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In this work we obtain analytical expressions for the near and far field diffraction of random Ronchi diffraction 
gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically 
show that the effect of randomness in the position of the slits of the grating produces smoothing and disappearance 
of the self-images at the near field. On the other hand, it cancels high order harmonics in far field, resulting in only a 
few central diffraction orders. Numerical simulations by means of the Rayleigh-Sommerfeld diffraction formula are 
performed in order to corroborate the analytical results. These results are of high interest for industrial and 
technological applications where manufacture errors need to be considered. © 2016 Optical Society of America 
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1. INTRODUCTION 
Diffraction gratings are optical elements commonly used in many 
different branches of science and applications, 1. We can find diffraction 
gratings in many diverse fields as optical metrology, laser array 
illumination, moiré interferometry, spectroscopy, phase locking of laser 
arrays, etc, 2-5. The most common types of diffraction gratings are 
amplitude-based and phase-based gratings that modulate the 
amplitude and the phase of the incident beam respectively, 1, but other 
kinds of gratings such as polarization gratings or rough gratings have 
been introduced in recent years. Rough gratings can be understood as a 
modulation of the coherence state of the beam, 6-8. Concerning 
fabrication methods, gratings are commonly manufactured by direct 
laser writing, laser ablation or photolithographic methods. The most 
adequate method for fabrication depends on the substrate of the 
grating, the desired grating type, the needed accuracy, the desired 
feature, and so on. For example, gratings over steel substrates are 
commonly manufactured by laser ablation, 9, and gratings over glass 
substrates are usually fabricated by photolithographic methods, 10. 
Despite manufacturing processes have been improved year after year, 
manufacturing errors are still present and become more representative 
when period of the gratings are smaller. The effect of different kinds of 
imperfections in diffraction gratings such as imperfections in the edge of 
the slits 11, random distribution of phase delays 12, roughness on the 
surface, 13-15, missing slits, 16, random distributions 17, etc, have been 
analyzed in recent years. In this manuscript, we analytically and 
numerically investigate the near field diffraction of random Ronchi 
gratings formed by an ensemble of transparent slits that are not equally 
spaced but their positions present a certain randomness around their 
nominal periodical positions. As it has been introduced before, 
diffraction gratings behavior has been studied from many points of 
view. Particularly, it is well known that Talbot effect is produced at the 

near field, consisting of the replication of the grating pattern at different 
distances from the grating, called Talbot distances, 18-20. The Talbot 

distance is defined as 22z pT   where p  is the period of the grating 

and   is the illumination wavelength. In our case, as we demonstrate 

following, the near field intensity produced by the proposed grating is 
slightly different. Randomness affects to the smoothness of the self-
images of the grating. Besides, the contrast of the self-images decreases 
in terms of the randomness level, producing the disappearance of the 
self-images for high randomness. In addition, numerical simulations 
made by means of a numerical integration of the Rayleigh-Sommerfeld 
formula corroborate the analytical results. Finally, far field analysis 
reveals the same behavior as near field, cancelling high diffraction 
orders for high randomness levels. 

2. NEAR FIELD APPROACH 
Let us consider a one-dimensional diffraction grating whose 
transmittance is defined as the summation of transparent slits 
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where n  are integer numbers, p  is the period of the grating and   is 

the opening width of the grating. Now, we include a certain randomness 
into the central position of each aperture but maintaining its size as a 
constant. Mathematically, it can be expressed as 
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where n  is a random number following a certain probabilistic 

distribution. We show in Fig. 1 an example of the grating proposed 
(dashed line) and a periodical grating of the same period (solid line).  
 

 

Fig. 1. Example of diffraction grating proposed (dashed line) versus 
periodical grating (solid line), 10p m , / 10w p . 

The field at a distance z  close to the grating can be easily calculated by 
using the Fresnel approach 
 

   

 

exp( ) 2
( , ) ' exp ' '

exp( ) '

2
exp ' ' ,

ikz i
U x z A t x x x dxr

ik z

ikz x n p nA rect
ik n

i
x x dx

z

  
   

  

    
   

  

 
  

 

 (3) 

where   is the wavelength of the incident light, A  is the amplitude of 

the field and x  is the transversal coordinate at the observation plane. 

Applying Eq. (2) to Eq. (3), it may be rewritten as 
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Solving Eq. (4), the field at a distance z  in terms of n , results in 
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where ( )erf   is the error function defined as 
22
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As we have mentioned before, n  are statistical variables. Therefore, 

we need to apply an averaging process to calculate the intensity 
distribution at the near field. The average intensity can be calculated by 
solving 
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where ( , )p n m   is the joint probability density function of both 

distributions, that we have chosen Gaussian, 21. In our case, considering 
that all random variables, n , are uncorrelated, then 

( , ) ( ) ( )p p pn m n m     . Thus, the average intensity can be 

expressed as 
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where w  is the standard deviation of the random displacement of the 

slits around their nominal positions, 21. 
Placing all terms into Eq. (7) it results into 
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()  denotes complex conjugated.  

After performing the integrals and simplifying, the mean intensity 
results 
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We introduce again all variables for a better understanding of the result, 
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As can be observed, it almost corresponds to the diffraction produced 
by an ensemble of slits of size   regularly placed at distances multiple 

of p  but with an extra term due to randomness, 22 w . For 0w  we 

recover the classical diffraction produced by an ensemble of slits 
regularly placed. 
We show in Fig. 2 some examples of the near field intensity produced by 
the grating proposed with the following parameters, 20p m , 



/2p  , 51 slits, 630nm , 1A , and 0w  (Fig. 2a), /10w p  (Fig. 

