that, under misspecification of
the PAR order, there might arise non-zero off-diagonal elements in the residual covariance matrix.
We estimated PECM and CPECM models by a two-stage procedure: cointegrating relationships among
the seasons® were first estimated using Johansen’s method. Then, the system of equations for the

seasons, incorporating the estimated cointegrating relations, were jointly estimated as a set of

% But always maintaining those of a PAR(1) structure, cven if their r-statistics were below one.
4 The number of cointegrating relations was taken from Franses and Romijn (1993).
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seemingly unrelated regressions®.

All models were estimated leaving outside the sample the last four years, i.e., 16 forecasting
points, which were later used to evaluate the forecasting performance of the different models. Models
wete reestimated with each new data point, to obtain each the 16 one-step-ahead forecasts®. Root
mean square errors (RMSE) from one step ahead recursive forecast errors for each variable, were
computed’: (1) for each quarter over the period of four years, ie., four different RMSE's
corresponding to the first, second, third and fourth quarters, and (2} a single RMSE over the 16

quarters,
3.k Comparing between non periodic alternatives

After implementing unit root tests at the regular and seasonal frequencies, Osborn(1950)
proposed the filters shown in the second column of Table 1. Given the long-standing tradition on
(possibly overdifferenced) ARIMA modetling of seasonal time series, it seems worthwhile to explore
how possibly overdifferenced structures perform in forecasting, relative to those obtained using
Osborn(1990) unit root filters.

(INSERT TABLE 1 HERE)

RMSE columns in Table 1 allow for comparing the two time invariant ARIMA specifications:
the pure autoregressive (AR) model] that is achieved once the unit root filters in Osborn(1990) are
imposed [left panelj, and an alternative specification reached using the Box and Jenkins(1976)
methodology fright panel], which turmed out to lead to mixed models in most cases. The AR models
comain two autoregressive polynomials, at the regular and seasonal frequencies. We have found
second order polynomials to be quite common in our data set [see columns 3 and 4]. Interest rates
seem .to follow a random walk, since no autoregression was needed at either frequency. No

autoregtession was needed at the regular frequency for imports (RIMPORTS), workforce (WORKFOR)

* Estimated models ‘are available from the authors upon request.

¢ Given the short number of years in our data set we do not cons1der adv1sable to analyze
forecasting performance at horizens beyond one. L

7 We use standard root mean square errors as the single criterion for forecast comparison in order
to m'ain‘tain a sensible volume of results as well as simplify their inferpretation: Checking whether
qualitative results depend on the criterion used is an interésting”issue for further research, but is
beyond the scope of this paper. ’

and Treasury bill interest rates (TBILLYLD). On the other hand, columns 6 and 7 show that once the
double differencing has been applied®, there is almost no need for autoregressive polynomials, short
moving average terms capturing the remaining stechastic structure. That Ieads to more parsimonions
representations than reached with the lower order of differencing proposed by Osborn(1990).

Even though RMSE values for these two non-periodic alternatives are not very different,
ARMA models perform slightly better than pure AR specifications for all variables, except for RCONS,
RNONDUR, RGVCONS and RINVPUB, in all cases by a very small margin and, more clearly, for
M4COR and EXRATE. Thus, the possible overdifferencing in ARMA models does not seem to lead,
in general, to a deterioration of forecasting performance. This result suggests that even though we
may lack enough sample information to discriminate between allernative specifications based on
different unit oot filtexs, this ambiguity on the order of differencing has a minor impact en
forecasting performance in our data set. In consistency with previous research, we maintain

Osborn(1992) differences and forecasts from the resulting AR specification for comparison with those

we will derive from periodic models.
3.c Comparing periodic with non-periodic madels

