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The first stage of malaria infections takes place inside the host’s hepatocytes.
Remarkably, Plasmodium parasites do not infect hepatocytes immediately
after reaching the liver. Instead, they migrate through several hepatocytes
before infecting their definitive host cells, thus increasing their chances of
immune destruction. Considering that malaria can proceed normally with-
out cell traversal, this is indeed a puzzling behaviour. In fact, the role of
hepatocyte traversal remains unknown to date, implying that the current
understanding of malaria is incomplete. In this work, we hypothesize that
the parasites traverse hepatocytes to actively trigger an immune response
in the host. This behaviour would be part of a strategy of superinfection
exclusion aimed to reduce intraspecific competition during the blood stage
of the infection. Based on this hypothesis, we formulate a comprehensive
theory of liver-stage malaria that integrates all the available knowledge
about the infection. The interest of this new paradigm is not merely theoreti-
cal. It highlights major issues in the current empirical approach to the study
of Plasmodium and suggests new strategies to fight malaria.
1. Introduction
The life cycle of Plasmodium parasites is an intricate journey through different
tissues in their vertebrate and insect hosts. Malaria infections start with the
inoculation of a few sporozoites under the skin by an infected female mosquito
[1,2]. Sporozoites move through the dermis until they find a blood vessel and
enter the bloodstream. Within 15min, the first parasites leave the bite site
and travel to the liver sinusoids [3]. After crossing the sinusoidal barrier, they
infect hepatocytes [4,5] and differentiate into schizonts, syncytial cells that
give rise to tens of thousands of haploid daughter cells known as merozoites
[6,7]. Merozoites are eventually released into the blood [8], where they undergo
several rounds of erythrocyte invasion and rupture until they mature into
sexual gametocytes [9]. At this stage, they are ready to be taken up by a
mosquito and leave their host.

When Plasmodium sporozoites reach the liver, they exhibit a perplexing
behaviour: they do not infect hepatocytes immediately but migrate instead
through the cytoplasm of several hepatocytes before settling down in their
definitive host cells [10]. Although this behaviour was first observed in vitro
[10], later studies confirmed that it also occurs in vivo [11]. Both mice- and
human-infecting parasites [12] traverse hepatocytes, suggesting that this is a
widespread feature among Plasmodium species. Hepatocyte traversal (HT) has
puzzled researchers since its original description over 20 years ago [10]. To
the best of our knowledge, the reasons for this behaviour remain unexplained
to date. It was initially proposed that HT could be necessary for parasites to
infect hepatocytes: the release of extracellular factors during HT might render
nearby hepatocytes susceptible to infection [13,14]. Alternatively, HT might
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be needed tomature themolecular machinery used to enter the
final host cell [11,15,16]. However, later studies with knockout
sporozoites refuted this interpretation of HT [17,18]. Parasites
with defects in spect or spect2 genes cannot traverse host cells
but they develop normally in the liver, showing that hepatocyte
infection does not depend on HT [17–19].

A different approach to HT described it as a mechanism
of immune evasion that could generate tolerance towards
surface antigens of the parasite [20] or deceive activated
CD8 T cells into targeting traversed hepatocytes instead of
infected ones [21]. Again, Spect-defective sporozoites show
that the parasite can normally evade the host’s immune
response without traversing hepatocytes.

The existence of knockout sporozoites that do not traverse
host cells and yet complete their life cycle implies that this
behaviour is not essential for the parasite [22]. For this
reason, although HT is acknowledged as the first step
of the infection, it has come to be considered as an unimpor-
tant feature of liver-stage malaria and other aspects of the
infection are usually interpreted as if they were independent
of HT [23,24]. However, that the parasite does not need to tra-
verse host cells does not mean that this behaviour is
irrelevant for Plasmodium. Even if HT was actually superflu-
ous, this should be rigorously proven before assuming that
it does not affect other aspects of a parasite’s life. The lack
of a satisfactory explanation for HT makes the current para-
digm of liver-stage malaria necessarily incomplete.

