
Ann. Scient. Éc. Norm. Sup.,
4e série, t. 35, 2002, p. 605 à 640.

MONODROMY CONJECTURE FOR
SOME SURFACE SINGULARITIES

BY E. ARTAL BARTOLO, P. CASSOU-NOGUÈS, I. LUENGO AND
A. MELLE HERNÁNDEZ

ABSTRACT. – In this work we give a formula for the local Denef–Loeser zeta function of a superisolated
singularity of hypersurface in terms of the local Denef–Loeser zeta function of the singularities of its tangent
cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the
study of rational arrangements of plane curves whose Euler–Poincaré characteristic is three.

 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Dans ce travail, nous donnons une formule pour la fonction zêta locale de Denef–Loeser
d’une singularité superisolée d’hypersurface, en termes des fonctions zêta locales des singularités de son
cône tangent. Nous démontrons la conjecture de la monodromie pour certaines singularités de surfaces.
Nous appliquons ces résultats à l’étude d’arrangements, de caractéristique d’Euler trois, de courbes
rationnelles.

 2002 Éditions scientifiques et médicales Elsevier SAS

Introduction

Throughout this paper the complex numbers will be the ground field. The local Denef–Loeser
zeta functionZtop,0(f, s) ∈ Q(s) is an analytic (but not topological, see [4]) subtle invariant
associated with any germ of an analytic functionf : (Cn+1,0)→ (C,0). This rational function
was first introduced by J. Denef and F. Loeser as a sort of limit of thep-adic Igusa zeta function,
see [7,8] and it was called the topological zeta function. Its former definition was written in terms
of any embedded resolution of its zero locus germ(V,0) := (f−1(0),0)⊂ (Cn+1,0) (although
it does not depend on any particular resolution). In [8], J. Denef and F. Loeser gave an intrinsic
definition ofZtop,0(f, s) using arc spaces and the motivic zeta function – see also [10] and the
Séminaire Bourbaki talk of E. Looijenga [24].

Let us recall the definition of the Denef–Loeser zeta functions associated with a polynomial
f ∈ C[x0, . . . , xn], see [7,8]. Letπ :Y → Cn+1 be an embedded resolution of the hypersurface
V defined by the zero locus off. Let Ei, i ∈ I, be the irreducible components of the divisor
π−1(f−1(0)). For each subsetJ ⊂ I we set

EJ :=
⋂
j∈J

Ej and ĚJ :=EJ \
⋃
j /∈J

EJ∪{j}.

For eachj ∈ I, let us denote byNj the multiplicity ofEj in the divisor off ◦π and byνj −1 the
multiplicity of Ej in the divisor ofπ∗(ω) whereω is a non-vanishing holomorphic(n+1)-form
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in Cn+1. Then thelocal Denef–Loeser zeta functionof f is:

Ztop,0(f, s) :=
∑
J⊂I

χ
(
ĚJ ∩ π−1(0)

)∏
j∈J

1
νj +Njs

∈Q(s),

and theDenef–Loeser zeta functionof f is:

Ztop(f, s) :=
∑
J⊂I

χ(ĚJ)
∏
j∈J

1
νj +Njs

∈Q(s),

whereχ denotes the Euler–Poincaré characteristic.
Each exceptional divisor of an embedded resolutionπ : (Y,D)→ (Cn+1,0) of the germ(V,0)

gives a candidate pole of the rational functionZtop,0(f, s). Nevertheless only a few of them give
an actual pole ofZtop,0(f, s). There are several conjectures related to the Denef–Loeser zeta
functions. In this paper we are interested in themonodromy conjecture, see [6,7].

It is known that, for any givenx ∈ V , the Milnor fibration of the holomorphic functionf
at x is theC∞ locally trivial fibration f | :Bε(x) ∩ f−1(D∗

η)→ D∗
η, whereBε(x) is the open

ball of radiusε centered atx, Dη = {z ∈ C: |z| < η} and D∗
η is the open punctured disk

(0< η� ε andε small enough). Any fiberFf,x of this fibration is theMilnor fiber of f atx. The
monodromy transformationh :Ff,x→ Ff,x is the well-defined (up to isotopy) diffeomorphism
of Ff,x induced by a small loop around0 ∈ Dη. The complex algebraic monodromy off at
x is the corresponding linear transformationh∗ :H∗(Ff,x,C)→H∗(Ff,x,C) on the homology
groups.

The local monodromy conjecturestates thatif s0 is a pole of the Denef–Loeser zeta function
Ztop,0(f, s) of the local singularity defined byf , thenexp(2iπs0) is an eigenvalue of the local
monodromy at some complex point off−1(0). Note that iff defines an isolated hypersurface
singularity, thenexp(2iπs0) has to be an eigenvalue of the complex algebraic monodromy of the
germ(f−1(0),0).

There are three general problems to consider when trying to prove (or disprove) the conjecture
using resolution of singularities:

(i) Explicit computation of an embedded resolution of the hypersurface(V,0)⊂ (Cn+1,0).
(ii) Elimination of the candidate poles which are not actually poles ofZtop,0(f, s).
(iii) Explicit computation of the eigenvalues of the complex algebraic monodromy (or

computing the characteristic polynomials of the corresponding action of the complex
algebraic monodromy) in terms of the resolution data.

The monodromy conjecture, which was first stated for the Igusa zeta function, has been
proved for curve singularities by F. Loeser [21]. F. Loeser actually proved a stronger version
of the monodromy conjecture: that any pole of the Denef–Loeser zeta function gives a
root of the Bernstein polynomial of the singularity. The behavior of the Denef–Loeser zeta
function for germs of curves is rather well understood once an explicit embedded resolution
π : (Y,D) → (C2,0) of curve singularities is known, e.g. the minimal one. Basically any
irreducible componentE of the exceptional divisorD = π−1(0) which intersects the total
transformπ−1(V ) in at most two points has no contribution to the residue ofZtop,0(f, s) at
the candidate pole. This was proved in consecutive works by Strauss, Meuser, Igusa and Loeser
for Igusa’s local zeta function, but the same the proof works for the Denef–Loeser zeta function.
W. Veys later gave a much simpler and more conceptual proof of this in [31] and proved in [30]
that all otherE actually do give poles.

There are other classes of singularities where the embedded resolution is known. For example,
for any singularity of hypersurface defined by an analytic function which is non-degenerated with
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respect to its Newton polytope, problems (i) and (iii) above are solved. Nevertheless the problem
(ii) seems to be a hard combinatorial problem. This problem was partially solved by F. Loeser
in the case wheref has a non-degenerate Newton polytope and satisfies certain extra technical
conditions [22].

An embedded resolution is also known for superisolated surface singularities, SIS for short
– see [2]. Singularities of this type, named by I. Luengo in [25], were used to prove that the
µ-constant stratum of an isolated hypersurface singularity is not smooth – see also [28]. E. Artal
used them to disprove a conjecture of S.S.T. Yau.

Even in one of the simplest cases wheref has non-isolated singularities, namely the case
of homogeneous surfaces, problems (i) and (iii) are solved, but problem (ii) was still open.
For any degreed and any homogeneous polynomialfd ∈ C[x1, x2, x3] a candidate pole is
s0 = −3/d. It can be seen when one blows up once at the origin. A sufficient condition for the
candidate poles0 =−3/d of Ztop,0(f, s) to verify the monodromy conjecture is the following:
χ(P2 \ {fd = 0}) 
= 0.

B. Rodrigues and W. Veys proved in [26] the monodromy conjecture for any homogeneous
polynomial fd ∈ C[x1, x2, x3] satisfying χ(P2 \ {fd = 0}) 
= 0. They excluded the case
χ(P2 \{fd = 0}) = 0 because they couldn’t solve problem (ii) for the candidate poles0 =−3/d.

In this paper we prove the monodromy conjecture for SIS singularities and also complete
the proof of the monodromy conjecture for homogeneous polynomials in three variables. More
precisely, the results of this paper are the following.

Let f be a germ of a superisolated hypersurface singularity defined by

f = fd + fd+1 + · · · ∈C{x0, x1, . . . , xn}.

Let us denote byCm ⊂ Pn the divisor associated with the homogeneous polynomialfm. By
definition, the hypersurface singularity(V,0) = (f−1(0),0) ⊂ (Cn+1,0) is superisolated, SIH
for short, if and only if the projective setCd+1∩Sing(Cd) is empty. This is equivalent to the fact
that one needs to blow up the origin only once to resolve the singularity. For eachP ∈ Sing(Cd)
we choose analytic coordinates centered at the origin and we denote bygP the equation ofCd in
these coordinates.

Our first goal is to obtain a formula for the Denef–Loeser zeta function of a SIH singularity in
terms of similar invariants of its tangent cone. Such a formula is given in Section 1.

COROLLARY 1.12. –Let f := fd + fd+1 + · · · ∈ C{x0, x1, . . . , xn} define a SIH singularity
(V,0)⊂ (Cn+1,0). Then its local Denef–Loeser zeta function satisfies the following equality

Ztop,0(V, s) =
χ(Pn \Cd)

t− s
+

χ(Čd)
(t− s)(s+ 1)

+
∑

P∈Sing(Cd)

(
1
t
+ (t+1)

(
1

(t− s)(s+ 1)
− 1

t

)
Ztop,0

(
gP , t

))
,

wheret := n+1+ (d+1)s, Čd =Cd \Sing(Cd) andZtop,0(gP , s) stands for the local Denef–
Loeser zeta function for the germgP at the singular pointP ∈ Sing(Cd).

Using the formula above, the characteristic polynomial formula of the complex algebraic
monodromy of a SIS singularity – e.g. see [2] – and the monodromy conjecture for curves –
see [21] – we prove the following for a SIS singularity of multiplicityd:
• If χ(P2 \Cd)> 0 then the monodromy conjecture holds for(V,0)⊂ (C3,0).
• If χ(P2 \ Cd) � 0, then every pole of the local Denef–Loeser zeta function of
(V,0)⊂ (C3,0), except fors0 =−3/d, verifies the monodromy conjecture.
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Furthermore, ifχ(P2 \ Cd) = 0, ands0 = −3/d is a pole of the local Denef–Loeser zeta
function of the plane curve germCd at some singular point, then the monodromy conjecture for
(V,0)⊂ (C3,0) also holds.

We split the study of the remaining cases in two parts.
We say that a degreed effective divisorD onP2 (d > 3) is abad divisorif χ(P2 \D)� 0 and

s0 =−3/d is not a pole ofZtop,P (gPD, s) for any singular pointP in its supportDred, wheregPD
is the local equation of the divisorD atP.

Let us define

ρ(Cd) := χ
(
P2 \Cd

)
+ χ(Čd)

d

d− 3
+

∑
P∈Sing(Cd)

Ztop,P

(
gP ,−3

d

)
∈Q.

When the tangent coneCd is a bad divisor,s0 =−3/d is a simple pole ofZtop,0(f, s) if and
only if ρ(Cd) 
= 0.

Next we study the bad divisorsCd such thatρ(Cd) 
= 0. It turns out that the residueρ(Cd)
agrees with the value ofz(Cd, s) ats0 =−3/d, wherez(D,s) stands for the Denef–Loeser zeta
function associated with a divisorD onP2. This invariant was recently introduced by W. Veys –
see [33]. This residue also has another meaning:ρ(Cd) coincides with an invariantζK associated
with the Q-canonical divisorK := (−3/d)Cd on the rational surfaceP2. In this paper we use
both of these meanings to extend the notion of the residueρ(D) to bad divisorsD on P2 (not
only for reduced curvesCd) and to some canonical divisors on rational surfaces.