Table 2 summarizes the basic results of the forecasting comparison between non-periodic and
periodic models. Next to the variable name, column 2 shows the percent RMSE associated to non-
periodic AR models, calculated over the 16 guasters. Below that, we show quarter specific RMSE
values. Columns 3 to 7 present similar information for the periodic models. Numbers n parentheses
in columns 3 ard 6 indicate the order p of each VAR and the number r of cointegrating
relationships, respectively. The order p of the VAR was chosen on the basis of the standard likelihcod
ratio test that jncorporates Sims’'(1980) correction, making sure that there was no evidence of
autocorrelation or dynamic residual cross-correlations. ¥t turned out to be 1 for most variables,
corresponding to a maximum PAR order of 7; just in four cases we got an order of 2, which
corresponds to a maximum PAR order of 11. The likelihood ratio statistic described in Appendix 1
to test between a PAR(1) and a higher order PAR(h) model, shows that a PAR(1} model may be
adequate in just 5 of 17 cases (RCONS, REXPORTS, RIMPORTS, M4COR and EXRATE), and that
a higher order PAR(k) model should be preferred for the remaining 12 variables.

(INSERT TABLE 2 HERE)

% A regular and a seasonal difference were taken in all cases except TBILLYLD and EXRATE, for
which no seasonal differences were needed.




As mentioned in footnote 4, the number r of coimtegration relationships among the quarters
was taken from Franses and Romijn(1993). They detected a single cointegration refationship in three
cases, two relationships in ten cases, and three cointegration relationships in the remaining 4
variables,

Under the limitations of our analysis, which is based on the sample of 17 variables, and uses
Just RMSE’s for one-step ahead predictions over a four years horizon, when the non-periodic AR
specification is compared with any of the five periodic models, the following results hold [Compare

column 2 with columns 3-7 of Table 2]:

1. The time invariant AR model produces the lowest RMSE over the full year, i.e., compated
for the 16 quarters, in 9 of the 17 variables, while OVAR, COVAR, PAR(1), PECM and
CPECM produce the lowest RMSE in just one, three, zero, two and two cases, respectively.
Compared to each of these periodic specifications, the AR model dominates for 14, 12, 14,
12 and 11 of the variables in the sample,

2. We are specially interested in analyzing quarter specific forecast errors to gain some insight
into the seasonal characteristics of a given variable. Even if we used a narrower criterion to
select from a set of models the one that preduces not only the lowest RMSE over the fall year
bat also the best forecasts in at least two quarters, the same resuits as in 1} would hold. So,
contrary to what might be expected given the periodic nature of these variables, periedic
models do not predict better than non-periodic models. Again in contradiction with a
reasonable intuition, incorporating the coinfegrating relationships among the seasons into

_ periodic specifications does not seem to improve forecasting performance. Attempts to reduce
the number of parameters using some ad-hor statistical rules does not seem to be of much
hel either.

3. However, for each variable, there is no single specification, periodic or non-periodic, that
dominates, in terms of forecasting performance, over all quarters. That means, that periodic
specifications have some potential ability to produce better forecasts than nonperiodic models,
since for each variable, there is always at least one quarter for which the non-periodic AR is
beaten by the sir::ple, unrestricted OVAR model®. This represents additional evidence to that
in Franses and,;glomijn(w%) on the periedic behaviour of this set of variables.

)

Comparing the forecasting results in Table 2 for each variable and quarter shows that, in most

® Third and fourth quarters sem to be particularly prone to show a behavior different form the
rest.
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cases, season heterogeneity seems to be concentrated in one or at most two quarters, those in which
periodic models dominate AR. In these conditions, an unrestricted periodic model may be a too
general Tepresentation of seasonality. Lack of precision in estimates becanse of overparameterization
may explain that such specifications do not produce better forecasts than thme invariant models.
Incorporating cointegration restrictions, even if accurately estimated, does not scem to significantly
reduce the inefficiency of estimates and consequently, the resulting models are still dominated, in
terms of forecasting, by time invariant alternatives.

These considerations suggest that a pariicular forecasting method based on switching between
a periodic and a non-periodic modet for different quarters might provide forecasts with lower RMSE
than either one'®. Tt would be interesting to check whether in such a forecasting approach, the
supposed efficiency gain from incorporating cointegration restrictions helps to produce better
forecasts.