In the absence of a comprehensive theoretical model of
liver-stage malaria, sporozoites are widely considered as
passive victims of the host’s immune defences, much like
other intracellular pathogens such as viruses and bacteria.
In this work, we show that this view is misleading because
it fails to recognize the singularity of Plasmodium sporozoites.
We hypothesize that their mode of action in the host’s liver,
radically different from that of viruses and bacteria, could
allow them to manipulate the immune response of the host
to their own benefit. Based on that hypothesis, we formulate
an explanation of liver-stage malaria that accounts for all the
known aspects of the infection. Crucial in this explanation is
the behaviour of the parasite during HT. We show that a
better understanding of the mechanisms used by the parasite
to exploit the host suggests new lines of research in this field
and points to possible drawbacks in the current approach to
the development of antimalarial vaccines. It could also open
the way for the finding of new strategies to fight the infection.
2. Subversion of host cells’ defences by
Plasmodium sporozoites

Plasmodium sporozoites cross the sinusoidal barrier through
the cytoplasm of Kupffer cells, professional phagocytes
with a key defensive role. They remove a wide range of
particles from the circulation, including bacteria that breach
the intestinal barrier to invade the host’s tissues and other
pathogens present in the blood [25]. In normal circumstances,
micro-organisms captured by Kupffer cells are rapidly killed
through a ‘respiratory burst’ that yields cytotoxic reactive
oxygen species [26]. Plasmodium sporozoites block this
mechanism and traverse the cytoplasm of Kupffer cells
unharmed [2,5,9,27].

Once in the liver parenchyma, sporozoites infect hepato-
cytes using moving junctions (MJs), molecular structures
similar to the tight junctions of mammal cells [28]. The MJ
guides the invagination of the host’s plasma membrane to
create a parasitophorous vacuole (PV) that will harbour the
sporozoite during the liver stage of the infection [29]. The
MJ acts as a molecular sieve that restricts the incorporation
of key host proteins to the vacuolar membrane [30,31], thus
precluding the fusion of the PV with lysosomes. This
avoids the destruction of the parasite when infected cells
detect and attack the nascent vacuole [32,33]. From the PV,
the sporozoite controls the intracellular machinery of the hep-
atocyte through a membranous tubovesicular network that
protrudes from the vacuolar membrane into the cell’s cyto-
plasm. This structure facilitates the import of nutrients and
the export of waste products [33–35] and prevents the release
of molecular clues that would attract immune cells towards
infected hepatocytes [36,37].

The evidence presented above suggests that, as far as the
host’s immune system is concerned, liver-stage malaria could
well be a silent phase of the infection: traversed Kupffer cells
do not respond to sporozoites crossing their cytoplasm, and
although infected hepatocytes detect and attack the PV,
they fall under the control of the parasite before they can
react and alert the immune system. However, liver-stage
malaria triggers a robust immune reaction that attracts both
innate and adaptive to the site of the infection [38]. In the
next section, we will show that this immune reaction is the
host’s response to HT.
3. Hepatocyte traversal triggers an immune
response in the host

The behaviour of Plasmodium sporozoites during HT is quite
different from the one described above. To begin with, they
do not conceal their presence in the cytoplasm of traversed
cells. Parasites do not use MJs to traverse hepatocytes but
transient vacuoles (TVs) that are rapidly digested by the
host cell [31,39]. Sporozoites anticipate this reaction, using
the drop in pH that accompanies digestion as a signal to
leave the TV before its destruction [31]. Once in the cyto-
plasm of the traversed hepatocyte, the parasites move freely
and breach the plasmatic membrane to egress the cell [31].

The wandering of the sporozoites across their cytoplasm
and the rupture of their membrane are unambiguous signs
of infection that could hardly pass unnoticed to traversed
hepatocytes. Unsurprisingly, they react to these clues by
launching a defensive response that involves (among other
mechanisms) the NF-κB pathway, a major inducer of inflam-
mation [40]. It is certainly more remarkable that sporozoites
usually repress this response in infected hepatocytes [37,40].
This means that the parasite can inhibit the NF-κB pathway
but it does not use this ability during this ability during
HT, a puzzling behaviour for a pathogen.

The previous observations show that the activation of an
immune response in traversed hepatocytes is not caused by
the failure of the parasite to evade the host’s mechanisms
of immune surveillance. On the contrary, it is the conspicuous
migration of sporozoites across hepatocytes that facilitates
their detection. Then, they tolerate in traversed hepatocytes
the same inflammatory reaction inhibited a few minutes
later in infected hepatocytes. The natural (albeit counterintui-
tive) conclusion of these observations is that migrating



royalsocietypublishing.org/journal/rsob
Open

Biol.12:210341

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 O

ct
ob

er
 2

02
2 
sporozoites compel traversed cells to initiate a systemic
immune response in the liver.