The main part of Section 2 is devoted to determining bad divisorsD onP2 such thatρ(D) 
= 0.
Note that the Euler–Poincaré characteristic condition on a bad divisorD implies thatD has at
least two irreducible components, all of them rational curves – see [16,15,19,5].

Our second main result is the following theorem.

THEOREM 2.15. –LetD be a bad divisor onP2. If ρ(D) 
= 0, then the irreducible components
of D are in a pencilΛ of rational curves having only one base point and such that any fiber
minus the base point is isomorphic toC. Moreover, at least one(resp. two) generic fiber ofΛ is
contained inD if the pencil has two exceptional fibers(resp. one).

The proof of this result is quite elaborate. We use the following result by W. Veys [32].

VEYS’ T HEOREM. – LetD be a curve inP2. If χ(P2 \D) � 0, thenD can be extended to a
configurationD′ ⊃D, still satisfyingχ(P2 \D′)� 0, for which there exists a diagram

Σ
g←−X

f−→ P2,

whereΣ is a ruled surface,f is a composition of blowing-ups with center inD′, and g is a
composition of blowing-downs whose exceptional curve is contained inf−1(D′). Moreover, one
can require the configurationg(f−1(D′)) to consist of one of the following:

(A) One sectionC1 and at least two fibers, or
(B) Two disjoint sectionsC1 andC2 and at least one fiber.

The proof of Theorem 2.15 entails the study of the behavior of the invariantζK when applying
blow-up and blow-down processes. This step has been partially studied in [29] in a slightly
different context.

Only one type of blow-up has an effect onζK . If one starts with a bad divisorD of degreed
in P2, the canonical divisor(−3/d)D is transformed by Veys’ process into a canonical divisor
on the ruled surfaceΣ with support on a curve of type (A) or (B). It is easily seen that such a
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canonical divisorKΣ in a ruled surface verifiesζKΣ = 0. Then we show that arrangements of
rational curves in which the residue changes can be put in a rational pencil of type(0,1) on P2

(see Appendix A).
In order to complete the proof of the monodromy conjecture for SIS singularities we have to

deal with singularities having a tangent coneCd which is a bad divisor withρ(Cd) 
= 0. The last
step in the proof consists of computing the Alexander polynomial of the curvesCd satisfying the
properties described in Theorem 2.15. For this purpose we use Kashiwara’s classification [17] of
pencils of rational curves of type(0,1). We prove, case by case, thatexp(2iπ(−3/d)) is a root
of the Alexander polynomial of the curve at its only singular point with the required multiplicity.
Finally, using the computations in [2], we have thatexp(2iπ(−3/d)) is a root of the Alexander
polynomial of the corresponding SIS singularity.

This work also allows for the generalization of the proof given by B. Rodrigues and W. Veys
of the monodromy conjecture to the case of homogeneous polynomialsfd ∈ C[x1, x2, x3] with
χ(P2 \ {fd = 0}) = 0.

In the case of curves, if an exceptional divisorEi satisfiesχ(Ěi) = 0 (Ěi = Ei \
⋃
j 
=iEj )

thenEi does not contribute to the candidate pole−νi

Ni
of Ztop,0(f, s). This question is more

complicated in the case of surfaces. W. Veys proved in [29] for many such configurations that
E does not contribute to the candidate pole−ν/N, assuming thatE doesn’t intersect any other
component with the same ratio of numerical data (this is the general case).

In this work we find that some candidate poles which appear only on exceptional divisorsEi of
the resolution verifyingχ(Ěi) = 0 are actual poles of the Denef–Loeser zeta function. This is the
case for the first exceptional component of the resolution of a SIS singularity or a homogeneous
surface whose tangent coneD is a bad divisor with residueρ(D) 
= 0 at the pole−3/d.

In our opinion, the theorems we prove in this paper give strong evidence for the monodromy
conjecture in the following sense. We prove that for bad divisorsD, exp(2iπ(−3/d)) is an
eigenvalue of the monodromy of the only singular point ofDred. This fact is not evident a priori
– see Section 5 for details, where we also study arrangements of rational curves onP2.

Finally we use an example of a bad divisorD on P2 whose residueρ(D) 
= 0 to answer an
open question of D. Siersma – see Section 6 for details.

1. General formula for the Denef–Loeser zeta function

The definition of the Denef–Loeser zeta function associated with a morphismf :X→ C can
be extended to an effective divisorD on a nonsingular(n + 1)-dimensional complex variety
X – see [33]. Ifπ :Y →X is an embedded resolution of the support ofD, andEi, i ∈ I, are
the irreducible components of the divisorπ−1(SuppD) with associated multiplicitiesNi, i∈ I,
whereπ∗(D) =

∑
NiEi. Letω be a local generator of the sheaf of holomorphic(n+ 1)-forms

on X and letdiv(π∗ω) =
∑

(νi − 1)Ei be the divisor of its pull-back. TheDenef–Loeser zeta
functionof D is defined by

z(D,s) :=
∑
J⊂I

χ(ĚJ )
∏
j∈J

1
νj +Njs

∈Q(s).

We shall compute the Denef–Loeser zeta function of a SIH singularity inCn+1. We will make
use of three general principles which, at least implicitly, are well known. We begin by recalling
the generalization of this zeta function by J. Denef and F. Loeser [8,33].

Let X be an algebraic(n + 1)-manifold, f :X → C an algebraic function andω an
(n + 1)-meromorphic differential form (algebraically defined) onX such that the polar locus
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of ω is included in the zero locus off . Algebraiccan be replaced byanalyticeither in the germ
case or by adding some natural hypothesis about finiteness. Thus the Denef–Loeser zeta function
Ztop(f,ω, s) can be defined analogously. In this case, theν-invariant is associated with the form
ω rather than with a non-vanishing form. We state the three main principles:

PBM PRINCIPLE 1.1 (See [33, Theorem 5.6]). –Let π :V → X be a proper birational
morphism. Then

Ztop(f,ω, s) = Ztop

(
f ◦ π,π∗(ω), s

)
.

STRATUM PRINCIPLE 1.2. – Let X =
∐
S∈S S be a finite prestratification ofX such that

for eachx ∈X , the local Denef–Loeser zeta functionZtop,x(f,ω, s) at x, depends only on the
stratumS containingx. Let us denote byZtop,S(f,ω, s) the common zeta function associated
with the stratumS. Then,

Ztop(f,ω, s) =
∑
S∈S

χ(S)Ztop,S(f,ω, s).

The key point in this principle is that one may construct a resolution for bothf andω, such
that one can rearrange the terms on the left-hand side of the formula to fit the right-hand side of
the formula.

FUBINI ’ S PRINCIPLE 1.3. –Let us consider two germs of functionfi : (Cni+1,0)→ (C,0)
and two germs of(ni + 1)-holomorphic formωi, i = 1,2. We considerf := f1f2 and
ω := ω1 ∧ ω2 as germs of function and form in(Cn1+n2+2,0). Then,

Ztop,0(f,ω, s) =
2∏
i=1

Ztop,0(fi, ωi, s).

In order to prove Fubini’s Principle, it is enough to consider a proper birational mapping
obtained by combining the resolution off1 andω1 in the first variables and the identity in the
second variables. The PBM Principle assures the invariance of the Denef–Loeser zeta function.
Thus, we obtain a prestratification such that for any stratum, the pull-back off can be written as
some power of coordinate functions in the first variables, andf2 andω2 in the second variables.
On each stratum, we now consider the proper birational mapping associated with the second
variables and the result easily follows.

Example1.4. – Let us take a germf : (Cn+1,0)→ (C,0) and a germ of holomorphic form
ω. We can choose a good representativeW (wheref andω are defined).W comes with a finite
prestratification as in (1.2). All the strata except the origin have Euler–Poincaré characteristic
zero. Then the zeta function of the germ is the same as the zeta function of the good
representative.

Example1.5. – Let us take a germf : (Cn+1,0)→ (C,0) and a germ of holomorphic form
ω. Fix a good representativeW wheref andω are defined. Let us consider the blowing-up
π : Ŵ →W along a smooth subvariety ofW containing0. ConsiderD := π−1(0) and letSD be
a finite prestratification ofD satisfying the property 1.2. Then,

Ztop,0(f,ω, s) =
∑
S∈SD

χ(S)Ztop,S

(
f ◦ π,π∗(ω), s

)
.
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We apply these principles to a SIH singularity defined by

f := fd + fd+1 + · · · ∈C{y0, y1, . . . , yn}.

By definition, the projective setCd+1 ∩ Sing(Cd) is empty. Therefore, the setSing(Cd) of
singular points of the projective hypersurfaceCd is finite. Let us denote by̌Cd the regular part of
Cd ⊂ Pn. Let π :V → (Cn+1,0) be the blow-up at the origin inCn+1. Let ϕ be the lifting off
to V. Let us consider the stratification of the exceptional divisorE � Pn of this blowing-up into
the following strata:

(a) 0-dimensional strataS0
i (i= 1, . . . , s) each consisting of one pointPi ∈ Sing(Cd);

(b) (n− 1)-dimensional stratumSn−1 = Čd;
(c) n-dimensional stratumSn = Pn \Cd.

In a neighborhood of the pointP ∈ Sing(Cd) in V , there exists a coordinate systemz, x1, . . . , xn
such that (locally)Pn coincides with the hyperplane{z = 0} and the functionf ◦ π has the form
v · zd · (gP (x1, . . . , xn)+ z), wherev is invertible (v(0) 
= 0) (from now on, we will simply omit
such “non-essential” factors),gP : (Cn,0)→ (C,0) is a germ of an analytic function whose zero
locus coincides with the germ of the hypersurfaceCd atP.

In the same way, at each point ofSn−1 there exists a local system of coordinates such that the
lifting ϕ has the normal formzd · x1. Finally, at each point ofSn the lifting ϕ has the normal
form zd for some local coordinates. Letω := dx1 ∧ · · · ∧ dxn ∧ dz, then in the corresponding
coordinates the pull-backπ∗(dy0 ∧ · · · ∧ dyn) is znω.

Then from the PBM and Stratum Principles one gets

Ztop,0(f, s) =
χ(Pn \Cd)

t− s
+

χ(Čd)
(t− s)(s+1)

+
∑

P∈Sing(Cd)

Ztop,P

((
z − gP (x1, . . . , xn)

)
zd, znω, s

)
,

wheret := n+1+(d+1)s. Let us fix a singular pointP and setg := gP . Recall that in the local
coordinatesx1, . . . , xn, z the pointP is the origin, andz = 0 is the equation of the exceptional
divisor. The main point is to consider a birational maph1 which is both an embedded resolution
of g−1(0) in coordinatesx1, . . . , xn and the identity inz.

Let us fix some notation about embedded resolutionsh :Y → (Cn,0) of g−1(0). With
each irreducible componentD0,D1, . . . ,Dr of the total transform ofg−1(0), we associate
the numbersNi and νi, as usual. For each subsetJ ⊂ {0,1, . . . , r}, we define the number
χJ := χ(ĎJ ∩ h−1(0)), whereDJ andĎJ are defined as in the introduction. Then

Ztop,0(g, s) =
∑

J⊂{0,1,...,r}
χJ
∏
i∈J

1
νi +Nis

.

