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MONODROMY CONJECTURE FOR
SOME SURFACE SINGULARITIES

By E. ARTAL BARTOLO, P. CASSOQ-NOGUESI. LUENGO AND
A. MELLE HERNANDEZ

ABSTRACT. — In this work we give a formula for the local Denef-Loeser zeta function of a superisolated
singularity of hypersurface in terms of the local Denef-Loeser zeta function of the singularities of its tangent
cone. We prove the monodromy conjecture for some surfaces singularities. These results are applied to the
study of rational arrangements of plane curves whose Euler—Poincaré characteristic is three.
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RESUME. — Dans ce travail, nous donnons une formule pour la fonction zéta locale de Denef-Loeser
d’'une singularité superisolée d’hypersurface, en termes des fonctions zéta locales des singularités de son
cone tangent. Nous démontrons la conjecture de la monodromie pour certaines singularités de surfaces.
Nous appliquons ces résultats a I'étude d’arrangements, de caractéristique d’Euler trois, de courbes
rationnelles.
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Introduction

Throughout this paper the complex numbers will be the ground field. The local Denef-Loeser
zeta functionZ.p 0(f, s) € Q(s) is an analytic (but not topological, see [4]) subtle invariant
associated with any germ of an analytic functipn(C"**,0) — (C,0). This rational function
was first introduced by J. Denef and F. Loeser as a sort of limit ofthdic Igusa zeta function,
see [7,8] and it was called the topological zeta function. Its former definition was written in terms
of any embedded resolution of its zero locus gébm0) := (f~1(0),0) C (C**1,0) (although
it does not depend on any particular resolution). In [8], J. Denef and F. Loeser gave an intrinsic
definition of Z.p,0( f, s) using arc spaces and the motivic zeta function — see also [10] and the
Séminaire Bourbaki talk of E. Looijenga [24].

Let us recall the definition of the Denef-Loeser zeta functions associated with a polynomial
f €Clxo,...,z,], see [7,8]. Letr: Y — C"*! be an embedded resolution of the hypersurface
V defined by the zero locus gf Let E;, i € I, be the irreducible components of the divisor
7~ 1(f~1(0)). For each subset C I we set

Ej= ﬂ E; and E;:=FE;\ U Eugy
jGJ J¢J

For eaclhy € I, let us denote by; the multiplicity of £; in the divisor off o = and byv; — 1 the
multiplicity of E; in the divisor ofr* (w) wherew is a non-vanishing holomorphia + 1)-form
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in C™*!, Then thdocal Denef-Loeser zeta functiof f is:

1
I/j +Nj8

Zsop,o(f,8) == Z X(EJ N W_l(o)) H

JcI jeJ

€ Q(s),

and theDenef-Loeser zeta functiaf f is:

Zuopf,8) 1= 32 x(E) [ —— € Q(s),

vi+ N;s
JcI jeJ i+ NG

wherey denotes the Euler—Poincaré characteristic.

Each exceptional divisor of an embedded resolutiofy’, D) — (C"*1,0) of the germ(V,0)
gives a candidate pole of the rational functiy, o (f, s). Nevertheless only a few of them give
an actual pole o, o(f,s). There are several conjectures related to the Denef-Loeser zeta
functions. In this paper we are interested in thenodromy conjectureee [6,7].

It is known that, for any given: € V, the Milnor fibration of the holomorphic functiory
atz is the C* locally trivial fibration f|: B.(z) N f~*(D;) — D}, where B.(z) is the open
ball of radiuse centered atr, D, = {z € C: [2| <5} andD; is the open punctured disk
(0 < n < € ande small enough). Any fibeF ., of this fibration is theMilnor fiber of f atx. The
monodromy transformatioh: F'r , — FY , is the well-defined (up to isotopy) diffeomorphism
of Fy . induced by a small loop arouriie I,,. The complex algebraic monodromy ¢f at
x is the corresponding linear transformatibn: A, (F ,,C) — H.(F} ., C) on the homology
groups.

Thelocal monodromy conjecturgtates thaif s, is a pole of the Denef—Loeser zeta function
Ziopo(f,s) of the local singularity defined by, thenexp(2irs() is an eigenvalue of the local
monodromy at some complex pointfof!(0). Note that if f defines an isolated hypersurface
singularity, therexp(2imsy) has to be an eigenvalue of the complex algebraic monodromy of the
germ(f~(0),0).

There are three general problems to consider when trying to prove (or disprove) the conjecture
using resolution of singularities:

(i) Explicit computation of an embedded resolution of the hypersurféce) C (C**,0).

(if) Elimination of the candidate poles which are not actually pole&@f o(f, s).

(i) Explicit computation of the eigenvalues of the complex algebraic monodromy (or
computing the characteristic polynomials of the corresponding action of the complex
algebraic monodromy) in terms of the resolution data.

The monodromy conjecture, which was first stated for the Igusa zeta function, has been
proved for curve singularities by F. Loeser [21]. F. Loeser actually proved a stronger version
of the monodromy conjecture: that any pole of the Denef-Loeser zeta function gives a
root of the Bernstein polynomial of the singularity. The behavior of the Denef-Loeser zeta
function for germs of curves is rather well understood once an explicit embedded resolution
7:(Y,D) — (C2,0) of curve singularities is known, e.g. the minimal one. Basically any
irreducible component of the exceptional divisoD = 7—1(0) which intersects the total
transformz—1(V') in at most two points has no contribution to the residueZgf, o(f, s) at
the candidate pole. This was proved in consecutive works by Strauss, Meuser, Igusa and Loeser
for Igusa’s local zeta function, but the same the proof works for the Denef-Loeser zeta function.
W. Veys later gave a much simpler and more conceptual proof of this in [31] and proved in [30]
that all otherE actually do give poles.