Considering that the host’s immunity is typically lethal
for pathogens, this behaviour would be apparently suicidal
for the parasite. However, unlike other infections, the host’s
immune system does not normally prevent the progression
of liver-stage malaria [2,41,42]. Therefore, activating a sys-
temic immune response during HT is not detrimental for
migrating sporozoites. Quite the opposite: this response
avoids concurrent malaria infections in the liver [43,44],
which could be advantageous for the parasite. Preventing
secondary infections in the host (superinfection exclusion or
SE) is a widespread strategy among parasites and pathogens
[45–48]. In intracellular parasites such as viruses and phages,
SE is usually a cell-intrinsic mechanism (i.e. the protection
against concurrent pathogens is restricted to already infected
host cells [45]). In some plant viruses, the mechanisms of SE
operate at the scale of the whole host organism and prevent
the entry of new viruses in both infected and non-infected
host cells [45]. This is also the case of helminths, in which an
ongoing persistent infection can hinder the development of
new larvae [49,50]. This phenomenon, sometimes called con-
comitant immunity, involves the release of cross-reactive
antigens by adult worms that target larval structures, prevent-
ing the onset of secondary infections and limiting the size of
the parasite population within the host [51].

We suggest that Plasmodium sporozoites could use a simi-
lar organism-level strategy to prevent secondary infections in
the host. The parasite would use the host’s systemic response
to kill secondary sporozoites in the liver. The conspicuous
behaviour of the migrating sporozoites during HT would
be intended to ensure the initiation of this response. In agree-
ment with this assumption, co-transmission from a single
mosquito is more frequent than superinfection by repeated
mosquito bites in natural infections [52]. We propose that
this strategy would be beneficial for the parasite because it
would reduce within-host competition in the blood stage of
the infection. A vast body of empirical evidence shows that
competition among genetically unrelated strains affects the
production of gametocytes [53,54] and decreases the prob-
ability of transmission for individual genotypes [55–61]. By
neutralizing secondary infections in the liver, parasites with
competitive disadvantage could prevent more competitive
strains from reaching the host’s blood, thus increasing their
chances of transmission. They would also reduce the likeli-
hood of mixed infections, which could be more virulent
than single infections [62] and compromise the survival of
the host before the exit of the parasite.

Assuming a strategy of SE in Plasmodium would account
for the role of HT in the context of the infection. It would
also explain why this role is usually overlooked in the litera-
ture. Sporozoites that do not traverse hepatocytes might be
unable to prevent concurrent malaria infections, but they
would normally complete their life cycle in the host. The con-
sequences of HT would only be evident in case of multiple
infections, a situation that is not usually considered in exper-
imental studies about HT.

From this approach, Plasmodium sporozoites would
exhibit a dual relationship with the host’s immunity. The
mechanisms of immune evasion described in the previous
section would neutralize the host’s cell-level defences. This
would avoid the destruction of the sporozoites by Kupffer
cells and infected hepatocytes. For its part, HT would trigger
a systemic immune response in the liver to prevent the onset
of secondary malaria infections in the host. The interactions
of the parasite with cell- and organism-level immunity are
often confused in the literature. The parasite is widely
assumed to inhibit the intracellular defences of Kupffer cells
and infected hepatocytes to avoid a systemic response in
the liver [63,64]. However, the absence of danger signals
from Kupffer cells or infected hepatocytes cannot prevent
traversed hepatocytes from triggering this response. Recipro-
cally, the detection of sporozoites by Kupffer cells or infected
hepatocytes is not necessary to alert the host’s immune
system. The behaviour of the parasite during HT would be
sufficient to that end.

The potential use of the host’s immune response by the
parasite sheds light on another puzzling aspect of malaria.
A significant fraction of the sporozoites deposited by an
infected mosquito do not reach the liver, remaining instead
in the dermis or migrating to the lymph nodes that drain
the site of inoculation [65,66]. Up to 50% of the parasites do
not leave the dermis and some of them can even develop
there and survive for weeks, although they do not contribute
to erythrocyte infection in normal conditions [67,68]. Of the
sporozoites that leave the site of the inoculation, around
30% migrate to nearby lymph nodes and are eventually
degraded by dendritic cells [66,67].

Under the assumption of a strategy of SE in Plasmodium,
these sporozoites could promote a local immune response
in the bite site. The presence of activated immune cells
would facilitate the immune detection of secondary sporo-
zoites in those regions of the skin with a greater probability
of infection (in humans, mosquito bites tend to concentrate
in particular regions of the body [69]). In favour of this
hypothesis, sporozoites display robust gliding motility and
the ability to traverse cells in the skin [67,70]. Traversed
cells in the dermis should alert the immune system, much
as traversed hepatocytes do in the liver. Moreover, dendritic
cells that detect the parasites in the lymph nodes activate
CD8 T cells with affinity for sporozoite antigens [71].
4. Subversion of the host’s systemic
immunity by Plasmodium sporozoites

Our hypothesis of HT as a mechanism of SE in Plasmodium
relies on two key features of the host’s response to liver-stage
malaria: its inability to stop primary infections and the protec-
tion it confers on the host against secondarymalaria infections.
The former implies that alerting the immune systemduringHT
would not entail a high cost for the sporozoites. The latter
suggests that it could actually benefit them. In this section,
we will discuss the escape of primary parasites from the
host’s systemic reaction. In the following section, we will
analyse the mechanisms that neutralize secondary infections.