The following formula can be easily deduced from the first two principles:

Ztop,0

((
z − g(x1, . . . , xn)

)
zd, znω, s

)
=

∑
J⊂{0,1,...,r}

χJZtop,0

((
z − xJ

)
zd, znωJ , s

)
,

where ifJ = {j1, . . . , jl}, then

xJ :=
l∏
k=1

x
Njk

k , ωJ :=

(
l∏
k=1

x
νjk

−1

k

)
dx1 ∧ · · · ∧ dxn ∧ dz.
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Notation 1.6. – Givennj := aj + bjs, aj , bj ∈ Z>0, j = 1, . . . , l and m1, . . . ,ml ∈ Z>0,
τ := as + b, a, b ∈ Z>0, we denote the local Denef–Loeser zeta function associated with the
germs of functionqzah and of formzbη by

Z(n1, . . . , nl;m1, . . . ,ml; τ, s) := Ztop,0

(
qzah, zbη, s

)
,

where

q :=
l∏
k=1

xbkk , h := z −
l∏
k=1

xmk

k , η :=

(
l∏
k=1

xak−1
k

)
dx1 ∧ · · · ∧ dxn ∧ dz.

We next compute this local Denef–Loeser zeta function by blowing up along the coordinate
subspacez = xl = 0 and applying the above mentioned principles.

Formula 1.7. – Let us assume thatl > 1. If ml > 1, then using the PBM and Stratum
Principles one gets

(n1, . . . , nl−1, nl;m1, . . . ,ml−1,ml; τ, s)

=

(
l∏
j=1

1
nj

)
1

nl + τ + s+ 1

+Z(n1, . . . , nl−1, nl + τ + s+ 1;m1, . . . ,ml−1,ml − 1; τ, s),

and using Fubini’s Principle

Z(n1, . . . , nl−1, nl;m1, . . . ,ml−1,1; τ, s)

=

(
l∏
j=1

1
nj

)
1

nl + τ + s+ 1
+

1
nl + τ + s+ 1

Z(n1, . . . , nl−1;m1, . . . ,ml−1; τ, s).

Then, by induction onml:

Z(n1, . . . , nl−1, nl;m1, . . . ,ml−1,ml; τ, s)

=
1

nl + (τ + s+ 1)ml

(
ml

l∏
j=1

1
nj

+Z(n1, . . . , nl−1;m1, . . . ,ml−1; τ, s)

)
.

And by induction onl, if u := τ + s+1:

Z(n1, . . . , nl;m1, . . . ,ml−1,ml; τ, s)

=
l∑
k=2

mk

(
k∏
j=1

1
nj

)(
l∏
j=k

1
nj +mju

)
+

(
l∏
j=2

1
nj +mju

)
Z(n1;m1; τ, s).

Formula 1.8. – Some computations show that

Z(n1;m1; τ, s) =
1

n1 +m1u

(
m1

n1
+

1
s+ 1

+
1

τ +1
− 1
)
.

Formula 1.9. – Combining the last formula we obtain

Z(n1, . . . , nl;m1, . . . ,ml; τ, s)

=
1
u

l∏
j=1

1
nj

+ (u+ 1)
(

1
(τ +1)(s+1)

− 1
u

) l∏
j=1

1
nj +mju

.

4e SÉRIE– TOME 35 – 2002 –N◦ 4



MONODROMY CONJECTURE FOR SOME SURFACE SINGULARITIES 613

Applied to the case of SIH singularities, i.e.,τ = n+ ds, t := (n+ 1)+ (d+ 1)s, mi =Ni and
ni = νi, one gets thatZ(ν1, . . . , νl;N1, . . . ,Nl;n+ ds, s) equals

1
t

l∏
j=1

1
νj

+ (t+1)
(

1
(t− s)(s+ 1)

− 1
t

) l∏
j=1

1
νj +Njt

.

Remark1.10. – In [7], J. Denef and F. Loeser, usingp-adic integration and the Grothendieck–
Lefschetz trace formula, showed that the local Denef–Loeser zeta function of the non-vanishing
function germgP verifies the equality

Ztop,0

(
gP ,0

)
=

∑
J⊂{0,1,...,r}

χJ
∏
j∈J

1
νi

= 1.

THEOREM 1.11. –If P ∈ Sing(Cd) then

Ztop,0

((
z − gP (x̄)

)
zd, ω, s

)
=

1
t
+ (t+1)

(
1

(t− s)(s+ 1)
− 1

t

)
Ztop,0

(
gP , t

)
.

COROLLARY 1.12. – Let f := fd + fd+1 + · · · ∈ C{y0, y1, . . . , yn} define a SIH singularity
(V,0)⊂ (Cn+1,0). Then its local Denef–Loeser zeta function satisfies the following equality

Ztop,0(V, s) =
χ(Pn \Cd)

t− s
+

χ(Čd)
(t− s)(s+ 1)

+
∑

P∈Sing(Cd)

(
1
t
+ (t+1)

(
1

(t− s)(s+ 1)
− 1

t

)
Ztop,P

(
gP , t

))
,

wheregP is a local equation ofCd at P andt := n+1+ (d+ 1)s.

2. The pole s0 =−3/d for n= 2

From now on, we will consider the case of surface singularities, i.e.n= 2. Let

f := fd + fd+1 + · · · ∈C{y0, y1, y2}

be an analytic function such that its zero locus(V,0)⊂ (C3,0) defines a SIS singularity.
The germ(V,0) ⊂ (C3,0) is an isolated surface singularity. HenceH0(F,C) andH2(F,C)

are the only non-vanishing homology vector spaces on which the monodromy acts (we denote
the Minor fiber byF ). The only eigenvalue of the action of the monodromy onH0(F,C) is
equal to1. The characteristic polynomial of the action of the complex monodromy onH2(F,C)
is given by the formula

∆V (t) =
(td − 1)χ(P

2\Cd)

(t− 1)

∏
P∈Sing(Cd)

∆P
(
td+1

)
,

where∆P (t) is the characteristic polynomial (or Alexander polynomial) of the action of the
complex monodromy of the germ(Cd, P ) on H1(FgP ,C) (FgP denotes the corresponding
Milnor fiber), e.g. see [2].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



614 E. ARTAL BARTOLO, P. CASSOU-NOGUÈS, I. LUENGO AND A. MELLE HERNÁNDEZ

PROPOSITION 2.1. –Let (V,0)⊂ (C3,0) a SIS singularity with tangent coneCd ⊂ P2. Then:
(i) The poles ofZtop,0(V, s) are contained in the set{−1,−3/d} ∪ {− ν+3N

(d+1)N } whenever
−ν/N is a pole of the local Denef–Loeser zeta function of the germ ofCd at some point
P ∈ Sing(Cd).

(ii) If s0 
=−3/d is a pole ofZtop,0(V, s) thenexp(2iπs0) is an eigenvalue of the monodromy
zeta function ofV .

(iii) Let s0 =−3/d. If one of the following conditions holds thenexp(2iπs0) is an eigenvalue
of the monodromy zeta function ofV :
• χ(P2 \Cd)> 0;
• s0 is a pole ofZtop,P (Cd, s) at some pointP ∈ Sing(Cd) andχ(P2 \Cd) = 0.

(iv) If s0 = −3/d is a multiple pole ofZtop,0(V, s) thenexp(2iπs0) is an eigenvalue of the
local monodromy zeta function at some singular point ofCd.

(v) If s0 = −3/d is not a pole ofZtop,P (Cd, s) for any P ∈ Sing(Cd), the residue of
Ztop,0(V, s) at−3/d equalsdρ(Cd) where

ρ(Cd) := χ
(
P2 \Cd

)
+χ(Čd)

d

d− 3
+

∑
P∈Sing(Cd)

Ztop,P

(
Cd,−

3
d

)
.

Proof. –The formula in 1.12 for the local Denef–Loeser zeta function can be rewritten in the
form

Ztop,0(V, s) =
3+ χ(P2 \Cd)s
(3 + ds)(s+ 1)

− s(2 + sd)
(1 + s)(3 + sd)t

∑
P∈Sing(Cd)

(
(t+ 1)Ztop,P (Cd, t)− 1

)
,

wheret = 3 + (d + 1)s andZtop,P (Cd, s) means the local Denef–Loeser zeta function of the
germ at the pointP ∈ Sing(Cd).

Recall thatZtop,P (Cd,0) = 1 – see Remark 1.10 – forP ∈ Sing(Cd). Then,s = 0 is not a
pole of 1

s ((s+1)Ztop,P (Cd, s)− 1) ands=− 3
d+1 is not a pole ofZtop,0(V, s) if different from

−1 (that is,d 
= 2). The other candidate poles are evident and this argument proves (i).
The above formula of the characteristic polynomial∆V (t) of the complex monodromy also

gives (iii).
For (ii), we must verify the statement fors0 = − ν+3N

(d+1)N where−ν/N is a pole of the
local Denef–Loeser zeta function of the germ ofCd at some pointP ∈ Sing(Cd). Let
ε1 := exp(−2iπ νN ). According to the monodromy conjecture for curves [21],ε1 is a root of
∆P (t) and by the previous formula,ε := exp(2iπs0) is a root of∆P (td+1), sinceεd+1 = ε1.

Hence, for the casesχ(P2 \Cd) � 0, orχ(P2 \Cd)< 0 whereε is not a root of(td − 1), we
are done.

For the rest of the cases, we will prove thats0 = −3/d. Sinceεd = 1 then s0d ∈ Z∗, i.e.
there existsk > 0 such that(ν + 3N)d= k(d+1)N. It implies thatνd=N(d(k − 3) + k) or
equivalentlyν/N = k−3+k/d. In the case of plane curves one has0< ν/N � 1 which implies
that0< k− 3 + k/d� 1, i.e.3 d

d+1 < k � 4 d
d+1 < 4.

Disregarding curves of degreed = 1, we will assumed � 2 and hence2 < k < 4, i.e. k = 3.
Note that ifk = 3 then−ν/N =−3/d ands0 =−3/d. We have proved (ii).

The remaining statements are direct consequences of the monodromy conjecture for curves
and the formulæ for the Denef–Loeser zeta functions and for the characteristic polynomial of
the monodromy. ✷

Example2.2. – We consider the cased � 3 andχ(P2 \Cd) � 0. It is easily seen that only four
cases are possible: (I)Cd has two linesL1 andL2; (II) Cd is the union of three lines meeting at
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Table 1

Ztop,0(V, s) ∆V (t)

(I) 4+s
(1+s)(4+3s)

t3−1
t−1

(II) 11
(1+s)(11+12s)

(t12−1)(t4−1)

(t3−1)(t−1)

(III) 3s2+6s+4
4(1+s)3

(t4−1)3

(t−1)

(IV) 3s+15
(1+s)(15+16s)

(t16−1)(t4−1)

(t8−1)(t−1)

one point; (III)Cd is the union of three generic lines and (IV)Cd is the union of a smooth conic
and a tangent line. The computations for both invariants are in Table 1.

With these examples the monodromy conjecture for any SIS singularity of multiplicityd= 2
or 3 is proved. From now on we will assume thatd > 3.

We have proved the monodromy conjecture for SIS in all but two cases:
(N − 1) χ(P2 \Cd) = 0, s0 =−3/d is not a pole for the local Denef–Loeser zeta function at

any singular point inCd andρ(Cd) 
= 0.
(N − 2) χ(P2 \Cd)< 0.
Our goal in this section is to determine which curvesCd can occur in the cases(N − 1) and

(N − 2). The condition about the Euler–Poincaré characteristic implies thatCd has at least two
irreducible components and all of them are rational curves – see [16]. Moreover, Veys’ theorem
shows that the irreducible components ofCd are components of curves in a pencilΛ in P2

(defined by a rational functionR) of rational curves. IfB is the set of base points ofΛ then the
generic fiber ofR is a rational curve with at most two punctures. These pencils have been studied
by H. Kashiwara in [17] and T. Kizuka [18] – see Appendix A.