There are other classes of singularities where the embedded resolution is known. For example,
for any singularity of hypersurface defined by an analytic function which is non-degenerated with
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MONODROMY CONJECTURE FOR SOME SURFACE SINGULARITIES 607

respect to its Newton polytope, problems (i) and (iii) above are solved. Nevertheless the problem
(i) seems to be a hard combinatorial problem. This problem was partially solved by F. Loeser
in the case wher¢ has a non-degenerate Newton polytope and satisfies certain extra technical
conditions [22].

An embedded resolution is also known for superisolated surface singularities, SIS for short
— see [2]. Singularities of this type, named by I. Luengo in [25], were used to prove that the
p-constant stratum of an isolated hypersurface singularity is not smooth — see also [28]. E. Artal
used them to disprove a conjecture of S.S.T. Yau.

Even in one of the simplest cases whgrdas non-isolated singularities, namely the case
of homogeneous surfaces, problems (i) and (iii) are solved, but problem (ii) was still open.
For any degreel and any homogeneous polynomif € C[z1,z2,x3] a candidate pole is
so = —3/d. It can be seen when one blows up once at the origin. A sufficient condition for the
candidate pole, = —3/d of Zi.p,0(f, s) to verify the monodromy conjecture is the following:
X(P*\ {fa=0})#0.

B. Rodrigues and W. Veys proved in [26] the monodromy conjecture for any homogeneous
polynomial f; € Clxy,x2, 23] satisfying x(P? \ {fs = 0}) # 0. They excluded the case
x(P?\ {f4=0}) = 0 because they couldn't solve problem (ii) for the candidate pole —3/d.

In this paper we prove the monodromy conjecture for SIS singularities and also complete
the proof of the monodromy conjecture for homogeneous polynomials in three variables. More
precisely, the results of this paper are the following.

Let f be a germ of a superisolated hypersurface singularity defined by

f=fa+ far1+- - €C{xo,x1,..., 20}

Let us denote by, C P™ the divisor associated with the homogeneous polynomhial By
definition, the hypersurface singularity’,0) = (f~'(0),0) C (C"**,0) is superisolatedSIH
for short, if and only if the projective sét;,1 N Sing(Cy) is empty. This is equivalent to the fact
that one needs to blow up the origin only once to resolve the singularity. Forfeacting(Cy)
we choose analytic coordinates centered at the origin and we dengfethg equation o€ in
these coordinates.

Our first goal is to obtain a formula for the Denef-Loeser zeta function of a SIH singularity in
terms of similar invariants of its tangent cone. Such a formula is given in Section 1.

COROLLARY 1.12.—Letf:= f4+ fo41 + - € C{xg,21,...,7,} define a SIH singularity
(V,0) C (C™*1,0). Then its local Denef-Loeser zeta function satisfies the following equality

_ X(]Pm \ Cd) X(Cd)
Fron Vo) = T T s+ D)
1 1 )
S >(? (g 1) Zenols” )

wheret :=n + 1+ (d+1)s, Cqg = Cy \ Sing(Cy) and Zyop0(g*, s) stands for the local Denef-
Loeser zeta function for the gem?’ at the singular point? € Sing(Cy).

Using the formula above, the characteristic polynomial formula of the complex algebraic
monodromy of a SIS singularity — e.g. see [2] — and the monodromy conjecture for curves —
see [21] — we prove the following for a SIS singularity of multiplicity

o If x(P2\ C,) > 0 then the monodromy conjecture holds fdf, 0) C (C3,0).

o If x(P?\ C4) < 0, then every pole of the local Denef-Loeser zeta function of

(V,0) C (C3,0), except forsg = —3/d, verifies the monodromy conjecture.
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Furthermore, ify(P? \ C4) = 0, andsg = —3/d is a pole of the local Denef-Loeser zeta
function of the plane curve gerfii; at some singular point, then the monodromy conjecture for
(V,0) C (C3,0) also holds.

We split the study of the remaining cases in two parts.

We say that a degregeffective divisorD onP? (d > 3) is abad divisorif x(P?\ D) <0 and
so = —3/dis nota pole 0., (g5, s) for any singular poinf in its supportD,.q, whereg5
is the local equation of the divisdp at P.

Let us define

- d
p(Cd) :X(P2\Cd) +X(Cd)d_3 + Z )ZtOP’P (gP7_%) E@

PeSing(Cy

When the tangent cong; is a bad divisorsy = —3/d is a simple pole 0¥, o(f, s) if and
only if p(Cq) # 0.

Next we study the bad divisoi8,; such thatp(Cy) # 0. It turns out that the residug(C,)
agrees with the value of(Cy, s) atso = —3/d, wherez(D, s) stands for the Denef-Loeser zeta
function associated with a divis@ onP2. This invariant was recently introduced by W. Veys —
see [33]. This residue also has another meani(g;) coincides with an invarian associated
with the Q-canonical divisorK := (—3/d)Cy on the rational surfacB?. In this paper we use
both of these meanings to extend the notion of the residii® to bad divisorsD on P? (not
only for reduced curve€';) and to some canonical divisors on rational surfaces.

The main part of Section 2 is devoted to determining bad divisoos P? such thap(D) # 0.
Note that the Euler—Poincaré characteristic condition on a bad diZisamplies thatD has at
least two irreducible components, all of them rational curves — see [16,15,19,5].

Our second main result is the following theorem.

THEOREM 2.15. —Let D be a bad divisor oi®?. If p(D) # 0, then the irreducible components
of D are in a pencilA of rational curves having only one base point and such that any fiber
minus the base point is isomorphic@ Moreover, at least on@esp. twQ generic fiber ofA is
contained inD if the pencil has two exceptional fibgresp. ong.