Liver-stage malaria triggers a robust immune reaction
that leads to the activation of T cells [72]. Although sporo-
zoites express hundreds of other genes, the dominant target
of this response is usually the circumsporozoite protein
(CSP) [37,73,74]. Among other functions, this protein partici-
pates in the recognition of host cells [75] and controls
thousands of hepatocyte’s genes involved in metabolic pro-
cesses crucial for parasite growth [37]. For this reason, the
CSP is very abundant in traversed and infected hepatocytes
in the early stages of the infection [76]. Since hepatocytes
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can present antigens secreted by the parasite into their cyto-
sol [77], they end up displaying CSP antigens on their
surface [21]. This, together with the immunodominance of
these antigens, implies that most of the effector T cells
recruited into the liver during the infection can identify
both infected and traversed hepatocytes [21]. In spite of
that, sporozoites normally evade T cell-mediated detection
and progress into the blood stage [41,42].

The repeated ineffectiveness of the host’s T-cell response
to kill Plasmodium sporozoites has been attributed to their
short permanence in the liver. The parasite would leave the
infected hepatocytes before T cells can detect and destroy
them [4,42,78–81]. Apart from its short duration, liver-stage
malaria would be similar to other intracellular infections.
Given enough time, effector T cells would eventually identify
and destroy all the infected hepatocytes, and hence the
parasites [41,78].

In our opinion, this approach overlooks key aspects of
the infection. Particularly, it does not take into account
the singular mode of action of Plasmodium sporozoites.
Unlike viral and bacterial infections, which involve multiple
cycles of cell invasion and egress, liver-stage malaria
requires just one round of cell infection. Once a parasite
infects a hepatocyte, it remains inside the PV until it is
ready to initiate the blood-stage of the infection [29]. Besides,
migrating sporozoites infect their definitive host cells a few
minutes after crossing the sinusoidal barrier [82], so most
of the hepatocytes that will be parasitized are already
infected within a few hours of the mosquito bite [66].
Owing to this mode of action, hepatocyte infection occurs
long before the activation of naive T cells, which occurs
around 24 h after the detection of the parasite [83,84].
The subsequent clonal expansion of activated T cells is only
significant 24–48 h later [85,86]. Therefore, a notable delay
exists between the entry of the parasites in their definitive
host cells and the appearance of effector T cells in the
liver. We suggest Plasmodium could use this delay to avoid
T-cell-mediated detection.

The dynamics of expression of the CSP antigens would be
crucial in the immune evasion of the parasite. The levels of
the CSP in infected hepatocytes are very high after the
entry of the parasite [37,76,87–89], reaching peak expression
at about 4–6 h post-infection in mice [77,90]. Afterwards,
the parasite no longer synthesizes the CSP [91], which rapidly
drops to undetectable levels [37,83,84,92]. Based on these
observations, we suggest that infected hepatocytes would
no longer display immunodominant antigens when effector
T cells reach the liver. This would make them invisible to
CSP-specific T cells (figure 1).

From this approach, the inefficiency of the adaptive
response would not depend on the short duration of liver-
stage malaria, as widely assumed in the literature [4,78–81].
Instead, it would result from the ability of the parasite
to become undetectable to effector T cells by suppressing
immunodominant antigens from the membrane infected
hepatocytes. This strategy could also explain the immune
evasion of the dormant phases (hypnozoites) present in
some Plasmodium species. Hypnozoites persist in the liver
over long periods of time and cause periodic reinfections of
the host [94]. Clearly, their ability to escape T-cell-mediated
detection cannot be explained by their rapid exit to the
blood. Within the current paradigm, hypnozoites and sporo-
zoites would rely on different and unexplained mechanisms
of immune evasion.
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5. Plasmodium sporozoites mimic a viral
infection in the host’s liver to prevent
secondary malaria infections

The same response that cannot stop primary malaria infec-
tions does normally protect the host from secondary
infections [43,44]. This protection is largely mediated by inter-
feron (IFN)-γ [44] and CSP-specific T cells [73,95,96]. The
former, released by T cells and NKs, accelerates intracellular
digestion in hepatocytes [78,91,97–101], increasing the risk
for the parasite to be destroyed inside the TV [31,102]. IFN-γ
could also stimulate apoptosis in traversed hepatocytes,
which would entail the death of migrating sporozoites [103]
As for effector T cells, it is remarkable that they can stop sec-
ondary infections but not primary ones. We suggest that this
results from the impossibility of secondary parasites to
implement the mechanism of immune evasion described in
the previous section. Secondary parasites must also use the
CSP in the early moments of the infection, which leads to
the large display of immunodominant antigens in newly
infected hepatocytes. In contrast to primary infections, acti-
vated CSP-specific T cells are already circulating in the liver
at this stage of the secondary infection. This would greatly
increase the chances of immune detection before the
disappearance of the CSP from infected cells (figure 2).