In the case(N − 2), Cd has at least three irreducible components and we can apply Corollary
3.6 in [32] and show that after Veys’ process we are in a configuration of type (A) in Veys’
theorem.

In order to study(N − 1) we introduce the notion of a bad divisor.

DEFINITION 2.3. – We say that a degreed effective divisorD on P2 (d > 3) is abad divisor
if χ(P2 \D) � 0 ands0 = −3/d is not a pole ofZtop,P (gPD, s), for any singular pointP in its
supportDred, wheregPD is the local equation of the divisorD atP.

Note that in order to deal with the case(N − 1) it would be enough to define a bad divisor as
a divisor verifyingχ(P2 \D) = 0 and the same condition for the poles0 =−3/d. We need this
more general definition to prove Theorem 2.15.

The residueρ(Cd) is related to the Denef–Loeser zeta function associated with any effective
divisorD onP2 introduced by W. Veys. LetD be an effective divisor onP2 of degreed (d > 3).
LetD= a1D1 + · · ·+ arDr and setĎi :=Di \ Sing(Dred). From Section 1, the Denef–Loeser
zeta function of the divisorD on P2 can be rewritten as follows

z(D,s) = χ
(
P2 \D

)
+

r∑
i=1

χ(Ďi)
1 + ais

+
∑

P∈Sing(Dred)

Ztop,P (D,s).

In the SIS case, the curveCd is reduced, i.e.ai = 1, and thenρ(Cd) is equal to the value
z(Cd,−3/d). In general, for a divisorD in P2 we defineρ(D) := z(D,−3/d) ∈Q∪ {∞}. We
are also going to use another interpretation of the rational number (or infinity)ρ(D).
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LetD be an effective divisor onP2 of degreed > 3, then− 3
dD is aQ-canonical divisor onP2.

Let π :X→ P2 be the minimal embedded resolution for the support ofD in P2. The mapπ is a
sequence of blowing-ups centered at infinitely near points of points inSing(Dred) such that the
divisorπ∗D is a normal crossing divisor. LetKX be theQ-canonical divisor on the surfaceX
obtained from the pull-back of− 3

dD – see Remark 2.4. The irreducible components ofKX are
the strict transforms of the irreducible components ofD and the exceptional components over
each singular point ofDred. The corresponding multiplicities inKX are:
• −3ai

d for the strict transform of the irreducible componentDi of D.
• −3

d Ni+νi−1, for any exceptional componentEi, associated with a pointP ∈ Sing(Dred),
whereNi andνi are defined as in Section 1.

Remark2.4. – For instance, ifπ1 :Y → P2 is the blow-up at some pointP then
KY = π∗(− 3

dD) +E. In general, the mapπ :X→ P2 is a composition of blow-ups. By canon-
ical pull-back of aQ-divisorK we mean that ifK is the divisor onP2 of a multivaluated mero-
morphic2-formω, then its canonical pull-backKX is the divisor of the pull-backπ∗ω of ω.

2.1. ζ-invariants of Q-canonical divisors

In this subsection,X is a rational surface andKX :=
∑r
i=1(νi−1)Ei is aQ-canonical divisor

onX with normal crossings. LetG be the dual graph ofKX with verticesV (G) and edgesE(G).
The weight of the vertexvi associated withEi is defined bywvi := νi; for an edgee we denote
by V (e) the set of its endpoints (or extremities) and we setwe := 1.

This graph can also be weighted by the self-intersection numbersai := E2
i of the irreducible

componentsEi of KX on the surfaceX . A subgraphG1 of G is a graph such that
V (G1)⊂ V (G) and any edge inG, with extremities inV (G1), is an edge inG1.

DEFINITION 2.5. – We say that a subgraphG1 of G is a set of bamboosif any connected
component of the graphG1 is linear, the irreducible components ofKX associated with the
vertices ofG1 are rational curves and ifv ∈ V (G) is an endpoint ofG1, then its valency inG is
less than3.

In such a case, each connected component ofG1 is called abamboo. A bamboo is of type1
(resp.2) if it has one (resp. two) neighboring vertex (resp. vertices) inG.

LetV (B) := {vi1 , . . . , vir} be the set of vertices of a bambooB of G. The intersection matrix
of B is the integer matrixA = (aij) ∈M(r,Z) such that ifj 
= k, thenajk is the number of
edges betweenvij andvik , i.e. the intersection number betweenEij andEik , andajj := aj . The
determinantof the bamboo isdet(B) := det(−A) (which does not depend on the order of the
vertices ofB, e.g. see [31]).

DEFINITION 2.6. – LetG1 
=G be a set of bamboos ofG. We define the graphG/G1 which
has weighted vertices, weighted edges and weighted arrows as follows:
• The set of verticesV (G/G1) is nothing butV (G) \ V (G1) and they are weighted as inG.
• The set of edgesE(G/G1) has two types of elements. Edges ofG not intersectingG1

produce edges ofG/G1; theses edges are weighted by1. Each bamboo of type2 produces
also one edge with the obvious extremities and weighted by the determinant of the bamboo.
• The setA(G/G1) of arrows of the graphG/G1 is in one-to-one correspondence with the

set of bamboos ofG1 of type 1. It is weighted by the determinant of the corresponding
bamboo. Note that each arrowa in G/G1 has only one neighbor vertexva.

DEFINITION 2.7. – LetK0 be the reduced subdivisor ofKX consisting of all the irreducible
componentsEi of KX such thatνi = 0. Let G0 be the dual graph ofK0. We say thatKX is
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admissibleif G0 is a set of bamboos. In such a case we define

ζKX := χ(X̌) +
∑

v∈V (G/G0)

χ(Ěv)
wv

+
∑

e∈E(G/G0)

we
∏

v∈V (e)

1
wv

+
∑

a∈A(G/G0)

wa
wva

∈Q.

Note that the invariantζKX does not change if we add irreducible components which are not
in the support ofKX . The adjunction formula and a standard induction argument are the key
points of the following result, which is a generalization of one of Veys’ results in [31, Theorem
3.3].

PROPOSITION 2.8. – Let G1 be a set of bamboos such that for anyv ∈ V (G) \ V (G1) we
havewv 
= 0. Then:

ζKX = χ(X̌) +
∑

v∈V (G/G1)

χ(Ěv)
wv

+
∑

e∈E(G/G1)

we
∏

v∈V (e)

1
wv

+
∑

a∈A(G/G1)

wa
wva

∈Q.

PROPERTY 2.9. – If v ∈ V (G) is a vertex with weight zero then the adjunction formula
implies that the sum of the neighbor weights is equal to the valency of the vertex minus2. It
turns out that each connected component ofK0 consists only of one rational curveE. This
implies that:
• if the bamboo is of type2 and gives an edgee ∈E(G/G0), then the weights of the vertices

in V (e) are opposite to each other,
• and if it is of type1 and gives an arrowa ∈ A(G/G0), then its weight inV (a) is equal to
−1.

We examine the behavior of these invariants under blow-ups.

PROPOSITION 2.10. – LetX be a rational surface and letKX be an admissibleQ-canonical
divisor. Letπ :Y →X be the blowing-up of a pointP ∈X and letKY be the canonical pull-back
of KX . Then,KY is admissible and:

(i) If P does not belong toK0 \ Sing(KX,red), thenζKX = ζKY .
(ii) If P belongs toK0 \ Sing(KX,red), let B1 be the bamboo ofK0 containingP . Let us

suppose that the self-intersection ofB1 is−a and the neighbors ofB1 in G have weights
w and−w (or w =−1 if it is of type1). Then, the corresponding bambooB2 in KY has
self-intersection−a− 1 and

ζKX + 1− 1
w2

= ζKY .

Proof. –Let EP be the exceptional divisor of the blowing-upπ :Y → X of X at the point
P ∈ X. It is easily seen that ifKX is admissible, this is also the case forKY . We restrict
ourselves to the proof of the most relevant cases.

The proof of the remaining cases is based on the study of the contribution of the pointP
(and its neighbors) toζKX and the exceptional curveEP (and its neighbors) toζKY . What we
mean bycontributionis that there existsη ∈Q such thatζKX = η + (contribution toζKX ) and
ζKY = η+ (contribution toζKY ).

CASE 1. –The pointP is a double point ofKX,red, P ∈Ei ∩Ej , νi = 0.

Let us consider again weightswi(= 0),wj . The curveEi gives a bamboo inKX , with
determinanta and neighbor weights−wj andwj . The contribution of this bamboo toζKX is
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−a/w2
j . The strict transform ofEi in KY is a bamboo of determinanta+1 and neighbor weights

−wj ,wj . The intersection point between the new exceptional divisorEP andEj contributes with
1/w2

j . Hence its contribution toζKY is:

−a+ 1
w2
j

+
1
w2
j

.

CASE 2. –The pointP is smooth inKX,red, P ∈ Ěi andνi = 0.

Let us assume the notation of (ii). The contribution of the bambooEi to ζKX is equal to
−a/w2. The strict transform ofEi is also a bamboo inKY whose contribution is−a−1

w2 . But
in this case the exceptional divisorEP hasνEP = 1, so it is not in the support ofKY and the
Euler–Poincaré characteristic of the complement ofKY in Y differs by1 from the one ofKX in
X. ✷

COROLLARY 2.11. – LetX be a rational surface and letKX be an admissibleQ-canonical
divisor. Letπ :Y →X be the blowing-up at a pointP ∈X and letKY be the canonical pull-back
of KX . If P belongs toK0 \ Sing(KX,red) then

χ(X \KX)<χ(Y \KY ).

In particular, there is a unique blowing-up process in which the following holds: ζKX 
= ζKY and
χ(X \KX) < χ(Y \KY ). Such a process is the blowing-up ofX at P ∈K0 \ Sing(KX,red)
having valency2 and whose neighbor vertices have weights±w, w 
= 1.

The following result computes the invariantζKX in the hypothesis of Veys’ theorem.

PROPOSITION 2.12. – Let KX be an admissibleQ-canonical divisor on a ruled rational
surfaceX such that its support is of type(A) or (B). ThenζKX = 0.

Proof. –Using Nagata transformations which do not changeζKX we can assumeΣ= P1×P1.
Let us considerS andF the general0-section and the general fiber respectively. It is known

that canonical divisors are linearly equivalent to−2S− 2F .
For case (A), let us denote byS0 the section and byF1, . . . , Fr the fibers. One can assume

r � 2. Let KΣ be an admissible canonical divisor with support contained in the curves above.
ThenKΣ =−2S0+

∑r
j=1 kiFi, with

∑r
j=1 ki =−2. The result follows by applying the formula

in the definition of the invariantζKΣ .
For case (B), let us denote byS0, S1 the sections and byF1, . . . , Fr the fibers. One can assume

r � 2. Let KΣ be an admissible canonical divisor with support contained in the curves above.
SinceΣ= P1 × P1 we can interchange fibers and sections if necessary.

In order forKΣ to be admissible, we can suppose thatKΣ = a0S0 + a1S1 +
∑r
j=1 kiFi, with∑r

j=1 ki = −2, a0 + a1 = −2 anda0, a1 
= −1. Once again, the result is a consequence of the
definition of the invariantζKΣ . ✷
2.2. ζ-invariant and bad divisors

Next we will relateρ(Cd) with the invariants defined above.