We have performed a prefiminary analysis of this suggestion, although in a very favourable
position, since we have used realized forecast errors to guide our selection of models. Left panel in
Table 3 shows percent RMSE’s obtained by combining the non-periodic AR model with every peritodic
alternative, labelled AR +OVAR, AR+COVAR, AR+FAR(1), AR+ PECM and AR+ CPECM. For each
quarter, we chose the forecasts produced by the specification that performed best. The right panel
shows the maximum!! percent reduction in RMSFE that could be obtained, relative to forecasts from
the non-periodic AR model. RMSE reductions can be quite important, as shown in columns 7-11 of
Table 3 which clealy reflect our previous comment on Table 2 that for most variables, season

heterogeneity seems to be limited to one or at most two quarters.

(INSERT TABLE 2 HERE)

19 Switching between models can be interpreted as using a restricted periodic model: for instance,
if just one quarter is better predicted from the periodic specification, the switching strategy would
amougt to having a periodic model where three quariers behave identically, with parameters equal to
those in the univariate AR model, while the remaining quarter shows a different behaviour. At this
preliminary stage we have not estimated the VAR constrained so that sorme seasons behave identically,

as implied by the switching procedure.

1! Being an ex-post exercise that uses nop-statisticat information, is not subject to any uncertainty.
This is similar to assurning that a criterion for switching between models was available from the outset
that Ied to selecting the model that actually performed best. Hence, these are the maximum forecast
gains that could have possibly been achieved.

i1




3d  Comparing different switching combinations

Contrary to the results for individual models in Table 2, cointegration restrictions seem to be
important in these mixtures: in 12 of the 17 varlables, combinations with periodic error correction
models produce & lower RMSE than the combination AR+ OVAR model, being the differences between
them very important in some cases. Once the cointegrating relationships among seasons are taken into
account, further reductions in RMSE can be attained by removing nonsignificant coefficients, but these
seem to be of minor importance. A reduction in RMSE of 11% in RINVPUB 7% in M4COR, and 6%
in RNONDUR are the most important.

A lower specification cost alternative exists: If we remove from an OVAR the apparently less
significant coeficients, even in a somewhat ad-hoc fashion, as we did to get the COVAR mode], and
the resulting specification is combined with an AR model, the forecasting ability is improved in a fair
number of cases (11 out of 17). Hence, an OVAR model, with some criterion to reduce the number
of coeficients, seems to perform well in a switching procedure with the time invariant AR,

On the other hand, the combination of the PAR(1) and the univariate 4R does not work as
well, beating the combination of OVAR and AR in just 6 of the 17 variables. These results support
the finding in Section 3.c that PAR(1) models seem to be foo simple to capture the periedic
characteristics of this set of variables. A similar result is obtaired in Franses and Paap(1994).

Summarizing, these results suggest that having identified a perfodic behaviour ina given time
series, a periodic model might provide better forecasts than a non periodic alternative. Nevertheless,
to obtain significant gains in accuracy with respect to simpler non periedic specifications, it will be
necessary to constrain the periodic model {allowing for identical behaviour among some quarters).
Sizeable improvements from this option can still be obtained incorporating cointegrating relationships
among seasons and zero constraints on statistically non-significant coefficients.

Proceeding with our discussion in Section 3.c, this finding shows that once season
homogeneity is properly taken into accourt”, tighter estimates can be obtained, clearly improving
forecasting performance. It is in this more restrictive setup, that cointegration constraints produce an
additional gain in efficiency, enough to produce still better forecasts. Periodic ervor correction models
with some homogeneity rest:ictions among seasons seem to be adequate representations of seasonality,
on which some addxtmnﬁl improvements can be achieved removing nonsignificant coefficients, if any.

We are currently working on the design of a complete procedure for selecting a best periodic

and a best non-periodic model, as well as for switching between them for each specific quarter. The

' Even though we do it in an informal way, through our proposed switching procedure,
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limitations we have pointed out for the previous exercise just allow for interpreting the reported
results with a let of cantion, and just as upper bounds on the gain on forecasting performance

associated to the best possible combination of models.