The capacity of the host’s immune response to repeatedly
neutralize secondary infections implies that IFN-γ and T cells
must operate all across the liver. During liver-stage malaria,
the ratio between infected and non-infected hepatocytes is in
the order of 1 in 109 in humans and 1 in 106 in mice. A
narrow immune response circumscribed to the sites of the infec-
tion would leave vast regions of the liver devoid of IFN-γ and
CSP-specific effector T cells. Secondary sporozoites reaching
these regions could safely traverse hepatocytes and suppress
the display of the CSP in their host cells before being detected
by effector T cells. In this scenario, secondary infections
would be frequent. This is not the case in natural infections
because the host’s response spreads throughout the liver. Key
in the propagation of the response to primary infections is the
type I IFN pathway [104,105]. In mice, IFN-α (a key element
of this pathway) can be detected in the whole liver shortly
after the bite by an infected female mosquito [106].

The type I IFN response creates a state of immune alert
throughout the liver, minimizing the space where secondary
infections can progress undetected. Assuming the existence
of a strategy of SE in Plasmodium, this mechanism obviously
suits the parasite’s interests, which raises an intriguing
question: is the activation of the type I IFN pathway just a
fortunate coincidence for Plasmodium sporozoites or is it
somehow forced by the parasite?

This pathway is especially adapted to prevent intracellular
infections that propagate through cell-to-cell transmission
[107,108]. We have seen that this is not the mode of action of
Plasmodium sporozoites, which infect a single hepatocyte and
do not spread to adjacent host cells. Moreover, malaria infec-
tions start with the inoculation of a mean of 120 sporozoites
in the skin [1,2] of which only 50% reach the liver [67], so
very few hepatocytes are directly disrupted by the parasite.
Therefore, the reasons for the host to trigger the type I IFN
response during liver-stage malaria are far from trivial.

We hypothesize that sporozoites deceive the host into acti-
vating this pathway during HT. To do that, they would mimic
the effects of a viral infection in the liver. Strong evidence in
favour of this hypothesis is that they release double-stranded
RNA (dsRNA) in the cytoplasm of hepatocytes [38,44,106,109].
Owing to the widespread use of dsRNA by viruses in genome
replication [110], thismolecule a clear indicator of viral infections
[111–113]. Consequently, host cells react to its presence in their
cytoplasm by activating the type I IFN response, which is a
potent antiviral mechanism [114–117]. As should be expected,
the detection of Plasmodium dsRNA by hepatocytes triggers
this response during malaria [44,106,109]. Moreover, HT gives
rise to a spatial pattern of immune alert that resembles the
spreading of a virus in the liver. The cell damage caused by
migratingparasites in traversedhepatocytes [118] and the release
of dsRNA in their cytoplasm would create in the host the
impression of an ongoing viral infection [119–121]. The acti-
vation and propagation of the type I IFN pathway would be
the natural response to this stimulus [106,122,123].
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the start of T-cell activation (2 versus 3). By contrast, the duration of the immune synapse (several hours) cannot be shortened by increasing the number of memory
T cells (4 and 5). Thus, even if more memory T cells exhibit a greater clonal expansion (6), the appearance of effector T cells is necessarily delayed with respect to
the entry of the parasite in the liver. (c) For this reason, infected hepatocytes could no longer display CSP antigens after memory T-cell activation. Therefore,
activated memory T cells would not stop the reinfection even though they protect the host against future secondary infections.
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Within ourmodel of liver-stagemalaria, the immunodomi-
nance of the CSP would also be crucial for the parasite’s
strategy of SE (figure 2). By mimicking a viral infection in the
liver, Plasmodium sporozoites could bias the adaptive response
of the host towards theCSPantigens and ensure their immuno-
dominance. Migrating parasites also release the CSP in the
cytoplasm of traversed hepatocytes [21,41,124]. Its association
with non-self dsRNAwould induce traversed cells to process it
as a viral protein, making it the target of the host’s adaptive
immune response. Membrane vesicles decorated with the
CSP have also been detected in the host’s liver during the infec-
tion [82]. It is tempting to speculate that the parasite could use
these virus-like particles to provide additional clues of the
propagation of a fake viral infection in the liver. This would
further contribute to inducing a strong antiviral response
against the CSP antigens.
6. Implications of the Plasmodium’s
strategy of superinfection exclusion for
the creation of anti-malarial vaccines