LEMMA 2.13. – Let D be an effective divisor onP2 of degreed, d > 3. Let π :X → P2 be
the minimal resolution ofSing(Dred). Let us suppose that, for any singular pointP ∈ Dred,
the local Denef–Loeser zeta function ofD at P does not have a pole at−3/d. LetKX be the
canonical pull-back of− 3

dD byπ. ThenKX is admissible andρ(D) = ζKX .
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Proof. –LetE be an exceptional component of the embedded resolution ofD at a pointP and
let N be the multiplicity ofE in the total transform ofD and letν − 1 be the multiplicity in the
pull-back of a local generator of the sheaf of2-holomorphic forms.

It is easily seen that the weight ofE in KX equals−(3/d)N + ν. If −3/d is not a pole
for the local Denef–Loeser zeta function ofD atP then from Veys’ results on the monodromy
conjecture for curves [30], we can assume that the valency ofE in the divisor is either1 or 2.
This fact implies thatKX is admissible. ✷

Example2.14. – LetD ⊂ P2 be the union of two smooth conicsC1 andC2 which meet at
only one point{P} = C1 ∩ C2. ConsiderD as divisor of degree4 andK := (−3/4)D as a
Q-rational divisor onP2. Let π :X→ P2 be the minimal embedded resolution of the singularity
of D at the pointP. The rational surfaceX has the configuration of curves and the corresponding
associated invariants shown in Fig. 1.

The dual graph of the resolutionG has only one bambooG0 and the corresponding graph
G/G0 is shown in Fig. 2.

TheζKX -invariant is non-zero because

ζKX =
1
1
2

+ (−1)(−1)+ 2
1
1
4

+ 2
1

−1
2

1
2

+
1

−1
2 (−1)

+ 2
1

1
4 (−1)


= 0.

Thus theζKX -invariant does not “behave well” under blow-ups and we only have partial
control over it.

Below we computeZtop,0(VD, s) and∆V (t) for a SIS singularity(VD,0) ⊂ (C3,0) whose
tangent cone isD. In this caseχ(P2 \D) = 0, ands0 =−3/4 is not a pole ofZtop,P (D,s) for
the germ of curveD atP. HenceD is a bad divisor onP2. Since the residueρ(D) = ζKX 
= 0,
thens0 =−3/4 is a simple pole ofZtop,0(VD, s) and, as one can easily check,exp(−2iπ 3

4 ) is a
root of∆V (t).

Fig. 1.

Fig. 2.
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Ztop,P (D,s) =
3s+ 5

(1 + s)(5 + 8s)
,

Ztop,0(VD, s) =
130s+ 20s2 + 87

(1 + s)(3 + 4s)(29+ 40s)
,

∆V (t) =
(t5 − 1)(t40 − 1)
(t10 − 1)(t− 1)

.

We have mentioned that the Euler–Poincaré characteristic condition on a bad divisorD implies
that D has at least two irreducible components, which happen to be rational curves. In the
definition of a bad divisor we imposed thats0 = −3/d is not a pole (althoughs0 might be a
candidate pole) ofZtop,P (D,s) for any singularityP in Dred. A direct application of Veys’
Theorem to a bad divisorD allows for an extension of the curveD to another curveD′ ⊃D,
havingχ(P2 \D′)� 0, such that the following diagram holds:

Σ π3←−X2
π−→ P2

whereπ is a composition of blowing-ups with center inD′ andπ3 is a composition of blowing-
downs with exceptional curve contained inπ−1(D′) and such thatΣ is a ruled surface. We call
this aVeys’ process. The configurationT := π3(π−1(D′)) consists of one of the types (A) or (B)
in Veys’ theorem. In particular, the curveD′ is a union of fibers and sections of a particular kind
of rational pencils studied by H. Kashiwara in [17] and by T. Kizuka [18] – see Appendix A. Note
that several pencils may match for a given curveD ⊂ P2 and thus several different constructions
can be acquired. Let us callR the rational function defining such a pencilΛ and let us define
R̄ := π∗R.

Veys’ processes can be decomposed in three stages by factoringπ asπ2 ◦ π1.
• In the first step we consider the minimal embedded resolutionπ1 :X1 → P2 of the local

singularities ofDred ⊂ P2. At this stage,ρ(Cd) is already computed asζKX1
, whereKX1

is the canonical pull-back of(−3/d)Cd. Since−3/d is not a pole ofZtop,P (Cd, s) for any
P ∈ Sing(Cd), thenKX1 is admissible.
• Next, we consider the resolutionπ2 :X2 → X1 of the indeterminacy locus of the pencil
Λ∗ ⊂X1 defined by the functionπ∗

1R – it might happen thatπ2 is the identity map.
• Finally, letπ3 :X2→Σ be the contraction ofX2 onto a rational ruled surfaceΣ.

X2

π3 π2

Σ X1

π1

P2

From now on, we can also assume thatπ is minimal in the following sense – see [32, (4.3)]:
The mapπ :X2→ P2 is the minimal morphism that resolves the indeterminacies of the morphism
induced by the pencilΛ.

The irreducible components of the strict transform ofD in X2 have to be either irreducible
components of members of the total transform of the pencilΛ or sections of the map̄R :X2→ P1

(recall that a curveE is asectionif the restricted map̄R| :E→ P1 is surjective).
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We have proved in the previous lemma that the residueρ(D) of a bad divisorD is equal to the
ζKX1

-invariant of any admissibleQ-canonical divisor onX1. Proposition 2.12 shows that (in the
final configurations) theζKΣ -invariant is zero.

In the following theorem we describe bad divisorsD with ρ(D) 
= 0 – in particular, curves of
type(N − 1) – in terms of Veys’ theorem. Using Kashiwara’s notation, we show that they come
from a rational pencilΛ on P2 of type (0,1), i.e. a pencil of rational curves having only one
base point and such that any fiber minus the base point is isomorphic toC – see Appendix A.
We are looking for bad divisors having non-zeroρ(D). For this purpose we must understand the
behavior of the mapsπ2 andπ3, and find out when it is possible that at least one of the blow-ups
in π2 or π3 matches the hypothesis of 2.10(ii), with1 
=w2.

THEOREM 2.15. – LetD be a bad divisor onP2. If ρ(D) 
= 0, thenD can be transformed,
by means of Veys’ process, into a curveT of type(A) with at least three fibers and such that the
irreducible components ofD are in a pencilΛ of type(0,1).

Moreover, at least one generic fiber(resp. two) of Λ is contained inD if the pencil has two
exceptional fibers(resp. one).

Proof. –Note that the first part of the theorem was already proved in Corollary 3.6 in [32] for
the case where the Euler–Poincaré characteristic verifiesχ(P2 −D)< 0.

The irreducible components ofD may correspond either to components of the fibers of the
pencil or to sections. Each base point ofΛ produces a section of the pencil inX2. Therefore, if a
component was transformed into a section after Veys’ process, we would obtain a curve of type
(B) (we will show that this is not possible).

Since theζ-invariant of the surfacesX1 andΣ are different, at least one of the blow-ups in
π2 :X2 → X1 or π3 :X2 → Σ is as in 2.10(ii). This means that we have blown up at a point
P ∈ E which is in the conditions of Proposition 2.10 or Corollary 2.11. Let us denote byEP
the exceptional divisor in the corresponding rational surface, which comes from a blowing-up at
P ∈E changing theζ-invariant.

CASE 1. – The changes of theζ-invariant happen inπ3 :X2→Σ.

Since the weight ofEP in the canonical divisor is equal to1, it will be either an exceptional
component forπ = π2 ◦ π1 :X2→ P2 or an irreducible component ofD′ \D in Veys’ theorem.

(i) In the first case, the divisorE has more than2 neighbors in the exceptional divisor of
π :X2→ P2. Its weight in the canonical divisor is0. Note that it is not possible for this
component to become a component of valency2 in the minimal resolutionπ1. The reason
is that, in this case, the neighbor component which is not blown-down has weight equal to
−1 and thus theζK -invariant does not change. ThereforeE has more than2 neighbors in
the exceptional divisor ofπ1 :X1→ P2, and−3/d is a pole of the local Denef–Loeser zeta
function of at least one local singularity ofDred. This implies thatD is not a bad divisor.

(ii) In the second case, the Euler–Poincaré characteristic of the complement changes. This
implies thatD′ is transformed into a curveT of type (A) with at least three fibers. As seen
above, in this case the Euler–Poincaré characteristic of the complement is increased by
one from the Euler–Poincaré characteristic on the curve of type (A) or (B). Since we must
keep this invariant non-positive, in the curve of type (A) or (B) we must have a negative
Euler–Poincaré characteristic. This is only possible if the curve is of type (A) with at least
three fibers – see Corollary 2.11. In particular, in this case no component ofD is a section.

CASE 2. – The changes of theζ-invariant occur at some blow-up inπ2 :X2→X1.
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In this case the pointP , at which the blow-up is performed, is a base point of the strict
transform of the pencilΛ. The exceptional componentE which containsP has weight0 in
the canonical divisor, valency2 in the dual graph and neighbors with weights±w (w 
=±1).

Once again, the weight ofEP is 1. After several blowing-ups we get a treeT of exceptional
curves based onE. Note that the component which intersects our originalE is weighted by1.
In T there is at least one section which has weight greater than0. If E is also a section, we have
at least two sections and thus a pencil of type(0,2). We have a curve of type (B). Using the
kind of arguments shown in Proposition 2.12, the weightss1 ands2 of the two sections in the
corresponding canonical divisor inΣ verify s1 + s2 = 0. In this case the weight ofE is 0 and
the weight of the other section is greater than0, which is impossible. Hence, the divisorE is not
a section.

Therefore the curveE is a component of a fiber of the pencil. This implies that eitherE
disappears in one of the contractions ofπ3 or it remains inΣ. In any case, one of the three
neighbors must be contracted. Due to the minimality ofπ at least one of the exceptional
components of the treeT has to remain on the surfaceΣ. Thus, one of the original neighbors is
contracted. By the adjunction formula, this means that the other one has weight−1, contradicting
the hypothesis. Thus this case is also impossible.

Therefore, the only possible situation is given in Case 1(ii). The curveEP gives an irreducible
componentπ(EP ) of D′ \D, which is a special fiber of the pencilΛ since reduced members of
of pencils of type(0,1) are irreducible. Such pencils have at most two special fibers and thenD
contains at least one generic fiber ofΛ. ✷

Remark2.16. – The general ideas of the proof of Case 2 have been pointed out to us by
W. Veys to whom we are grateful. Our original proof was longer and it was based on the analysis
of Kizuka’s work [18].

Example2.17. – As we have seen in the previous example, there are curves matching
the hypothesis of the theorem: two smooth conics with only one intersection point. Using
Kashiwara’s pencils one can construct many such examples. For instance, one can take two
generic elements of a pencil whose generic member is a quartic with anA6 singularity. Other
examples are obtained by means of the pencil generated by the square of a quintic curve with an
A12 singularity and the fifth power of a conic with highest contact with the quintic at the singular
point. All the other curves of the pencil are generic and have only one singular point with local
equationx4 − y25 = 0. Any curve having at least two members of the pencil as components (at
least one generic and at most one special) has a non-zero residue.