4. CONCLUSIONS

Recent studies have shown that the seasonal behaviour of quarterly economic time series can
be more complicated than reflected in standard seasonal ARIMA models, and also that periodic models
can be useful tools for capturing such a behaviour,

Working with seventeen UK macroeconomic variables, found to be periodically integrated in
Franses and Romijn(1993), simple unconstrained periodic models do not beat time invariant
alternatives in forecasting, even when cointegrating relationships among the seasons are taken into
account. However, when appropriately constrained, the forecasting performance of periodic models
ean be much better that of non periodic models. Homogeneity restrictions among some seasons seem
to be the most important in that respect, which has led us to proposing a switching procedure between

a periodic model and a non-periodic univariate AR.
We have also found that once season homogeneity is taken info account, incorporating the

cointegrating relationships among the seasons through the corresponding periodic error correction

models achieves a substantial additional forecasting improvement which, enough to compensate for

the higher specification cost.
We are currently undergoing research on accurate and efficient strategies for switching

between periodic and nonperiodic structures, More experiments with different sets of real and
simulated variables and different forecast horizons should be carried out to analyze the robustness of

our results. Before that is done, our results should be taken as preliminary and interpreted with

caution,
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DATA APPENDIX

RGDP: Gross Domestic product at 1985 prices. 1955.1 - 1988.4

RCONS: Total personal expenditure on goods and services at 1985 prices. 1956.1 - 1988.4

RCONSDUR: Personal expenditure or durable goods at 1985 prices. 1955.1-1988.4

RNONDUR: Personal expenditure onnon-durable goods and services at 1985 prices. 1955.1 1988.4

RGVCONS: Total government final consumption at 1985 prices. 1955.1 -1988.4

RINVPERIV: Gross fixed capital formation on the private sector ar 1983 prices. 1962.1 - 1988.4

RINVFUR: Gross fxed capital formation of the public sector at 1985 prices. 1962.1 - 1988.4

REXPORTS: Exports of goods and services at 1985 prices. 1955.1 - 1988.4

RIMPORTS: Imports of goods and services at 1985 prices, 1955.1 - 1988.4

RADJFC: Factor cost adjustment (taxes on expenditure less subsidies) at 1985 prices. 1955.1-
1988.4

RPDY: Real personal disposable income at 1985 prices. 1955.1 - 1988.4

WOREFOR: Workforce. 1955.1 - 1988.4

FROD: Productivity {GDP at 1985 prices/employment). 1955.1 - [988.4

MeCOR: Siock of narrew money. 1969.3 - 1988.4

M4COR: Stock of broad money. 1963.1 - 1988.4

TRILLYLD: Percentage yield on Treasury bills. 1953.1 - 1988.4

EXRATE: Sterling exchange rate against US dollar. 1973.1 - 1988 4

All variables are in logs except the sterling/US$ exchange rate (EXRATE) and the vield on Treasury
bills (FBILLYLD). For mere details abont the data set, the inferested reader can refer to Oshom(1990).