The proof of this result is quite elaborate. We use the following result by W. Veys [32].

VEYS' THEOREM. — Let D be a curve inP2. If x(P? \ D) <0, thenD can be extended to a
configurationD’ D D, still satisfyingy (P2 \ D’) < 0, for which there exists a diagram

v Lox Lop2

where X is a ruled surface,f is a composition of blowing-ups with center I, and g is a
composition of blowing-downs whose exceptional curve is containgd'iniD’). Moreover, one
can require the configuratiop(f~*(D’)) to consist of one of the following

(A) One sectiorC; and at least two fibers, or

(B) Two disjoint sectiong’; andC; and at least one fiber.

The proof of Theorem 2.15 entails the study of the behavior of the invafiamthen applying
blow-up and blow-down processes. This step has been partially studied in [29] in a slightly
different context.

Only one type of blow-up has an effect @i . If one starts with a bad divisap of degreed
in P2, the canonical divisof—3/d) D is transformed by Veys’ process into a canonical divisor
on the ruled surfac& with support on a curve of type (A) or (B). It is easily seen that such a
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MONODROMY CONJECTURE FOR SOME SURFACE SINGULARITIES 609

canonical divisorKy; in a ruled surface verifiegx,, = 0. Then we show that arrangements of
rational curves in which the residue changes can be put in a rational pencil afotylpeon P2
(see Appendix A).

In order to complete the proof of the monodromy conjecture for SIS singularities we have to
deal with singularities having a tangent catigwhich is a bad divisor witlp(C) # 0. The last
step in the proof consists of computing the Alexander polynomial of the cd¥ysatisfying the
properties described in Theorem 2.15. For this purpose we use Kashiwara'’s classification [17] of
pencils of rational curves of typ@, 1). We prove, case by case, thatp(2ir(—3/d)) is a root
of the Alexander polynomial of the curve at its only singular point with the required multiplicity.
Finally, using the computations in [2], we have thab(2ir(—3/d)) is a root of the Alexander
polynomial of the corresponding SIS singularity.

This work also allows for the generalization of the proof given by B. Rodrigues and W. Veys
of the monodromy conjecture to the case of homogeneous polynofpial€|z;, z2, z3] with
X(B2\ {fa=0}) =0. ) ]

In the case of curves, if an exceptional dividr satisfiesy(£;) = 0 (E; = E; \ U,; £5)
then E; does not contribute to the candidate pq{é of Ziop,0(f,s). This question is more
complicated in the case of surfaces. W. Veys proved in [29] for many such configurations that
E does not contribute to the candidate pele/N, assuming thaE’ doesn't intersect any other
component with the same ratio of numerical data (this is the general case).

In this work we find that some candidate poles which appear only on exceptional diiisoirs
the resolution verifying (E;) = 0 are actual poles of the Denef-Loeser zeta function. This is the
case for the first exceptional component of the resolution of a SIS singularity or a homogeneous
surface whose tangent cofeis a bad divisor with residug(D) # 0 at the pole-3/d.

In our opinion, the theorems we prove in this paper give strong evidence for the monodromy
conjecture in the following sense. We prove that for bad dividorsexp(2in(—3/d)) is an
eigenvalue of the monodromy of the only singular poinfpf,. This fact is not evident a priori
— see Section 5 for details, where we also study arrangements of rational cui®&s on

Finally we use an example of a bad divisbron P? whose residug(D) # 0 to answer an
open question of D. Siersma — see Section 6 for details.

1. General formulafor the Denef—L oeser zeta function

The definition of the Denef-Loeser zeta function associated with a morphisin— C can
be extended to an effective divis@ on a nonsingulafn + 1)-dimensional complex variety
X —see [33]. Ifr: Y — X is an embedded resolution of the supportfafandE;, i € I, are
the irreducible components of the diviser ! (Supp D) with associated multiplicities/;, i € I,
wherer*(D) =3 N;FE;. Letw be a local generator of the sheaf of holomorphic+ 1)-forms
on X and letdiv(m*w) = > (v; — 1)E; be the divisor of its pull-back. ThBenef-Loeser zeta
functionof D is defined by

=S @D ] ﬁ €Q(s).

JcI jeJ

We shall compute the Denef-Loeser zeta function of a SIH singular@yin'. We will make
use of three general principles which, at least implicitly, are well known. We begin by recalling
the generalization of this zeta function by J. Denef and F. Loeser [8,33].

Let X be an algebraiqn + 1)-manifold, f: X — C an algebraic function and> an
(n + 1)-meromorphic differential form (algebraically defined) &hsuch that the polar locus
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of w is included in the zero locus gf. Algebraiccan be replaced bgnalyticeither in the germ

case or by adding some natural hypothesis about finiteness. Thus the Denef-Loeser zeta function
Ziop(f,w, s) can be defined analogously. In this case tirvariant is associated with the form

w rather than with a non-vanishing form. We state the three main principles:

PBM PRrINCIPLE 1.1 (See [33, Theorem 5.6])..et 7:V — X be a proper birational
morphism. Then

Zsop(frw,8) = Ziop (f o m, 7 (W), 5).

STRATUM PRINCIPLE 1.2. - Let X = [[4.5 S be a finite prestratification o such that
for eachz € X, the local Denef-Loeser zeta functidi,, . (f,w, s) at z, depends only on the
stratumS containingz. Let us denote by, s(f,w, s) the common zeta function associated
with the stratumS. Then,

Ztop f,ws ZX ZtopS f,w S)
Ses

The key point in this principle is that one may construct a resolution for fahdw, such
that one can rearrange the terms on the left-hand side of the formula to fit the right-hand side of
the formula.