3. Monodromy conjecture for SIS

From the previous section we learned that, in order to prove the monodromy conjecture for
SIS, we have to study the candidate poles0 =−3/d for those SIS whose tangent coneCd has all
its components in a pencilΛ of type(0,1) verifying the conditions(N − 1) or (N − 2):
(N − 1) The divisorCd verifiesχ(P2 \Cd) = 0, s0 =−3/d is not a pole for the local Denef–

Loeser zeta function at any singular point inCd andρ(Cd) 
= 0. In fact, since its components
are in a pencil of type(0,1), Cd has only one singular pointP . Furthermore,s0 is a pole if and
only if ρ(Cd) 
= 0. In this case it is a simple pole and the curveCd has only two irreducible
components at least one of them being a generic fiber of the pencil. According to the formula
for the characteristic polynomial of the complex monodromy of the SIS, we have to prove that
exp(−2iπ(3/d)) is a root of the Alexander polynomial of the germ ofCd at the singular pointP .
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(N − 2) χ(P2 \ Cd) < 0. Let r be the number of irreducible components ofCd (r > 2 and
χ(P2 \Cd) = 2− r). Sinceρ(Cd) is related with the residue of the Denef–Loeser zeta function
at−3/d we distinguish two cases:
• If s0 is a simple pole the above discussion also holds, and hence, we must prove that
exp(−2iπ(3/d)) is a root of multiplicity at least(r− 1) of the Alexander polynomial ofCd
atP.
• If s0 is a multiple pole, thens0 =−3/d is a pole of the local Denef–Loeser zeta function at

the singular pointP. In this case, the irreducible components ofCd can also be non-generic
fibers of the pencil (since the residue can be equal to or different from zero). We will prove
thatexp(−2iπ(3/d)) is a root of multiplicity at least(r − 1) of the Alexander polynomial
of Cd atP.

The pencilΛ is defined by a rational functionRl on P2. Pencils of type(0,1) have at most
two special members. We denote them by{Pl = 0} and{Ql = 0} – see Appendix A.

THEOREM 3.1. – The monodromy conjecture is true for SIS singularities.

After all our previous analysis the above theorem is a consequence of the following result.

THEOREM 3.2. – LetD be a divisor of degreed on P2 whose support is the curveC1 ∪C2,
where(1) C1 is the union of any number of different generic members{Rl = µi} of the pencil
defined byRl and (2) C2 is one of the curves{Pl = 0},{Ql = 0}, {PlQl = 0} or {Rl = µ},
µ 
= µi. Letr be the number of irreducible components ofD.

(1) If r � 3 thenexp(−2iπ(3/d)) is a root of the Alexander polynomial of the germ ofD at
its singular point, and its multiplicity is at least(r− 1).

(2) Otherwise, ifρ(D) 
= 0, thenexp(−2iπ(3/d)) is a root of the Alexander polynomial of
the germ ofD at its singular point.

In fact, the result will be proved for a (not necessarily reduced) divisorD, and used in the
following section.

The Alexander polynomial of the complex monodromy of a germ of a plane curve singularity
is equal to the Alexander polynomial of its splice diagramD. Let lv be the multiplicity of the
vertexv andδv its valence. According to [13, p. 96], the Alexander polynomial of a diagramD
is

∆D(t) = (t− 1)
∏
v

(
tlv − 1

)δv−2

the product being taken over all the vertices of the diagram.

Remark3.3. – Letv be a vertex of valence1 connected to a vertexv′ of valence greater than
or equal to3. Then

tlv′ − 1
tlv − 1

is a polynomial, sincelv divideslv′ .

Proof of the theorem. –Let n be the number of irreducible components of the curveC1. We
have four different cases to consider, depending on the irreducible components of the curveC2.
• The irreducible component ofC2 is {Pl = 0}.
• The irreducible component ofC2 is {Ql = 0}.
• The irreducible component ofC2 is {Rl = µ}.
• The irreducible components ofC2 are{Pl = 0} and{Ql = 0}.

We use Kashiwara’s classification of type(0,1)-pencils and divide the proof of the theorem in
several steps. ✷
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3.1. Rational pencils of type (0,1) belonging to FII

We begin by studying the setFII of pencils of type(0,1). From Appendix A, in the case
FII one has two splice diagrams. The diagrams only appear with the decorations needed in our
computations. The first one1 is shown on the left in Fig. 3 and the second one2 is shown on the
right, wherem ∈ {ml+1,ml−1}. We need the integerc defined as the product of the numbers
which are attached to the non-arrowed vertical edges. On the righthand side of Fig. 3, letc be the
product of the numbers which are attached either to the non-arrowed vertical edges or to the last
edge on the right.

For each one of the above types of splice diagrams we have four different cases to consider,
depending on the irreducible components of the curveC2.

CASE 1. – The irreducible component ofC2 is {Pl = 0}.
The splice diagram1 is shown in Fig. 4. Because of the preceding remark there exists a

polynomialH(t) ∈C[t] such that

∆(t) =H(t)
(tL − 1)n

tL′ − 1
,

whereL is the multiplicity of the vertex at which the generic fibers{Rl = µi} separate andL′ is
the multiplicity at the right end of the diagram.

We have the following equalities

d= (k1 + · · ·+ kn)deg(Rl) + kdeg(Pl) = deg(Pl)
(
(k1 + · · ·+ kn)ml + k

)
.

To computeL we use the fact that the intersection multiplicity of two generic curves of the pencil
ism2

l deg(Pl)
2 and the intersection multiplicity of a generic curve of the pencil with{Pl = 0} is

ml deg(Pl)2. Hence,

L= (k1 + · · ·+ kn)m2
l deg(Pl)

2 + kml deg(Pl)2.

ThereforeL = dml deg(Pl). Note thatL′ = cml((k1 + · · · + kn)ml + k) and c can be
computed usingml deg(Pl) =mlmc. Thus,

L′ =
ml((k1 + · · ·+ kn)ml + k)deg(Pl)

m
.

Fig. 3.

Fig. 4.
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Assume that(3/d)L′ ∈N, then

ml((k1 + · · ·+ kn)ml + k)deg(Pl)
m

=
h((k1 + · · ·+ kn)ml + k)deg(Pl)

3
,

that is,3ml = hm. Sincegcd(ml,m) = 1 andgcd(m,3) = 1, this is not possible, and thus, it
proves the theorem in this case.

The splice diagram2 is shown in Fig. 5. The first part of the computation is analogous to the
previous case. We still haveL= 2ddeg(P0). One can calculateL′ as

L′ = (4λ1 +1)c
(
2k+4(k1 + · · ·+ kn)

)
,

and compute the intersection number betweenQ0 andP0 as2(4λ1 + 1)c = 2deg(P0). Thus
L′ = 2d and we cannot conclude the proof. Note that we also have

∆(t) =H(t)
(tL − 1)n

tL′′ − 1

and

L′′ = λ1c(2k+ 4(k1 + · · ·+ kn)) =
2λ1d

(4λ1 + 1)
.

Finally, if we assume that(3/d)L′′ ∈N we obtain another contradictory equationh(4λ1 + 1) =
6λ1.

CASE 2. – The irreducible component ofC2 is {Ql = 0}.

The splice diagram1 is shown in Fig. 6. In this case, we have

∆(t) =H(t)
(tL − 1)n

tL/m
2
l − 1

where, again,H(t) ∈C[t] is a polynomial.

Fig. 5.

Fig. 6.
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Fig. 7.

We have the following equalities

d= (k1 + · · ·+ kn)deg(Pl)ml + kml =ml
(
(k1 + · · ·+ kn)deg(Pl) + k

)
,

and

L= (k1 + · · ·+ kn)deg(Pl)2m2
l + kdeg(Pl)m2

l .

If (3/d) · · · L
m2

l

∈N, then

deg(Pl)
(
(k1 + · · ·+ kn)deg(Pl) + k

)
= hml

(k1 + · · ·+ kn)deg(Pl) + k

3
,

that is, 3deg(Pl) = hml. Note again thatgcd(deg(Pl),ml) = 1 and gcd(ml,3) = 1. The
computation is analogous for splice diagram2.

CASE 3. – The irreducible component ofC2 is {Rl = µ}.
The splice diagram1 is shown in Fig. 7. The Alexander polynomial is

∆(t) =H(t)
(tL − 1)n+1

(tL/m
2
l − 1)(tL′ − 1)

.

Analogously, we obtain the following equalitiesd= (k+ k1 + · · ·+ kn)ml deg(Pl), and

L= (k+ k1 + · · ·+ kn)m2
l deg(Pl)

2 = (k + k1 + · · ·+ kn)cm2
l ,

L′ = deg(Pl)m2
l

k+ k1 + · · ·+ kn
m

.

Assume that(3/d) · L
m2

l

∈N. Thus,

(k + k1 + · · ·+ kn)deg(Pl)2 = hdeg(Pl)ml
k+ k1 + · · ·+ kn

3
,

that is,3deg(Pl) = hml which is impossible. If(3/d)L′ ∈N, then

deg(Pl)m2
l

k+ k1 + · · ·+ kn
m

= hml deg(Pl)
k + k1 + · · ·+ kn

3
.

This gives3ml = hm which is impossible. The theorem is, hence, proved in this case.
The splice diagram2 is shown in Fig. 8. We can write the Alexander polynomial as

∆(t) =H(t)
(tL − 1)n+1

(tL/4 − 1)(tL′′ − 1)
.
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Fig. 8.

Fig. 9.

The computation ofL is the same as above. The computation ofL′′ gives

L′′ = 4λ1c(k+ k1 + · · ·+ kn).

Note that2(4λ1 + 1)c= 2deg(P0). Thus,

L′′ = 4λ1
k+ k1 + · · ·+ kn

4λ1 + 1
.

If (3/d)L′′ ∈N, one has3λ1 = h(4λ1 + 1) with h ∈N, which is impossible.

CASE 4. – The irreducible components ofC2 are{Pl = 0} and{Ql = 0}.
Note that in this case the number of irreducible components ofC1 is n � 1, because we are

in the case(N − 2) with multiple pole. The splice diagram1 is shown on the lefthand side of
Fig. 9. The Alexander polynomial of the local singularity is

∆(t) =H(t)
(
tL − 1

)n
whereH ∈C[t] is a polynomial. The following equalities hold

L=m2
l deg(Pl)

2(k1 + · · ·+ kn) + kml deg(Pl)2 + k′m2
l degPl,

d= k deg(Pl) + (k1 + · · ·+ kn)ml deg(Pl) + k′ml.

ThenL=ml deg(Pl)d.
The splice diagram2 is shown on the righthand side of Fig. 9. Computations are the same.

Then we are done for the case where the corresponding rational function is inFII .

Example3.4. – Computing the value fors0 = −3/d in the examples given in Appendix A,
one sees that, in fact,s0 = −3/d is a pole of the local Denef–Loeser zeta function of the
corresponding SIS singularity.

For example, for

Q0 = y− x2, P0 =
(
y− x2

)2 − 2xy2
(
y− x2

)
+ y5.
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Fig. 10.

Its splice diagram is shown in Fig. 10. The local Denef–Loeser zeta function of the curve
D= {P0 = 0} ∪ {R0 = µ} at the origin is

Ztop,0(D,s) =
25

29+ 150s
+

2
(29 + 150s)(15+ 76s)

+
2

15 + 76s
− 1

29+ 150s

− 1
15+ 76s

+
1

(29+ 150s)(1+ s)
+

1
(15 + 76s)(1 + s)

andZtop,0(D,−3/d) + 2d/(d− 3) = −51/4. The Alexander polynomial of the curveD at its
only singular point is

∆(t) = (t− 1)
(t150 − 1)(t76 − 1)
(t6 − 1)(t38 − 1)

.