15




TABLE1
APPEND‘X 1 FORECAST RESULTS FROM TIME ENVARIANT, UNIYARIATE MODELS
Models oblsined 2pplying Oshorn{159)
: e e ARTMA(,3,0,D,0, models
The PAR(1) mode] is the most widely used periodic process, since it is quite easy to elaborate. : i
Although useful in many cases, it might however be teo simple to incorporate the dynamic struchire : Filter P v RASE . #5w RMSE
that can be present in & seasonal variable. Thus, it seems reasomable to test it against higher order RGDF amy 2 2 L anh o o
PAR models. feans -5y z z ] oL &1 110
This comparison can be done in two stages: (1) conducting a specification test to choose an '
. . i i RCONMSDUR {48 2 2 412 ©1.1 0Ly 130
order p for the VAR representation for the vector of seasons. That implies a maximum order for an ‘
equivalent PAR(R), h>1, model, on which (2) test the constraints implied by the PAR(1) on the RHONDUL 059 ! 2 a8 o1 oLy o
orthogonalized VAR{). RGYCONS @8y 4 2 . oL oo T
We test for the constraints implied by the PAR(1) model on a higher order PAR(F) using a P o ) 3 ” o — ”
likelihood ratio test that incorporates Sims’(1980) eorrection:
RIMPORES B ° ! 1@ o1 @1 341
LR = n[lnj@|-In|E ]
RADIFG -8 2 1 2% oL 012 Lo
ReRY - ! 2 196 ®Ly Ly 148
where 5 denotes the mmmber of effective years in estimation and £ is the covariance matrix of the
. WORKFOR -8} a 2 0.30 0,19 0Ly fen
intra-year residuals in the PAR(1) model. L is the covariance matrix in the orthogonalized VAR{p).
This likelihood ratio test statistic is in the spirit of the one proposed in Flores and Novales(1996) to FRoD B 2 2 139 oL oL 120
test for time invariant coefficients in periodic models for nonstationary variables. RINVERIY 0B ; 2 2 onh o1m -
- . ion 12.3), Boswii
The statistic follows a x* asymptotic distribution [see Liitkepohl(1993, Section 12.3), Boswijk RINVPUB 089 2 1 ot o o .
and Pranses(1996) and Flores and Novales (1996)] with J degrees of freedom, J being the number )
. . HOCOR [{By] 2 Y
of constraints, i.e., the number of estimated parameters in the orthogonalized VAR minus the number ! o &1 aLp e
of parameters in the PAR(1) model. MéCOR ey 4 i 050 20 o0 095
For our sample of vasiables, Table A.1 contains the results of this test. Only in 5 cases is the TELLYLD . . N - oo o —
PAR(1) not rejected: RCONS, REXPORTS, RIMPORTS, M4COR and EXRATE.
EXRATE [1B:3] 4 1 Q.00 a.Le @00 209
H
4 Note: 1) All RMSE are in percent terms, except in TBILLYLD and EXRATE.
h 2) p : non-seasonai AR order; P : seasonal AR order; g : order of non-seasansl MA term;
@ : order of seasonal M4 term; 4 : number of non-seasonal differences; 1 ; number
of seasonal differences,
%
¢




TABLE 2

ROOT MEAN SQUAKE ERRORS OF FORECASTS FOR
NONFPERIODIC AND I'ERICDIC MODELS

TABLE 2 (CONT.)
T

NON PERIODNC FPERIODIC MODELS
MODFLS
Variakle AR OYAR{p) COVAR PAR(L PECM(r) CFECM
RGDP 144 1611 1.50 2,09 1560 162
al on L7 1.67 2.2 B] 184
@ 0.98 L56 1.40 2.4z 156 1.65
@ 201 LIS 126 I8 092 08
o 1.63 L85 L&3 LB 175 190
RCONS 1.03 L2601} 1.3 L13 L1482y E5T
Q1 .57 0.92 07 07 0.98% L1123
Q2 1.06 1.54 171 159 205 &)
Q3 1.59 1.57 129 129 L7 233
%) 0.50 0.84 LX) 074 0.7 105
RCONSDUR 418 5.98(2) 3.21 .17 4.452) 5.7¢
Qt 2.54 [ m 7.4 54 5.06
€ sl 623 335 T.41 5.61 4.01
i) &8 gz 210 585 an 7
o 143 353 5.6 2.87 257 154
RNORDUR 0.E8 LI} L4 Lo7 136003 3]
] %] 19 1% 1.09 B 0.68
Q 0.8 133 L 122 1.8 1.48
Q@ 08 o 083 054 086 0.83
o [ L30 L1 1.0 121 0.9
RGVCONS LT 189Gy L.65 234 1741} 56T
Ql b2 EX:] 25 159 2.89 2m
Q 1.66 1.52 .18 3. 1.69 149
] 1m Loy 146 1.0 ade 028
Q4 L15 026 0.56 028 9.76 1.02
REXPORTS 288 18500 330 17 3.1803) 2.9
ql 370 Rt 281 281 396 3.4
QL 324 3.08 5.47 503 206 1.87
o 195 29 268 2.6 264 294
[o2] LB 4.59 4.08 389 3.68 3.3
RIMPORTS 3.6 398D 365 370 5640 4
Q. 347 33 35t 354 217 A
ko 530 as5? 1.8 2.89 2.9 1M
03] 18 482 293 a7 6.82 in
o 076 0 119 2.8 8.7 An
RADIFC ; 125 2000 2.1 343 218 250
o Ay 180 141 427 180 ]
273 268 193 LE3 3% 257 LM
@ 205 2.8 310 252 2.84 ]
o 269 LL1 L7 Q.13 1.41 .38