FUBINI'S PRINCIPLE 1.3.—Let us consider two germs of functigp: (C™*1,0) — (C,0)
and two germs of(n; + 1)-holomorphic formw;, ¢ = 1,2. We considerf := f;f> and
w :=w; Awy as germs of function and form (€™ 722 0). Then,

ZtopO f,w S HZtOI), f17w17 )
i=1

In order to prove Fubini’s Principle, it is enough to consider a proper birational mapping
obtained by combining the resolution #f andw; in the first variables and the identity in the
second variables. The PBM Principle assures the invariance of the Denef-Loeser zeta function.
Thus, we obtain a prestratification such that for any stratum, the pull-batkaf be written as
some power of coordinate functions in the first variables, gna@ndw- in the second variables.

On each stratum, we now consider the proper birational mapping associated with the second
variables and the result easily follows.

Example1.4. — Let us take a gerni: (C"*1,0) — (C,0) and a germ of holomorphic form
w. We can choose a good representativéwhere f andw are defined)lW” comes with a finite
prestratification as in (1.2). All the strata except the origin have Euler—Poincaré characteristic
zero. Then the zeta function of the germ is the same as the zeta function of the good
representative.

Example 1.5. — Let us take a gerrfi: (C**1,0) — (C,0) and a germ of holomorphic form
w. Fix a good representativd” where f andw are defined. Let us consider the blowing-up
7:W — W along a smooth subvariety &F containingd. ConsiderD := 7~1(0) and letSp be
a finite prestratification ob satisfying the property 1.2. Then,

Ztop,o(f7w7s): Z X(S)Ztop,S(foﬂaﬂ—*(w)’S)'

SeSp
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MONODROMY CONJECTURE FOR SOME SURFACE SINGULARITIES 611
We apply these principles to a SIH singularity defined by

f::fd+fd+1+"'e(c{y07y17"'ayn}-

By definition, the projective sef’;; N Sing(Cy) is empty. Therefore, the séing(Cy) of
singular points of the projective hypersurfacgis finite. Let us denote bg; the regular part of
Cq CP". Letm:V — (C**10) be the blow-up at the origin ii" 1. Let o be the lifting of f
to V. Let us consider the stratification of the exceptional diviBar P™ of this blowing-up into
the following strata:

(a) 0-dimensional strat&? (i =1,..., s) each consisting of one poif}, € Sing(Cy);

(b) (n — 1)-dimensional stratuns™ ! = Cy;

(c) n-dimensional stratuns™ =P \ Cy.
In a neighborhood of the poidt € Sing(Cy) in V, there exists a coordinate systernx, ..., z,
such that (locally)P™ coincides with the hyperplare = 0} and the functiory o 7 has the form
vz (gP(z1,...,7,) + 2), wherev is invertible @(0) # 0) (from now on, we will simply omit
such “non-essential” factors)?” : (C",0) — (C, 0) is a germ of an analytic function whose zero
locus coincides with the germ of the hypersurfateat P.

In the same way, at each point8f—! there exists a local system of coordinates such that the
lifting ¢ has the normal form? - z,. Finally, at each point of™ the lifting ¢ has the normal
form z? for some local coordinates. Let:= dz; A --- A dx,, A dz, then in the corresponding
coordinates the pull-back* (dyo A - -+ A dyy,) IS 2"w.

Then from the PBM and Stratum Principles one gets

_ x(P"\ Cy) x(Ca)
Ziopo(fy8) = =51 (t—s)(s+1)
P d _n
+ Z Ztop,P((Z_g (Ila"'vxn))z ) % LA.),S),
PeSing(Cyq)

wheret :=n+ 1+ (d+ 1)s. Let us fix a singular poinP and sey := ¢g*'. Recall that in the local

coordinatesy, ..., x,, z the pointP is the origin, and: = 0 is the equation of the exceptional
divisor. The main point is to consider a birational mapwhich is both an embedded resolution
of g71(0) in coordinates, ..., z, and the identity ir.

Let us fix some notation about embedded resolutibny” — (C",0) of g=1(0). With
each irreducible componery, D1, ..., D, of the total transform ofy~!(0), we associate
the numbersV; and v;, as usual. For each subsétc {0,1,...,7}, we define the number
xJ :=x(DyNh=1(0)), whereD; and D are defined as in the introduction. Then

1
Zanolors)= 3w llomi
Jc{0,1,...,r} ied t v

The following formula can be easily deduced from the first two principles:

ZmP,O((z —g(z1,..., xn))zd, z"w, s) = Z XJZtop,O((Z — :v‘])zd, 2w, s),
Jc{o,1,...,r}

where ifJ = {j1,...,J}, then

l l
N; -1
xJ;:”xkﬂk, wJ;:<||xzﬂk )d:vl/\---/\dxn/\dz.
k=1

k=1
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Notation 1.6. — Givenn; := a; + b;s, a;,b; € Zso, j=1,...,l andmq,...,m; € Zso,
T:=as+b, a,b € Z~(, we denote the local Denef-Loeser zeta function associated with the
germs of functionjz®h and of formz®n by

Z(N1, .. snpma, .., My T, 8) = Zmpyo(qzah,zbn,s),

where

l l
q::HwZ’“, h::z—HxZ“‘, n_<H:v“" 1>d:v1/\---/\dxn/\dz.
k=1 k=1

We next compute this local Denef-Loeser zeta function by blowing up along the coordinate
subspace = x; = 0 and applying the above mentioned principles.