We will come back to this example in Section 5.

3.2. Rational pencils of type (0,1) belonging to FI

We next compute the Alexander polynomial in caseFI , – see Appendix A. For this purpose,
familiesI(0) andI+(N ;λ1, . . . , λN ) are considered simultaneously.
• The splice diagram for Case 1 and Case 3 is shown in Fig. 11.

Its Alexander polynomial is

∆(t) =H(t)
(tL − 1)n

tL′ − 1
,

whereH(t) is a polynomial. One hasL=md andL′ = d/2. Thusexp(−6iπ/d) is a root
of multiplicity n of the Alexander polynomial.
• The splice diagram for Case 2 and Case 4 is shown in Fig. 12.

One has∆(t) =H(t)(tL−1)n−1. ThusL=md. This implies that the conjecture is verified
in this case ifn 
= 1.

The remaining family inFI is I−(N ;λ1, . . . , λN ).
• The splice diagram for Case 1 and Case 3 is shown in Fig. 13.

One has

∆(t) =H(t)
(tL − 1)n

tL′ − 1
, or ∆(t) =H1(t)

(tL − 1)n

tL′′ − 1
.

We still haveL=md, but we now haveL′ = d andL′′ = d λ1
λ1+1 . If λ1 = 2 and there exists only

one component, i.e.n= 1, thenexp(2iπ(−3/d)) is not a root of the Alexander polynomial.
In order to prove the monodromy conjecture in the two remaining cases we have to prove that

the bad divisorD verifiesρ(D) = 0. The curveD consists of (at least) two generic members of
a pencil of typeI−(N ; 2, . . . , λN ).

From its resolution graph – see Appendix A – one can check that the only possible contraction
to the ruled surfaceΣ in these cases is the blowing-down of the line{Q= 0}. The curve{Q= 0}
is the only special fiber of these pencils, it is also a multiple fiber. In any case, it is readily checked
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Fig. 11.

Fig. 12.

Fig. 13.

that the mapπ2 is the identity (one resolves the pencil when resolving the curve, since there are at
least two generic fibers). The blowing-ups of type (ii) in 2.10 produce special fibers of the pencil.
Thus, only one such blowing-up can take place. It is easily seen that the blowing-up producing
{Q= 0} occurs in a component of valency one, and in this case theζ-invariant does not change
and the residueρ(D) is zero.
• For Case 2 and Case 4 the arguments of the proof are analogous and we leave the proof to

the reader.
The theorem is proved.✷

4. Monodromy conjecture for homogeneous polynomials

B. Rodrigues and W. Veys have proved the monodromy conjecture for any homogeneous
polynomialfd ∈C[x1, x2, x3] with χ(P2 \ {fd = 0}) 
= 0, see [26].

In fact, in the proof of their Theorem 4.2 they showed that for any homogeneous polynomial
fd ∈ C[x1, x2, x3] of degreed and for any poles0 
= −3/d of Ztop,0(f, s), exp(2iπs0) is
an eigenvalue of the local monodromy offd at some complex point of the effective divisor
D= f−1

d (0).
One of the key points in their proof of the homogeneous case, is the following equality – see

[26, (3.6)]
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Ztop,0(fd, s) =
1

3 + ds
z(D,s)

=
1

3 + ds

(
χ
(
P2 \D

)
+

r∑
i=1

χ(Ďi)
1 + ais

+
∑

P∈Sing(Dred)

Ztop,P (D,s)

)
,

whereD= a1D1 + · · ·+ arDr andĎi :=Di \ Sing(Dred).
We are interested in the remaining caseχ(P2 \ {fd = 0}) = 0 and the candidate pole

s0 =−3/d. If s0 is a pole of order greater than1, then eithers0 =−3/d is a pole ofZtop,P (D,s)
(and thus the monodromy conjecture for curves implies thatexp(2iπs0) is a root of the local
monodromy offd at some complex point ofD) or s0 = −3/d is the pole−1/ai, for someai.
In such a case, ifP ∈Di ∩ Sing(D) 
= ∅ then the branches ofD atP have multiplicityai and
W. Veys showed thatZtop,P (D,s) has−1/ai as a pole. Again, the monodromy conjecture for
curves implies thatexp(2iπs0) is a root of the local monodromy offd at some complex point
of D.

The discussion above translates into the following:s0 =−3/d is a simple pole ofZtop,0(fd, s)
if and only if D is a bad divisor onP2 andz(D,−3/d) = ρ(D) 
= 0,∞. However, according to
Theorem 3.2exp(2iπ(−3/d)) is an eigenvalue of the monodromy of its only singular point.
Thus, the monodromy conjecture is also proved in this remaining case. The results by B.
Rodrigues and W. Veys and the above discussion show the following theorem.

THEOREM 4.1. –For any homogeneous polynomialfd ∈ C[x1, x2, x3] the monodromy
conjecture holds.

5. Rational arrangements of plane curves

The results of this paper can be applied to prove the non-existence of some arrangements of
rational curves inP2. For such a reason we restrict ourselves to arrangements whose complement
in the plane has Euler–Poincaré characteristic0.

Let D =
⋃
Ci be an arrangement of reduced rational curves. The dual graph of the minimal

embedded resolution ofD is determined by the following data:
(1) The degreesdi of the irreducible components ofD.
(2) The list of the Denef–Loeser types of the local singularities ofD.
(3) The irreducible component ofD which contains each branchΓ of D at a singular point.
We call these datathe combinatorial typeof the curveD in P2. We also call the data in (2)

together with the total degreed of D the local combinatorial dataof D in P2.
As a corollary of Theorem 2.15 and Theorem 3.1 one obtains the following result, which is

equivalent to the monodromy conjecture for SIS.

COROLLARY 5.1. – LetD be a bad divisor of degreed on P2. If ρ(D) 
= 0 thenD has only
one singular point andexp(2iπ(−3/d)) is an eigenvalue of the complex monodromy at that
singular point.

Given a divisorD on P2 and a pointP ∈ D, the local Denef–Loeser zeta function
Ztop,P (D,s), the residueρ(D) and the eigenvalues of the complex algebraic monodromy of
(D,P ) are determined by the local combinatorial data ofD. Hence the monodromy conjecture
gives necessary conditions on the local combinatorial data ofD for D to exist.

We have developed a program with MapleV (available upon request) which calculates the local
embedded resolution of the singularities of a curveD, the local Denef–Loeser zeta function
Ztop,P (D,s), the residueρ(D) and the eigenvalues of the complex algebraic monodromy of
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(D,P ) from the local combinatorial data ofD. Thus, given local combinatorial data ofD the
above necessary conditions can be easily verified. Let us present some few examples.

Example5.2. – LetD consist of two conics which only meet at one point and a line which is
tangent to each conic in different points. Using elementary properties of pencils of conics it is
easy to see thatD does not exist. In this case, the residueρ(D) would be−3/5 (different from
0) but there would be three singular points. Thus it would give a counterexample to the above
corollary.

Example5.3. – Consider a rational curveC of degree six with only one singular pointP
which is a simple singularity. ThenP can be either anA19 or A20 singularity. It is known that
theA19 case exists, e.g. see [34]. The double covering ofP2 ramified alongC is aK3-surface.
UsingK3-surface theory one shows that theA20 case is not possible.

Let D =C ∪C2 be the curve whose components are the sexticC with theA20 singularity at
P andC2, where the latter is the unique conic passing through the first five infinitely near points
of C atP . We suppose that this conic in fact passes through the sixth infinitely near point ofC
atP . Hence the conic only meetsC at its singular point. The residueρ(D) would be different
from 0 and the characteristic polynomial of the monodromy of(D,P ) would turn out to be

∆D,P (t) =
(t− 1)(t17 − 1)(t54 − 1)

(t27 − 1)(t3 − 1)
.

HenceD does not exist becauseexp(2iπ(−3/8)) is not an eigenvalue of the complex
monodromy ofD atP.

Example5.4. – ConsiderC a rational curve of degree10 with only one singular pointP
whose multiplicity sequence is[4,4,4,4,4,4,1,1,1,1] = [46] (this curve exists and it appears
in the classification of H. Kashiwara, see Appendix A).

Let D=C ∪C2 be the curve whose components areC andC2, where the latter is the unique
conic passing through the first five infinitely near point ofC atP ; by Bezout’s theorem there is
no other intersection point. In this case the residueρ(D) = −3 andexp(2iπ(−3/12)) is a root
of the characteristic polynomial of the monodromy ofD atP. Its Alexander polynomial is the
following:

∆D,P (t) =
(t− 1)(t25 − 1)(t120 − 1)

(t5 − 1)(t30 − 1)
.

The following is a list of several possible cuspidal rational curves of degree10 which might
exist. We give each singularity as a sequence of multiplicities.

[45,26], [45,25] + 1A2, [45,24] + 2A2, [45,24] + 1A4,

[45,23] + 3A2, [45,23] + 3A2, [45,23] + 1A2 +1A4, [45,23] + 1A6,

[45,23] + 1E6, [45,22] + 4A2, [45,22] + 2A2 +1A4, [45,22] + 2A4,

[45,22] + 1A2 + 1A6, [45,22] + 1A2 +1E6, [45,3] + 1A2 + 1A4, [45,3] + 3A2,

[45,3] + 1A6, [45,3] + 1E6, [45,22] + 1A8.

If one considers the corresponding curveD as the union of the curve of degree10 with these
singularities and the conic as before, then all of them define bad divisors with residueρ(D) 
= 0.
Thus all of them but the first one do not exist because they have more than one singular point. In
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fact, the first one would also give a counter-example to the above corollary. The invariants for a
SIS(V,0) whose tangent cone is a curve with such properties are

Ztop,0(V, s) =
93547584s4+ 436242144s3+294239146s2+ 71173441s+ 5854275

7(1+ s)(1 + 4s)(59+ 234s)(81+ 325s)(175+ 702s)
,

∆V (t) =
(t819 + 1)(t364 − t351 + t13 − 1)(t260 + t195 + t130 + t65 + 1)

(t− 1)
.

Thens0 =−1/4 is a pole of the Denef–Loeser zeta function but−i = exp(2iπ−1
4 ) is not an

eigenvalue of the complex monodromy. Hence such a curve does not exist.

Question. – Suppose one gives a set of local data, the question arises whether there exists a
curve satisfying such combinatorics. In this situation we will say we have apotential curve. Note
that concepts such as rationallity, bad divisor or residue at a singular point only depend on the
combinatorics, so we can talk about these concepts for a potential curve. Hence, Corollary 5.1
gives a necessary condition for a potential rational bad divisorD with ρ(D) 
= 0 to exist, namely
exp(2iπ−3

d ) is an eigenvalue of the complex monodromy at its singular point.
An interesting question is whether such condition is also sufficient or not, that is, for any

combinatorial data for a potential bad divisorD with ρ(D) 
= 0 if exp(2iπ 3
d) is an eigenvalue of

the complex monodromy at its singular point then a curve with these data always exists.

6. On a question by D. Siersma

Throughout this section letfd ∈ C[x1, x2, x3] be a degreed homogeneous polynomial such
that the projective curveD = f−1

d (0) ⊂ P2 is reduced. Because of the homogeneity condition,
fd defines a local and a global object in the following sense.