Natural malaria infections do not endow the host with long-
lasting immunity against Plasmodium sporozoites. Although
repeated exposure to the parasites leads to the eventual
formation of immunity against the blood-stage of the infection
[125,126], long-term sterile immunity is never achieved [127].
Even if malaria infections normally result in the formation of
memory T cells and antibodies that recognize specific sporo-
zoite antigens, they cannot prevent successive reinfections of
the host [42,128–131] (figure 3a). Similarly, the immune
memory formed by antimalarial vaccines only provides a par-
tial and temporary immunity that tends to disappear after a
few months [42,132,133]. By way of example, the efficiency
of the RTS,S/AS01 vaccine, the first vaccine against malaria
to be tested in Phase 3, is around 36% over 4 years of follow-
up [134,135]. Vaccines based on the use of irradiated
sporozoites are more effective, reaching success rates close to
100% in the weeks or months that follow the inoculation of
the parasites [127,136,137]. The efficacy of these vaccines is
typically monitored for only a few months, so their long-
term protection remains to be exhaustively evaluated [138].
However, studies in which vaccinated individuals are subject
to successive challenges show that the results of the vaccines
tend to worsen with time, which suggests that their protection
would not be permanent [139,140].

The problem with natural infections and anti-malarial
vaccines, as currently viewed, is that they induce the for-
mation of too few long-term memory T cells. It has been
suggested that the host is only protected if the number of
memory T cells is above a critical threshold [133].
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Accordingly, it is widely accepted that boosting the formation
of memory T cells improves the performance of antimalarial
vaccines [41,42,85].

A detailed analysis of T-cell activation suggests that this
approach is overly simplistic. A greater number of memory
T cells does not accelerate the encounter and processing of
parasite’s proteins by antigen presenting cells (APCs) or the
mechanism of T-cell activation, which involves the formation
of immune synapses between T cells and APCs that persists
for several hours [141]. Molecular signals delivered by the
APC induce in the T cell the activation of hundreds of
genes responsible for the acquisition of the effector pheno-
type and functionality [142]. It is unlikely that increasing
the number of memory T cells could reduce the duration of
this genetic program in each cell (figure 3b).

Therefore, there is a minimum delay in the activation of
memory T cells that cannot be shortened by increasing the
number of cells. We suggest that, as occurs with naive T
cells, this delay could give the parasite an opportunity to sup-
press the display of key antigens by infected hepatocytes
before the activation of memory T cells with affinity for
those antigens. The immunodominance of the CSP during pri-
mary infections implies that most of the liver-resident memory
T cells target this protein [129,130]. Now, the expression of the
CSP drops to negligible levels in infected hepatocytes within a
few hours of the entry of the parasite [37,83,84,92]. Even if the
response of memory T cells is faster than that of naive T cells
[143], memory T cells need at least 6 h to activate [85] and
even longer to undergo significant clonal expansion [144].
During live-stage malaria, effector functions start to be
detectable 24 h post-infection [84]. Based on the previous
observations, we suggest that the timing of CSP expression
relative to the activation of CSP-specific T cells could make
the parasite invisible to the immune memory created by pre-
vious infections (figure 3c). This argument would also
account for the ineffectiveness of T-cell-based vaccines against
liver-stage malaria, which have traditionally targeted the CSP
and other proteins used by the parasite in the early stages of
the infection [145] (figure 3c).

The effect of T-cell-based vaccines can be improved by
using prime-boost regimes in which a first inoculation
(prime) triggers a T-cell response against the target antigens
and successive inoculations (boosts) magnify this response
[132]. Although this effect is normally attributed to the for-
mation of more memory T cells [41,42] (figure 4a), we
suggest that this does not explain the better results of prime-
boost vaccines. The inoculation of periodic boosts also
delays clonal contraction, extending the duration of the
T-cell response and hence the protection against new infec-
tions (figure 4a). This would explain why frequent
inoculations are needed to improve the degree of protection
[146–148] (figure 4b). For instance, the RTS,S/AS01 vaccine
is administered in three or four successive doses [149]. The
vaccination with irradiated sporozoites usually requires mul-
tiple inoculations of thousands of defective parasites [150,151].