Formula 1.7.—Let us assume that> 1. If m; > 1, then using the PBM and Stratum
Principles one gets

(N1, .., N—1, MM, -, 1, MY T, S)
g 1
+Z(n1,...,m—1,+7+s+Limy,. .. mim,my — 1;7,8),
and using Fubini’s Principle

Z(ni,...,n—1,n;;ma,...,mi—1,1;7,5)

L 1 1
= — Z _1; _1; .
(Hnj>m+7+s+l+m+T+8+1 (M1, —13 M, .., Y15 T, S)

Then, by induction omn;:

Z(nlv sy =1, T3 Ty e e T —1, TS T, S)

1 1
= m, — +Z(MN1y. N1 M, My —15T, S) |-
nl+(7+s+1)ml< ljl;llnj (m1 =L =1 )>

And by induction ort, if u:=7+ s+ 1:

Z(N1y .. N3 M, ., M1, My T, S)
l l l
1 1 1
=D m H ) s |2 mimims).
i e n; ik n; +m;u =2 n; +mj;u
Formula 1.8. — Some computations show that
1 m 1 1
(n1;ma; 7, s) n1—|—m1u<n1+s—|—1+7'+1 )

Formula 1.9. — Combining the last formula we obtain

Z(nlv"'vnl;mla'"aml;Tvs)

1 v 1 1 l
S il N
ujl;llnj+(u+ )<(T+1)s+1 u)H j+mju

J=1
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Applied to the case of SIH singularities, i.e.=n+ds, t:== (n+1) + (d+ 1)s, m; = N; and
n; =v;, one gets that (v, ..., v; N1, ..., Nisn +ds, s) equals

l

1 1 1
_H_+ (t+1 ((t—s)(s—i—l) ?)Hijrth'

71J

Remark1.10. — In[7], J. Denef and F. Loeser, usjn@dic integration and the Grothendieck—
Lefschetz trace formula, showed that the local Denef-Loeser zeta function of the non-vanishing
function germy” verifies the equality

Ztop,O (gpvo) = Z XJ H i =

i )
Jc{o,1,...,r} jeJ

THEOREM 1.11. —If P € Sing(Cy) then

Zmpyo((z — gp(j))zd,w,s) = % +(t+1) (Wl(s—i—l) — %)Ztop,o(gp,t).

COROLLARY 1.12.—Letf:= fi+ fat1+ - € C{yo,y1,-..,yn} define a SIH singularity
(V,0) C (C™*1,0). Then its local Denef-Loeser zeta function satisfies the following equality

WP\Cy) | x(C)
ErE Y

S 0!

PeSing(

Ztop,O(M S) =

whereg? is a local equation o, at P andt:=n+ 1+ (d + 1)s.

2. Thepolesy=—3/dfor n=2

From now on, we will consider the case of surface singularitiespi-e2. Let

fi=fa+ far1+--- €Clyo,v1,y2}

be an analytic function such that its zero lo¢li50) C (C?,0) defines a SIS singularity.
The germ(V,0) C (C3,0) is an isolated surface singularity. Hentig (F,C) and Hx(F,C)
are the only non-vanishing homology vector spaces on which the monodromy acts (we denote
the Minor fiber by F'). The only eigenvalue of the action of the monodromy®s( F, C) is
equal tol. The characteristic polynomial of the action of the complex monodrom§{g(iF, C)
is given by the formula

(td — 1)x(F*\Ca)

Avih) ="y

H AP (td+1)’

PeSing(Cq)

where AP (t) is the characteristic polynomial (or Alexander polynomial) of the action of the
complex monodromy of the gerrtCy, P) on H,(F,»,C) (F,r denotes the corresponding
Milnor fiber), e.g. see [2].
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PROPOSITION 2.1. —Let (V,0) C (C3,0) a SIS singularity with tangent cort&; C P?. Then
(i) The poles o, ,0(V,s) are contained in the sef—1,—-3/d} U {— (;ﬁﬁv} whenever
—v/N is a pole of the local Denef-Loeser zeta function of the ger(i;cdit some point
P e Sing(Cy).
(i) If so #—3/dis apole ofZ,p 0(V, s) thenexp(2insy) is an eigenvalue of the monodromy
zeta function of/.
(i) Letsg=—3/d. If one of the following conditions holds therp(2irsy) is an eigenvalue
of the monodromy zeta function 6t
o x(P?\ Cq) >0;
e 50 is apole ofZ;,, p(Cy, s) at some poinf® € Sing(Cy) and x(P? \ Cy) = 0.
(iv) If so =—3/d is a multiple pole ofZ;,, o(V, s) thenexp(2insy) is an eigenvalue of the
local monodromy zeta function at some singular poin®pf
(v) If s = —3/d is not a pole ofZi,, p(Cq,s) for any P € Sing(Cy), the residue of
Ziop,o(V, s) at —3/d equalsdp(Cy) where

. d 3
p(Cq) := X(]P’2 \ C’d) + X(Cd)d —3 + Z Ztop,P <Cd, —a>

PeSing(

Proof. —The formula in 1.12 for the local Denef-Loeser zeta function can be rewritten in the
form
3+ x(P?\ Cy)s s(2+ sd)

Zropo(V>5) = B+ds)(s+1) (1+s)(3+sd)t Pesg(cd)((t + D Zenr(Ged) 1),

wheret = 3 + (d + 1)s and Zy,p, p(C4q, s) means the local Denef-Loeser zeta function of the
germ at the poinP € Sing(Cy).

Recall thatZ,, p(Cq,0) = 1 — see Remark 1.10 — faP € Sing(Cy). Then,s =0 is not a
pole of 2 ((s 4 1) Ziop,p(Ca, s) — 1) ands = — 737 is not a pole oz, o(V, ) if different from
—1 (thatis,d # 2). The other candidate poles are evident and this argument proves (i).