D. Siersma in [27] studied singularities with a1-dimensional critical locus. In particular his
results can be applied to the Milnor fibration of the germfd : (C3,0)→ (C,0). Its Milnor fiber
F has non-vanishing homology groups concentrated in dimensions0, 1 and2. In fact,H2(F,Z)
is a free group andH1(F,Z) can have torsion. One has the algebraic monodromy acting onF :

Ti :Hi(F,Z)→Hi(F,Z).

Sincefd is homogeneous, the Milnor fibration can be extended toCn \ f−1
d (0). This has been

studied by A. Dimca in [11]. From [27] or [11] it is known that a necessary condition forT2 to
be equal to the identity,T2 = 1, is χ(P2 \D) = 0. It was an open question if this condition is
also a sufficient condition.

A characterization of such a condition would be of interest after the following theorem of
A. Dimca and A. Némethi, [12].

THEOREM A. – For i= 0,1,2 the following statements are equivalent.
(a) Ti = 1,
(b) the(reduced) homology monodromy representation

ρ(fd)i :π1(C∗, pt)→Aut
(
H̃i(F,Z)

)
is trivial.
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D. Siersma listed several examples where the conditionχ(P2 \D) = 0 was also sufficient.
In all of these examples the residueρ(D) = 0. Consider Example 2.14, namelyD consisting of
two conics meeting at only one pointP which is anA7 singularity, that isSing(D) = {P}. The
curveD has degree4 andχ(P2 \D) = 0. This example appeared on D. Siersma’s list, but his
equation is not anA7 singularity.

We are going to prove thatT1 
= 1 for fd definingD, for instance

fd =
(
x1x3 − x2

2

)(
x1x3 − x2

2 + x2
1

)
.

This fact and the following well-known formula for the zeta-function of the monodromy of
homogeneous polynomials, [1], prove that the conditionχ(P2 \D) = 0 does not implyT2 = 1:

det(1− tT0)det(1− tT2)
det(1− tT1)

=
(
1− t4

)χ(P2\D) = 1.

To computeT1 we use the method described in [3] – see also [11,14,20,23] for other interesting
methods. Letπ :X→ P2 be the minimal embedded resolution of the singularity ofD at the point
P. Henceπ∗(D) = C1 +C2 + 2E1 + 4E2 + 6E3 + 8E4 is a normal crossing divisor. Consider
for k = 1,2,3 the ideal sheafIk on P2 defined as follows:
• If Q ∈ P2 \ Sing(D), thenIkQ =OP2,Q.

• If P ∈ Sing(D), thenIkP is the following ideal ofOP2,P : if h ∈OP2,P , thenh ∈ IkP if and
only if the vanishing order ofπ∗(h) along eachEi is, at least,−(νi − 1)+ [kNi

4 ] (where[.]
stands for the integer part of a real number).

For l � 0, the following map

σl,k :H0
(
P2,O(l)

)
→OP2,P /IkP :h �→ hP + IkP

is well defined (up to scalars). The following result was proved in [3]:

STATEMENT. – The dimension of the eigen-subspace corresponding to the eigenvalue
exp(2iπ(k/4)) of the algebraic monodromyT1 of D is equal todimcokerσk−3,k.

In particular, fork = 3 one hasH0(P2,O(0))∼= C, and

{
−(νi − 1) +

[
3Ni
4

]}4

i=1

= {0,1,1,2}.

Let x, y be local coordinates atP such thatx = 0 is the tangent line ofD at P. It is easy to
see thatI3

P = (x, y2). It turns out thatdimcokerσ0,3 is greater than0. In particularT1 is not the
identity.

Question. – For any curve{fd = 0} ⊂ P2 such thatχ(P2 \ {fd = 0}) = 0, it would be
interesting to study if there is any relationship between the monodromy conjecture and the fact
that the monodromy representationρ(fd) is the identity.
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Appendix A

Since we are concerned with rational functions onP2 with rational fibers, we review some
facts related to this theory. All assertions in this appendix are explained in much greater detail in
[17,18].

LetΛ be a pencil on the projective planeP2 defined by a non-constant rational functionR. Let
{p1, . . . , ps} be the set of base points of the pencil. The functionR defines a well-defined map
R :P2 \ {p1, . . . , ps}→ P1.

We say thatΛ (or R) is of type(g,n) if the irreducible components of a generic fiber of the
mapR are open Riemann surfaces of genusg with n points on the boundary. A pencil (or a
rational function) of type(0, n) is calledrational. In addition, if it is of type(0,1) or (0,2) then
we say thatΛ (orR) is of special type.

H. Kashiwara in [17] (resp. T. Kizuka in [18]) classified the pencils of type(0,1) (resp. pencils
of type(0,2)).

The pencils of type(0,1) on P2 have only one base pointP , all the members of the pencil
are irreducible curves of type(0,1) whose only singular point isP, and all the members of the
pencil, but at most two, are reduced.

The pencils of type(0,2) on P2 have at most two base points (this will give two sections in
the resolution process), one member of the pencil has two irreducible components and the other
members are irreducible.

The pencils of special type are classified in two classes: (1) classFI : all pencils of special
type for which there exists a member of the pencil which is a projective line and (2) classFII :
the pencils not having a line as a member.

In this appendix we collect the graphs for the pencils of type(0,1) obtained by H. Kashiwara.
We translate her graphs into Eisenbud–Neumann splice diagrams [13].

Next we recall the required results of H. Kashiwara. They are expressed in terms of the
resolution graphs. We will also give them in terms of splice diagrams, which are more convenient
for our purposes.

Let
−→
Gl denote the uppermost graph in Fig. 14 ifl = 2j − 1, j � 1, the one at the bottom

lefthand side ifl= 2j, j � 1, and the one at the bottom righthand side ifl= 0.

Fig. 14.
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LEMMA A.1. – Defineml, l ∈N, by

m0 = 2, m1 = 5, ml = 3ml−1 −ml−2.

If l = 2j − 1, j � 1, thenml is the determinant of the graph on the lefthand side of Fig.15. If
l= 2j, j � 1, thenml is the determinant of the graph on the righthand side of Fig.15.

Proof. –Denote bynl the determinant of the above graphs. The computation of these
determinants is due to N. Duchon and is explained in [13, p. 153]. Forj = 1, it is easy to compute
thatn1 = 5 andn2 = 13. One easily has the recurrence formulanl = 7nl−2 − nl−4. The lemma
is proved. ✷

H. Kashiwara decomposesFII in different sets that will be studied independently. Forl ∈N,
let Rl ∈ FII be a rational function given by

Rl =
Pml

l

QdegPl

l

.

Let Σ be the resolution graph of the pencilRl. Let alsoŜ0 and Ŝ∞ be the strict transforms
of {Pl = 0} and{Ql = 0} respectively. The graphΣ ∪ Ŝ0 ∪ Ŝ∞ is given in [17, Theorem 6.1,
p. 536].

CASE 1. – II (l), l � 0.

For l � 0, the graphΣ∪ Ŝ0 ∪ Ŝ∞ is shown in Fig. 16.

LEMMA A.2. –The splice diagram of the germ{Pl = 0} ∪ {Rl = µ} ∪ {Ql = 0} at its
singular point is shown in Fig.17.

Proof. –The strict transform of{Rl = µ} is transversal to the unique component, in the
resolution graph, with self-intersection−1. Using the relation between resolution graphs and
splice diagrams as explained in [13], one can check that the corresponding splice diagram is that
in Fig. 18.

Fig. 15.

Fig. 16.
Fig. 17.

Fig. 18.
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By Lemma A.1, curves{Pl = 0} and {Ql = 0} only meet at(0,0). The computation of
intersection multiplicity, which is also explained in [13], yieldsa1b1 =mlml+1 andb1 =ml+1.
Moreover, since{Rl = 0} is a generic member of the pencil,a2b1ml+1 = a1b2ml. Since
gcd(ml,ml+1) = 1, one hasa2 =m2

l andb2 =m2
l+1. Thus the lemma is proved.✷

Note that, along the lines, we have also proved the following

LEMMA A.3. – If l = 2j − 1, j � 1, then the integerml is the determinant of the graph on
the left-hand side of Fig.19. If l = 2j, j � 1, thenml is the determinant of the graph on the
right-hand side.

The simplest example of rational functions inII (l) is described in Example 3.4. Its splice
diagram can be seen in Fig. 10.

CASE 2. – II+(l,N ;λ1, . . . , λN ), l � 0.

We denote by
←−
Gl the graph

−→
Gl when read from right to left and by+

−→
Gl the graph

−→
Gl whose

weight at the left end is increased by one. The graph is shown in Fig. 20, whereλ1, . . . , λN
belong toZ�0 if l � 1 and toZ>0 if l = 0. TheN -tuple (λ1, . . . , λN ) determines (and it is
determined by) the resolution graphs of the vertical sides. We do not use them so we do not need
to be more explicit.

LEMMA A.4. –The splice diagram of the germ{Pl = 0} ∪ {Rl = µ}∪ {Ql = 0} is shown in
Fig. 21.

Proof. –From Lemmas A.1 and A.3, we know that the splice diagram is the one shown in
Fig. 22.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.
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Since {Rl = 0} is a generic fiber of the pencil, we havebm2
l = aml+1 deg(Pl). Since

gcd(ml,ml+1 deg(Pl)) = 1 andgcd(a, b) = 1, we havea=m2
l . ✷

An example of such a rational function is given by the following formulæ. Let

φ= xy − x3 − y3, P−1 = y− x2, P1 =
(
φ5 +P 3

0

)
/P−1,

F = φP 2
0 + aP1, P =

(
F 5 + P 13

0

)
/P1.

The polynomialP has degree52, and is in a(0,1)-pencil withP0. Its splice diagram is shown
in Fig. 23.

CASE 3. – II−(0,N ;λ1, . . . , λN ).

The resolution graph is shown on the lefthand side of Fig. 24.

LEMMA A.5. –The splice diagram of the germ{Pl = 0}∪{Rl = µ}∪{Ql = 0} is shown on
the righthand side of Fig.3.

The proof uses the same argument as above.
One example of such a rational function is

F1 = φP 2
−1 + a3yP

3
−1 + a2y

3P 2
−1 + a1y

5P−1 + a0y
7, P =

(
P 7
−1 + F 2

1

)
/y.

The polynomialP has degree13 and is in a(0,1)-pencil withP−1. Its splice diagram is shown
on the righthand side of Fig. 24.

CASE 4. – II−(l,N ;λ1, . . . , λN ), l � 1.

Its resolution graph is given in Fig. 25.

Fig. 23.

Fig. 24.

Fig. 25.
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LEMMA A.6. –The splice diagram of the germ{Pl = 0}∪{Rl = µ}∪{Ql = 0} is shown on
the lefthand side of Fig.26.

The proof uses the same argument as above. One example of such a rational function is

F2 = φP0 + aQ4
0, P =

(
P 8

0 +F 5
2

)
/Q0.

The polynomialP has degree38 and is in a(0,1)-pencil withP0. Its splice diagram is shown on
the righthand side of Fig. 26.

Next we recall the graphs that H. Kashiwara gives for the caseFI .

CASE 1. – I (0).

Let us consider the graph on the left-hand side of Fig. 27. This produces the splice diagram on
the right-hand side of Fig. 27, which fits the case of the two conics mentioned in Example 2.14.

CASE 2. – I+(N ;λ1, . . . , λN ).

In this case we have the graph and the splice diagram shown in Fig. 28.

CASE 3. – I−(N ;λ1, . . . , λN ).

In this case we have the graph and the splice diagram shown in Fig. 29.

Fig. 26.

Fig. 27.

Fig. 28.

Fig. 29.
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