Variable AR VAR CVAR PARL PECM PCECM
RPDY LOS 1.3562) L1 179 2.5 0.87
)] 0.58 0.45 04 75 053 0.5¢
Q2 119 1.57 1.86 an [ 1.04
m L) L5 Ln L9% 02 Lo
Q4 L47 0.8 0825 085 0.7% 0.52
WCGRKFOR 0.2 4.3401) 0.38 042 0.4502) 045
o 230 1T 026 0.52 0.4 033
2 .27 oM 030 029 .65 462
Q3 0,32 0.43 0942 038 o @38
Q4 031 0.33 0.49 Q4T 0.50 0.42
PROD £.29 1.59() 148 20 LB 1.5l
QL Lol 144 146 2.30 261 2.66
Q 0.63 14 182 2.61 178 182
[+:] 1.57 1H L L 0.9 098
o .67 .61 1.4 1.59 1.53 135
RINVPRIY 6.12 5.3 4.88 385 4.67(2) 5.63
)] 157 693 461 624 517 6.7%
123 8.0l 6.29 53 825 428 6.55
Q 4.19 442 424 522 504 4.00
o 2.5 2.99 LB3 1.67 4.1 4.4
RINVPUB 0.7 ELHI 10.20 18.31 8141 720
o 77 .05 1259 B0 5.4 X'}
23 W45 12.09 1.3 287 10.50 16.66
Q3 1078 1290 1030 2.2 6 705
L] 310 5.1 3.0¢ 3.3 &0l 622
MOCOR ¢.69 0.3 Q.61 064 0.64(3} om
qQl .65 077 .63 07t a9 0,58
w 047 023 042 054 021 0
[+ 0.9¢ [4] 0.7s 0.6l 0.75 0.80
[ 0.55 .63 D.43 0.7 .45 .45
M4COR 4.80 0.9t o9 0.81 LIy o7l
a 0.85 092 a.97 0H 1.00 0.9
[+73 039 .76 0.82 a1 (%)) 0.6
Q@ .97 L30 123 1.06 057 042
[*3] 054 0.55 0.47 056 075 0.77
TRILLYLD 147 1.80(1} 1.43 L4 2173} 231
QL (3. 281 209 2. i 159
Q2 a0 14 0.85 0.85 2350 246
L] L4¢ (1 13 1.3 L7 2353
[*23 1.37 1.36 1.1%8 1,23 14§ 145
EXRATE 0® 1K1y 0.09 209 0.L31) 019
[ .08 2.0 «oy 009 0.12 +30
Lir3 LX) 0.08 00 009 oM Q.16
Q2 0.0 o1t 0.0 008 0.13 0.16
Qs 048 014 017 T} 008 006

Note: 1) All RMSE’s are in percent terms, except those for TBILLYLD ands EXRATE.
2) p: erder of VAR; r: number of cointegrating relationships among the seasons.

3) The first line for each variable containg RMSE’s over 16 quarters. Lines to the right of On
contain RMSE’s for quarter n, n = 1,2,3,4.
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TABLE 3

ROOT MEAN SQUARE ERRORS OF FORECASTS FOR COMBINATIONS OF MODELS

Varlable AMSE WPI;:ID:DI:(]:NEE.I\ ;wmar.s: rzncgi’; !ulhﬂwpmﬁgﬂ:noz:.{s g}_ﬁnvx
OVAR+AR COVAR+AR | PAR{I+AR | PECM+AR | CPECM+AR QVAR+AR COVAR+AR PAR{)+AR FECM +AR CPECM+AR