The above formula of the characteristic polynomigl (¢) of the complex monodromy also
gives (iii).

For (i), we must verify the statement fog = —(;ﬁ’g\, where —v/N is a pole of the
local Denef-Loeser zeta function of the germ ©f at some pointP € Sing(Cy). Let
€1 := exp(—2ir £ ). According to the monodromy conjecture for curves [24],is a root of
AP (t) and by the previous formula,:= exp(2irs) is a root of A7 (t4+1), sinces?*! = ¢;.

Hence, for the caseg(P? \ Cy) > 0, or x(PP? \ Cy) < 0 wheree is not a root of(t? — 1), we
are done.

For the rest of the cases, we will prove thgt= —3/d. Sincee? = 1 thensod € Z*, i.e.
there exists: > 0 such thatv + 3N)d = k(d + 1)N. It implies thatvd = N(d(k — 3) + k) or
equivalentlyy/N = k — 3+ k/d. In the case of plane curves one llas v/N < 1 which implies
that0 <k —3+k/d<1,i.e.35% <k<dzh <4.

Disregarding curves of degrele= 1, we will assumel > 2 and henc& < k < 4, i.e. k = 3.
Note that ifk = 3 then—v/N = —3/d andsy = —3/d. We have proved (ii).

The remaining statements are direct consequences of the monodromy conjecture for curves
and the formulae for the Denef-Loeser zeta functions and for the characteristic polynomial of
the monodromy. O

Example2.2. — We consider the cade< 3 andy (P? \ Cy) < 0. Itis easily seen that only four
cases are possible: @; has two linesL; andLs; (1) Cy is the union of three lines meeting at
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Table 1
Ztop,O (V7 'S) AV (t)
44s t3—1
(I) (1+s)(4+3s) t—1
aIn 11 (2 —1)(t*—1)
(1+s)(11+12s) (t3-1)(t—1)
35246544 t*-1)3
(HI) 4(1+s)3 (t—1)
35415 -nt—1
(IV) (1+s)(15+16s) (t3—-1)(t—1)

one point; (II1)Cy is the union of three generic lines and (¥}, is the union of a smooth conic
and a tangent line. The computations for both invariants are in Table 1.

With these examples the monodromy conjecture for any SIS singularity of multipficity
or 3 is proved. From now on we will assume thét- 3.

We have proved the monodromy conjecture for SIS in all but two cases:
(N —1) x(P?\ Cy) =0, sp = —3/d is not a pole for the local Denef-Loeser zeta function at
any singular point irC, andp(Cy) # 0.

(N —2) x(P*\ Cq) <0.

Our goal in this section is to determine which cur¢éscan occur in the casésvV — 1) and
(N —2). The condition about the Euler—Poincaré characteristic implieXthaias at least two
irreducible components and all of them are rational curves — see [16]. Moreover, Veys’ theorem
shows that the irreducible components@f are components of curves in a pengilin P2
(defined by a rational functioR) of rational curves. IfB is the set of base points df then the
generic fiber ofR is a rational curve with at most two punctures. These pencils have been studied
by H. Kashiwara in [17] and T. Kizuka [18] — see Appendix A.

In the casé N — 2), C has at least three irreducible components and we can apply Corollary
3.6 in [32] and show that after Veys’ process we are in a configuration of type (A) in Veys’
theorem.

In order to study(/V — 1) we introduce the notion of a bad divisor.

DEFINITION 2.3.—We say that a degrdeeffective divisorD onP? (d > 3) is abad divisor
if x(P?\ D)< 0andsy=—3/dis nota pole ofZ., p(g5,s), for any singular point’ in its
supportD,.q, wheregh is the local equation of the divisdp at P.

Note that in order to deal with the cag¥ — 1) it would be enough to define a bad divisor as
a divisor verifyingy(P? \ D) = 0 and the same condition for the polg= —3/d. We need this
more general definition to prove Theorem 2.15.

The residuey(Cy) is related to the Denef-Loeser zeta function associated with any effective
divisor D onP? introduced by W. Veys. Leb be an effective divisor oft? of degreel (d > 3).
LetD =a;D; +---+a,D, and setD, := D; \ Sing(D;.q). From Section 1, the Denef-Loeser
zeta function of the divisob onP? can be rewritten as follows

X(Di)
1+a;s

+ Y Zipp(D,s).
PeSing(Dyed)

z(D,s) = X(]P’2 \ D) + Z
i=1

In the SIS case, the curvg; is reduced, i.ea; = 1, and thenp(Cy) is equal to the value
2(Cyq,—3/d). In general, for a divisoD in P? we definep(D) := 2(D, —3/d) € QU {co}. We
are also going to use another interpretation of the rational number (or infirgity).
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Let D be an effective divisor oR? of degreel > 3, then—gD is aQ-canonical divisor ofP2.
Let 7: X — P2 be the minimal embedded resolution for the suppotdh P2. The mapr is a
sequence of blowing-ups centered at infinitely near points of poirisig D,.q) such that the
divisor 7* D is a normal crossing divisor. Ldt x be theQ-canonical divisor on the surface
obtained from the pull-back oﬁ%D — see Remark 2.4. The irreducible component&gf are
the strict transforms of the irreducible componentdoand the exceptional components over
each singular point ab,..q. The corresponding multiplicities iR x are:

e —3% for the strict transform of the irreducible componéntof D.

° ‘73N1- +v; — 1, for any exceptional componeh}, associated with a poifi® € Sing(D,eq),

whereN; andy; are defined as in Section 1.