2b), /5w p  (Fig. 2c), and /2w p  (Fig. 2d).  

 

 

 
Fig. 2. Analytical self-images calculated by using Eq. (11) with a grating 
of nominal period 20p m  illuminated by a plane wave of 

wavelength 630 nm . The amounts of randomness are: (a) 0w , (b) 

/10w p , (c) /5w p , and (d) /2w p . 

As can be observed, randomness of the grating produces smoothing of 
the self-images. For a better observation, we show in Fig. 3 (asterisks) 
the first self-image and the corresponding fitting to a sinusoidal (solid 
line) corresponding to Fig. 2. The Root Mean Squares of these fittings are 

 0.2181 0RMSE w  ,  0.0882 /10RMSE w p  , 

 0.02956 /5RMSE w p  , and  67.448 10 /2RMSE w p   , 

which reveals better fitting for higher randomness. The effect of the 
randomness on the grating structure produces smoothing of the self-
images in terms of w . Indeed, for values over /2w p , the self-images 

disappear completely. On the other hand, for the limit case 0w , we 

recover the intensity produced by a periodical diffraction grating at the 
near field. 
 

 
Fig. 3. First self-image corresponding to Fig. 2. Asterisk represent 
analytical results and solid lines represent fittings to sinusoidal. 

In addition, we show in Fig. 4 the contrast of the self-images in terms of 
w  (solid line) following the definition of contrast given in 22, 
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   1 ,minI g x I x z dxT     , and  g x  is the grating profile 

without randomness. Besides, we show in Fig. 4 (dot line) the contrast 
calculated by using the classical contrast definition, 

   ˆ ˆ ˆ ˆ ˆ( ) max min max minC w I I I I   , where ˆmaxI  is the maximum 

intensity and ˆminI  is the minimum intensity. It decreases following a 

gaussian function and reaches zero for 0.5w p . We have tested that 

this value is independent on the period of the grating and the 
wavelength. 
 

 
Fig. 4. Contrast of the first self-image in terms of the randomness. 

20p m . Analytical calculated by using Eq. (12) (solid line), analytical 

using the classical definition of contrast (dot line), and numerical by 
using the Rayleigh-Sommerfeld approach (dashed line). 

3. FAR FIELD APPROACH 
In this case, let us consider the Fraunhofer diffraction formula. The 

field produced by the random grating is calculated in a similar way as 
for near field propagation just solving the following integral expression 
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Thus, the field results in  
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where    sinc sin     and x z . We again use the density 

probability functions, Eq. (8), to obtain the mean intensity 
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Fig. 5. Far field mean intensity distribution corresponding to a random 
diffraction grating of period 20p m  illuminated by a plane wave of 

wavelength 630nm , 0w  (dot line), /10w p  (dashed line), and 

/2w p  (solid line). 

It corresponds to the classical solution but adding an extra term 
depending on the amount of randomness, w , that modulates the 

intensity. For relatively high w , high harmonics disappears, remaining 

only zero and firsts diffraction orders. We show in Fig. 5 three particular 

cases for /2w p , /10w p , and 0w . For /10w p , diffraction orders 

higher than firsts disappears and for /2w p  only zeroth order 

remains. 

4. NUMERICAL SIMULATIONS 
To corroborate the analytical results, we perform in this section several 
numerical simulations using a fast-Fourier-transform based direct 
integration method that uses the Rayleigh-Sommerfeld approach, 23. 
Firstly, we define the random diffraction grating as an ensemble of slits 
placed almost periodically along the x-axis. We introduce the 
randomness into the position of every slit as a random displacement 
around the nominal position (periodical), following a gaussian 
distribution. To understand the propagation process, we show in Fig. 6 
four examples of propagation with different amounts of randomness, 
( ) 0a w , ( ) /10,b w p  ( ) /5,c w p  and ( ) /2d w p . It shows how 

the self-imaging process is harmed by the randomness of the grating. 
Anyway, to compare with the analytical results, we need to perform an 
average over an ensemble of simulations. Thus, we show in Fig. 7 the 
intensity at the near field produced by an ensemble of 1000 gratings 
with the same statistical parameters. Self-images are smoother for low 
randomness level. On the contrary, /2w p  corresponds with high 

randomness limit and produces the total disappearance of the self-
images at the near field, Fig. 7c. We calculate the contrast by using the 
definition given in Eq. (12), Fig. 4 (dash line). Numerical results are 
comparable to analytical results and corroborate the obtained analytical 
formalism. 

 

 
Fig. 6. Examples of diffracted intensity (one realization) illuminated by a 
plane wave of 630 nm , (a) 0w , (b) /10w p , (c) /5w p , and (d) 

/2w p . The nominal period of the grating is 20p m . 

 

 
Fig. 7. Examples of average intensity produced by an ensemble of 1000 
gratings with the same statistical parameters and illuminated by a plane 
wave of 630 nm , (a) /10w p , (b) /5w p , and (c) /2w p . The 

nominal period of the grating is 20p m . 

CONCLUSIONS 
In this work, we analyze the diffraction produced by random Ronchi 
diffraction gratings where randomness is present in the position of the 
slits. This manufacture error could be common in fabrication processes 
and, up to our knowledge, it has not been analyzed yet. We give 
analytical results of the behaviour of this kind of gratings in the near and 



far field and corroborate them by numerical analysis. Randomness 
produces a smoothing of the self-images and elimination of harmonics 
depending on the amount of randomness. These results are useful in 
applications in which manufacture errors have to be taken into account. 
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