A corollary of the previous argument is that vaccines
against early sporozoite antigens such as RTS, S vaccines (i.e.
those that target antigens that disappear before the activation
of memory T cells) would not operate as classical vaccines:
their protection would depend on the presence of effector T
cells in the liver and not on the activation of memory T cells
in case of a new infection (figure 4c). This does not imply
that these vaccines are ineffective but their protection would
rely on a sustained T-cell response in the liver [78,147],
which could entail potential costs for the host. A similar argu-
ment could be used to account for the action of vaccines
consisting in the repeated inoculation of irradiated sporo-
zoites. The short-term sterile protection provided by these
vaccines could possibly be explained by the massive and sus-
tained activation of T cells caused by the simultaneous arrival
of thousands of parasites to the liver [83]. The long persistence
of defective parasites in the liver could further contribute to
extending the duration of this response [152].

The creation of an exceedingly large immune memory
against Plasmodium sporozoites has other consequences that
raise concerns about the use of prime-boost protocols against
liver-stage malaria. The size of the pool of memory T cells is
obviously finite, so the inclusion of new clones causes the loss
of memory T cells with affinity for past infections. As a con-
sequence, the diversity of the immune memory decreases,
impairing the ability of the immune system to fight new
pathogens in the future [153–155]. Saturating the pool of
memory T cells with Plasmodium-specific clones is therefore
a questionable strategy considering that malaria is not
usually the only prevalent infection in endemic areas.

These issues could be avoided by targeting late sporozoite
antigens since protection would be mediated in this case, as
occurs with standard vaccines, by the activation of memory
T cells (figure 4d ). This approach is obviously constrained
by the very existence of these antigens. Sporozoites might
prevent the display of all of their antigens in infected hepato-
cytes after the first hours of the infection, making them
virtually undetectable to memory T cells regardless of their
target antigens. However, identifying potentially persistent
antigens could prove a valuable line of research to create
new and effective antimalarial vaccines [127,156]. Targeting
the blood stage of the infection could provide effective strat-
egies to fight malaria infections in endemic areas [157].
Recent studies in mice suggest that the use of antibodies
with affinity for several epitopes of the CSP might also
confer some degree of protection against liver-stage malaria,
although their capacity to generate sterile protection in vivo
remains to be evaluated [158].
7. Discussion
The empirical evidence gathered in the last decades has
revealed stark contrasts between Plasmodium sporozoites and
other intracellular pathogens. The singularity of liver-stage
malaria is especially obvious in three features of the infection:
first, sporozoites traverse several hepatocytes before invading
their definitive host cells; second, each parasite infects a single
hepatocyte and does not spread to adjacent host cells; finally,
neither naive nor memory T cells can normally kill the
parasite. Only secondary malaria infections (i.e. those that
coincide with an ongoing primary infection) are susceptible
to the host’s immune response [43,44].

These aspects of liver-stage malaria are often considered
in the literature as unrelated to one another. In the absence
of an accepted explanation for HT, it is impossible to ascertain
its potential effects on later stages of the infection. In conse-
quence, these effects have been excluded from the orthodox
interpretations of liver-stage malaria to date. On the other
hand, the infection of a single hepatocyte by each sporozoite
is not considered determinant in the immune evasions of
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Figure 4. Hypothesized interactions between Plasmodium sporozoites and antimalarial vaccines. (a) In prime-boost protocols, a first dose of the vaccine triggers an
immune reaction in the host and later inoculations boost this response, leading to the appearance of more memory T cells. (b) We hypothesize that the protection of
prime-boost vaccines is not mediated by the formation of more memory T cells but by their effect on the duration of the T-cell response. Successive inoculations
would extend the presence of effector T cells in the liver and consequently the protection against new infections (figure 2). (c) Vaccines targeting early antigens
(those that disappear from infected hepatocytes within a few hours of the entry of the parasite) only confer the host with a transient immune protection. In the case
of infection, those antigens are no longer present in infected hepatocytes after the activation of liver-resident memory T cells. This makes infected hepatocytes
undetectable to the immune memory created by the vaccine. Activated memory T cells contribute to the strategy of superinfection exclusion of the parasite by
preventing secondary infections in the host. (d) Targeting late antigens would protect the host against malaria infections. In this case, the activation of the memory
T cells formed by the vaccine would coincide with the expression of target antigens on infected hepatocytes, increasing the probability of an effective neutralization
of the infection.
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primary infections and reinfections, which are attributed
instead to the short duration of the infection and the low
number of liver-resident memory T cells, respectively.
Under these assumptions, sporozoites would be passive
victims of the host’s systemic response and only their rapid
escape from the liver would save them from T-cell-mediated
destruction [4,78–81].