RGOP 119 L3 13 L13 B3] 1789 1717 nn a4 2186
ol o wn 0n on on 000 a0 0.00 050 0
Q2 0.9 9.93 058 0.9 0.98 0.00 ¢.00 0.80 0.00 .00
@ L1s 126 R 0.n .89 m 3 080 41 5.7
o L6 16 168 168 168 000 198 0.0 0.00 0.0

RCONS 108 096 (%3 109 1.05 0.66 1.9 1197 noe am

ot .87 0 0H 087 a6 000 14.94 1 e 2644

o 105 186 106 106 106 00 080 0.00 oo 0.0

[ 157 139 129 158 158 126 1881 18.87 000 000

o 0.0 0.60 0.8 0.8 080 00 0.00 .00 9.00 0.0

RCONSDDR 350 .53 381 306 418 2583 .53 8.8l 26.63 000

ol 254 254 254 254 25 .00 0.08 000 0.0 o

o 38 159 5 s 291 000 9m 0.00 0.00 000

) Y] 20 585 it 57 4256 .03 nn 4528 000

™ 143 42 143 L43 143 0.0 .00 000 090 .00

RHONDUR 07 o (] (K] om 885 854 497 7.60 087

a am om on o 0.8 0.00 000 o .00 615

@ oa o %3 ¥ 08 0.00 0. 0 0w 0.0

[ 08 0.8 o4 086 [ 2400 s 12.9 03 .15
o 034 on oH oM a0 o 090 a0 0.00 00
ROVCONS 145 1.8 148 L 143 1668 us U1 16.24 17.01
a 220 23 220 220 12 000 0.00 200 800 00
o 152 118 1.66 1.66 149 vz 13 000 000 10.24
@ Lo 146 L0 042 028 H5 1512 AL% %M B
[ 036 036 038 016 L0 6830 10 6.9 9 1.3
REXTORTS 216 25 25 2351 236 162 569 9.69 10.51 1518
o 0 28 241 30 340 000 05 M08 D00 n1l
Q 108 au i 206 187 494 0.00 0.00 542 4218
® L5 155 195 195 155 [ 0.0 000 0.0 0.0
[+13 185 13§ L85 185 158 0.08 0.00 £.00 0.00 0.00
RIMPORTS 3.06 a.us 35 1.67 an 1599 13.14 1.4 26.53 14.40
at 30 EU 4 307 217 507 .00 0.0 0.00 2032 o0
@ 357 35? 189 29 M n6t 26.60 2660 a9 .43
a e 0 18 38 38 00 200 0.00 0.0 om0
o 0.7 076 0.76 078 07 000 00 .00 0.0 0.00
RADSFC 166 176 147 19 207 w29 1.8 1.1t 1504 254
al 11 L3 136 138 138 00 0.00 0.00 o0 0w
@ 19 X 265 257 268 77 054 000 m 000
@ 285 205 2.0 20 105 900 .00 200 .00 o
Q4 JAH L7 LX) 1.41 33 SN 26.06 £5.4) 4158 1152