Remark2.4.— For instance, ifr;:Y — P? is the blow-up at some poinP then
Ky = w*(—%D) + E. In general, the map : X — P2 is a composition of blow-ups. By canon-
ical pull-back of aQ-divisor K we mean that if is the divisor oriP? of a multivaluated mero-
morphic2-form w, then its canonical pull-bacK x is the divisor of the pull-back*w of w.

2.1. ¢-invariants of Q-canonical divisors

In this subsectionX is a rational surface anli x :=>"._, (v; — 1) E; is aQ-canonical divisor
on X with normal crossings. L&T be the dual graph ok x with verticesV (G) and edge®(G).
The weight of the vertex; associated witlF; is defined byw,,, := v;; for an edge: we denote
by V'(e) the set of its endpoints (or extremities) and wewsgt= 1.

This graph can also be weighted by the self-intersection numbets E? of the irreducible
componentsE; of Kx on the surfaceX. A subgraphG; of G is a graph such that
V(G1) C V(G) and any edge i/, with extremities inV’ (G, ), is an edge irG; .

DEFINITION 2.5.—We say that a subgraghy of G is aset of bamboo# any connected
component of the grapty; is linear, the irreducible components afx associated with the
vertices of(G; are rational curves andife V(G) is an endpoint of7;, then its valency irG is
less thars.

In such a case, each connected componett;ofs called abamboo A bamboo is of typd
(resp.2) if it has one (resp. two) neighboring vertex (resp. verticegyin

LetV(B) :={vi,,...,v;, } be the set of vertices of a bamb®oof G. The intersection matrix
of B is the integer matrix4d = (a;;) € M(r,Z) such that ifj # k, thena;; is the number of
edges between;, andv;, , i.e. the intersection number betwegy) andE;, , anda;; := a;. The
determinanof the bamboo islet(B) := det(—A) (which does not depend on the order of the
vertices ofB, e.g. see [31]).

DEFINITION 2.6.—LetG; # G be a set of bamboos ¢f. We define the grapt¥/G; which
has weighted vertices, weighted edges and weighted arrows as follows:

e The set of vertice¥ (G/G1) is nothing butV (G) \ V(G1) and they are weighted as (.

e The set of edge®(G/G1) has two types of elements. Edges@fnot intersectings,
produce edges df/(G1; theses edges are weighted hyEach bamboo of typ2 produces
also one edge with the obvious extremities and weighted by the determinant of the bamboo.

e The setA(G/G,) of arrows of the grapléz/G; is in one-to-one correspondence with the
set of bamboos ofy; of type 1. It is weighted by the determinant of the corresponding
bamboo. Note that each arrawin G/G1 has only one neighbor vertes.

DEFINITION 2.7.— LetK| be the reduced subdivisor &f x consisting of all the irreducible
componentsy; of Kx such that; = 0. Let Gy be the dual graph ofy. We say thatK'x is
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admissiblaf Gy is a set of bamboos. In such a case we define

Go=®r Y s T e Y %eg

veV(G/Go) v e€E(G/Go) wveV(e) °  a€A(G/Go) °*

Note that the invarianfx, does not change if we add irreducible components which are not
in the support of{x. The adjunction formula and a standard induction argument are the key
points of the following result, which is a generalization of one of Veys’ results in [31, Theorem
3.3].

PROPOSITION 2.8. — Let G; be a set of bamboos such that for ang V(G) \ V(G;) we
havew, # 0. Then

(ex =x(X)+ Y By > weHi‘F Y e

veV(G/G1) Wo e€E(G/G1) weV(e) U  a€A(G/G1) ¢

PROPERTY 2.9.— If v € V(G) is a vertex with weight zero then the adjunction formula
implies that the sum of the neighbor weights is equal to the valency of the vertex gilus
turns out that each connected componenfs@f consists only of one rational cursg. This
implies that:

o if the bamboo is of type and gives an edgec E(G/Gy), then the weights of the vertices

in V (e) are opposite to each other,

e and if it is of typel and gives an arrow € A(G/Gy), then its weight inl/(a) is equal to

—1.

We examine the behavior of these invariants under blow-ups.

ProOPOSITION 2.10. — Let X be arational surface and Ik x be an admissibl€)-canonical
divisor. Letr: Y — X be the blowing-up of a poirf? € X and letKy be the canonical pull-back
of Kx. Then,Ky is admissible and

(i) If P does not belong té, \ Sing(K x red), thenlx, = (k-

(i) If P belongs toK) \ Sing(K x red), let B1 be the bamboo oK, containingP. Let us
suppose that the self-intersection/®f is —a and the neighbors aB, in G have weights
wand—w (or w = —1 ifitis of typel). Then, the corresponding bamb®g in Ky has
self-intersection-a — 1 and

1
CKXJ’_l_F:CKY'

Proof. —Let Ep be the exceptional divisor of the blowing-up Y — X of X at the point
P e X. It is easily seen that if{yx is admissible, this is also the case fi . We restrict
ourselves to the proof of the most relevant cases.

The proof of the remaining cases is based on the study of the contribution of thefpoint
(and its neighbors) tqx, and the exceptional curvBp (and its neighbors) tQx, . What we
mean bycontributionis that there existg € Q such thatx, = n + (contribution to(x , ) and
Cky =+ (contribution tolx,, ).

CAsSE 1. —-The pointP is a double point 0¥ x yea, P € E; N Ej, v; = 0.
Let us consider again weights;(= 0),w;. The curveE; gives a bamboo inKx, with
determinantz and neighbor weights-w; andw;. The contribution of this bamboo g is
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—a/w?. The strict transform of’; in Ky is a bamboo of determinaat+ 1 and neighbor weights
—wj,w;. The intersection point between the new exceptional diviseandE; contributes with
l/wf-. Hence its contribution tQk, is:

a+1 1
—— 3 T3
wj wj

CASE 2. —-The pointP is smooth inK x yeq, P € E; andy; = 0.