In this work, we formulate an alternative model of liver-
stage malaria in which the parasite manipulates the host’s
systemic response to prevent concurrent infections. To do
that, migrating sporozoites would simulate the spread of a
virus in the liver to trigger an immune response in the host.
The inhibition of secondary infections by the reaction to a pri-
mary infection is not extraordinary. The presence of effector T
cells that can destroy infected host cells obviously increases
the mortality of new pathogens that reach an already infected
tissue. What makes liver-stage malaria different from other
infections is that sporozoites remain inside the same host
cell until the blood stage of their cycle. This establishes a
clear-cut boundary between primary and secondary infec-
tions. Sporozoites could induce a systemic response and
conceal themselves within their PVs while this response is
still incipient. Then, they could take advantage of the
delay in T-cell activation by suppressing the expression of
key antigens in infected hepatocytes. By doing so, they
would increase the vulnerability of secondary sporozoites
without compromising their own survival. This strategy is
not possible for typical intracellular pathogens that spread
through cell-to-cell contagion and hence depend on the con-
tinuous infection of new host cells. In this case, primary
pathogens are as exposed to the host’s immune response as
secondary ones.

The existence of a strategy of SE in Plasmodiumwould pose
new challenges to the experimental approach to liver-stage
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malaria. In natural infections only a few tens or hundreds of
sporozoites reach the liver [1]. This situation stands in sharp
contrast with experimental settings in which the infection is
simulated by inoculating tens of thousands of sporozoites in
the host. This is especially so for irradiated sporozoites,
which have been used as a model of the infection in a
number of malaria studies and as potential candidate antima-
larial vaccines [159]. Irradiation does not affect the ability to
traverse hepatocytes but prevents the onset of the blood-
stage of the infection [160]. Rephrasing the Anna Karenina
principle [161], all normal sporozoites are alike but each
irradiated sporozoite is defective in its own way. Their behav-
iour in the liver can diverge in many different details from that
of wild-type sporozoites. Now, the strategy of SE would
depend on the precise execution of a strict sequence of steps
during HT and infection. The failure to implement any of
those steps by thousands of irradiated sporozoites would
facilitate their massive destruction by Kupffer cells or hepato-
cytes. This could activate alternative immune pathways that
are not normally triggered during natural infections
[147,162–164], which would give confusing information
about liver-stage malaria. For instance, the profile of cytokines
secreted by Kupffer cells is different after the inoculation of
irradiated and infectious parasites [165].

We do not deny the utility of these experiments. Quite the
opposite, they provide valuable insights into many details of
liver-stage malaria that would be impossible to obtain other-
wise. Monitoring the progression of the parasite in a few
hepatocytes is almost impossible, so using large numbers of
wild-type or irradiated sporozoites could well be the only
viable strategy to reveal key aspects of the infection. How-
ever, the differences between experimental and natural
infections should be explicitly considered in the interpret-
ation of empirical results.

Using the host’s immune response to prevent secondary
infections in the host’s liver would be an optimal strategy
for Plasmodium. First, even if the protection against secondary
infections is not perfect, it would restrict within-host compe-
tition in the blood to strains that can been inoculated by
infected mosquitos within a short time window [52]. This
would facilitate the transmission of strains that would be
otherwise outcompeted by more aggressive parasites.
Second, the protection of the host would disappear with
the clonal contraction of effector T cells, thus ensuring the
availability of the host for future malaria reinfections. It
cannot be ruled out that SE entails other benefits for the para-
site. Plasmodium sporozoites have three sets of genes (nuclear,
mitochondrial and plastid) and harbour occasional parasitic
viruses [166,167]. These genomes could exhibit divergent
interests, imposing further constraints on outbreeding and
providing additional selective value for SE. Think, for
instance, of the genetic incompatibilities created byWolbacchia
in its insect hosts [168] or by bacterial symbionts in some
fungal species [169]. Regardless of its ultimate causes, the
existence of a strategy of SE in Plasmodium would change
our view of liver-stage malaria.

In this work, we formulate a coherent conceptual frame-
work of the infection based on the hypothesis that the
parasite uses the host’s immune system to kill potential com-
petitors in the liver. This framework integrates all the
available knowledge about liver-stage malaria, accounting
in particular for the role of HT, a puzzling behaviour that
remains unexplained with the current paradigm. The interest
of an alternative view of liver-stage malaria is not merely
theoretical. Our approach identifies unexpected critical limit-
ations of the host’s immune system to neutralize Plasmodium
sporozoites in the liver, which would explain the inefficiency
of the antimalarial vaccines developed to date. Currently
available vaccines would only replicate the parasite’s strategy
of SE by targeting early sporozoite antigens. The protection
conferred by these vaccines would depend on the presence
of effector T cells in the liver. After their clonal contraction,
the host’s immune memory would be unable to prevent the
onset of future malaria infections. A better understanding
of liver-stage malaria could prove useful to improve the effi-
cacy of vaccines against liver-stage malaria. It could also
suggest new strategies to interfere with the strategies used
by the parasite to exploit the host.
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