TABLE 3 (CONT.}
SEJIES OVAR+AR COVAR+AR | PAR()+AR | PECM+AR | CPECRL+AR OVAR COVAR PAR{I) FECM CPECM
REDY 0.85 4.8 0.88 0.74 0.81 18.95 2167 1749 0.0 2.9
Q1 446 044 0.58 0.4 051 .69 PNt 400 23586 12.07
[r:] 19 119 L8 0.8 1.0 0.00 .00 Q.00 pLb]] 1261
Q3 0.7 [ o o LN ona Q.00 000 a.00 050
Q8 Q.86 Q.75 985 0.7 082 4150 48.98 42,18 4626 44.22
WORKFOR 0.7 029 0.39 3R 0.30 8.84 3.15 (L] 6.67 4.00
al o7 0.26 0x 02r 2.30 REEE] 1B 000 10.00 Q.00
Q 027 027 0.27 0.27 027 0.0 000 0.00 0.00 0.0
[v1] 4.5 032 032 0.27 032 a0 0.0 *00 15.63 0,00
o a3l 0.1 031 N 231 0.00 ©.00 .00 0.00 0.0
PROD 12§ 09 .17 108 L2 2.20 15.85 a7 1675 20.65
[] ) L5 Loy 1ol .01 1.0 200 0.0¢ 000 000 0.00
@ 0.53 0.63 0.63 0.63 0.53 0.0 0.00 000 .08 a.00
Q2 1L.54 Lil LIl [13:1) 098 1.51 292 2930 4076 3758
o4 161 144 L&7 1.53 135 3.5 1317 00 8.38 19.16
RINVFRIV 528 4.87 5.56 445 sz 13.80 2046 925 nn 2.3
Ql 693 6.61 624 507 879 1194 16,01 201 w3 1572
Q2 6.29 550 801 428 655 .47 nu 020 4657 183
Q3 413 4.19 419 419 400 008 a.00 0.00 900 45
o™ 250 183 1.67 2.50 50 o0m 2686 3120 Q.00 0.00
RINVPUB 537 208 949 T 698 791 .M 671 22.98 42
3] 1 T.92 732 792 232 000 .00 008 2.00 0.1
Q2 2.9 .3 1446 10.50 1266 1639 un 200 9 %.28
x) hlok; ) 1630 8.8 6.8} 7.08 600 445 13.00 36.59 M.e0
L 510 ELdl 32 5.10 510 B0 40.98 I6.86 800 000
MICOR 0.64 0.64 Q.57 055 0.61 847 13.13 £1.28 20,03 12.17
23] 065 0.65 0.65 0.65 0.65 0.09 a.00 0.00 Q.00 .00
Qi (LX) D.42 0,47 021 047 510§ 10.64 0.0 3532 0.00
Q@ i34 (] 0.61 0.5 080 47 2020 3838 uUu 1.1
[+2] .55 048 0.55 045 245 0.00 1213 a.00 18.18 18.18
MICOR 27 0.89 0.68 0.67 Q.62 1).% 1378 15.64 12,22 no
Lo} 0.85 0.83 07 0.85 a.85 0.00 oD 1294 0.00 0.00
Q .13 &.19 &.19 019 0.1g 0.00 200 0.00 0.00 0.00
Q3 0.97 a.97 297 0.67 042 4.00 008 0.00 30.93 5670
o 0.55 47 Q.56 ®35 0.77 4149 50,00 .43 2021 1559
TBILLYLD 1.47 L3 138 £41 147 a8 6.63 5.9% B0 400
Q! [8::] 19 152 L9 193 0.00 0.00 0.00 Q.00 2.00
a3 0% .85 0.85 0% 00 0.00 Bl in 0.0 0.0
Q3 149 1.3 1.3 149 149 0.00 .88 [2.80 0.00 2.0
[+ 136 118 1.23 1.3 137 131 i 10.55 0.00 0.06
EXRATE a.0e 0.09 a0 0.09 .09 179 .00 T 4.21 421
o3} 208 008 008 088 £.08 0.0 0.00 400 000 000
43 0.08 002 0.09 009 0.0% 6.45 420 kX7 0 oo
€a 0.1 11 (43 010 0.1 0.00 631 HAs 0.00 €.00
o] .08 Q.08 9.08 6.06 0.06 4.00 0.0 000 21,66 2166

Note: As in Table 2.




TABLE A1

Variable LIKELIHOOD RATIO TEST
(Degress of freedom)

RGDP 22.58 (8)

RCONS 572 4)

RCONSDUR 60.29 (12)
RNONDUR 21.84 (6)
RGVCONS 19.74 (7)
RINVPRIV 24.25 (8)
RINVPURB 37.92 (B
REXPORTS 4.66 (5}

RIMPORTS 723 (5

RADIEC 66.31 (11)
RPDY 44.90 (14)
WORKFOR 12.00 (5)
PROD 19.72 (5}
MOCOR 86.01 (7)
MACOR 673
TBILLYLD 10.35 (@)
E}ERATE 5.10 (3)
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