Let us assume the notation of (ii). The contribution of the bambpdo (x, is equal to
—a/w?. The strict transform of; is also a bamboo iy whose contribution is‘g—;l. But
in this case the exceptional divisélp hasvg, = 1, so it is not in the support oKy and the
Euler—Poincaré characteristic of the complemeritefin Y differs by1 from the one ofK x in
X. O

COROLLARY 2.11.-—Let X be arational surface and Iek x be an admissibl€)-canonical
divisor. Letr: Y — X be the blowing-up at a poirft € X and letKy be the canonical pull-back
of Kx. If P belongs taK \ Sing(K x req) then

X(X\ Kx) <x(Y'\ Ky).

In particular, there is a unique blowing-up process in which the following halds # (x, and
X(X\ Kx) < x(Y\ Ky). Such a process is the blowing-upXfat P € Ky \ Sing(Kx red)
having valency and whose neighbor vertices have weights, w # 1.

The following result computes the invariait . in the hypothesis of Veys’ theorem.

PROPOSITION 2.12. — Let Kx be an admissibl&)-canonical divisor on a ruled rational
surfaceX such that its support is of tyg@) or (B). Then(x, =0.

Proof. —Using Nagata transformations which do not chagige we can assumg = P! x P!,

Let us considelS and F' the general-section and the general fiber respectively. It is known
that canonical divisors are linearly equivalenttdS — 2F.

For case (A), let us denote fy the section and by, ..., F,. the fibers. One can assume
r > 2. Let Ky, be an admissible canonical divisor with support contained in the curves above.
ThenKs, = —2SO+Z;:1 k; F;, with Z;Zl k; = —2. The result follows by applying the formula
in the definition of the invarianfx., .

For case (B), let us denote Y, S; the sections and b¥, .. ., F,. the fibers. One can assume
r > 2. Let Ky, be an admissible canonical divisor with support contained in the curves above.
SinceX = P! x P! we can interchange fibers and sections if necessary.

In order for K5, to be admissible, we can suppose that = a¢ Sy + a1.51 + Z;Zl k; F;, with
25:1 ki =—2, a9 + a1 = —2 andag,a; # —1. Once again, the result is a consequence of the
definition of the invarian{x,,. O

2.2. (-invariant and bad divisors

Next we will relatep(Cy) with the invariants defined above.

LEMMA 2.13.- Let D be an effective divisor oR? of degreed, d > 3. Let7: X — P? be
the minimal resolution ofing(D,.q). Let us suppose that, for any singular polite D, .4,
the local Denef-Loeser zeta functioni@fat P does not have a pole at3/d. Let Kx be the
canonical pull-back of—gD by . ThenK x is admissible ang(D) = (k.
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Proof. —Let E' be an exceptional component of the embedded resolutidhaifa pointP and
let N be the multiplicity of £ in the total transform o and letv — 1 be the multiplicity in the
pull-back of a local generator of the sheaf2eholomorphic forms.

It is easily seen that the weight d&f in Kx equals—(3/d)N + v. If —3/d is not a pole
for the local Denef-Loeser zeta function bBfat P then from Veys’ results on the monodromy
conjecture for curves [30], we can assume that the valendy of the divisor is eitherl or 2.
This fact implies thaf#{ x is admissible. O

Example2.14. — LetD C P? be the union of two smooth conic% andC, which meet at
only one point{ P} = Cy; N C,. ConsiderD as divisor of degred and K := (—3/4)D as a
Q-rational divisor oriP?. Let : X — IP? be the minimal embedded resolution of the singularity
of D atthe pointP. The rational surfac&” has the configuration of curves and the corresponding
associated invariants shown in Fig. 1.

The dual graph of the resolutiad has only one bambo&, and the corresponding graph
G/G is shown in Fig. 2.

The(x, -invariant is non-zero because

1 1
(=1

Gy = 1+ (-1)(~1) 421 +2

4

_|_

1
I
2

Wl =
ol

Thus the(x, -invariant does not “behave well” under blow-ups and we only have partial
control over it.

Below we computeZ;., o(Vp, s) and Ay (¢) for a SIS singularityVp, 0) C (C?,0) whose
tangent cone iP. In this casey(P? \ D) =0, andsy = —3/4 is not a pole 0fZ;, p(D, s) for
the germ of curveD at P. HenceD is a bad divisor oii?2. Since the residug(D) = (x, # 0,
thensy = —3/4 is a simple pole 0., 0(Vp, s) and, as one can easily cheekp(—2ir3) is a
root of Ay ().

) 2
) ‘ , (Ns,v3) | w; | E;
W Ei | (2,2) | L |2
0 S By | (43) | 0|2
E3 (67 4) 7% -2
E, (8,5) | -1]-1
C] ) 02 (17 1) i 0
Fig. 1.
1/4 "
12 0 -1 T 1/4 12 -12 T 1/4
det GO=2 1 1
O O O O
—1 -1
Gy
Fig. 2.
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3s+5
(14 5)(5+8s)’

130s + 2052 + 87
(14 5)(3+45)(29 + 40s)’
(- 1) - 1)
(-1t —1)

Ztop,P(Da S) =

Ztop,O(VDa S) =

Ay (t) =

We have mentioned that the Euler—Poincaré characteristic condition on a bad fivwisplies
that D has at least two irreducible components, which happen to be rational curves. In the
definition of a bad divisor we imposed that = —3/d is not a pole (although, might be a
candidate pole) o, p(D,s) for any singularityP in D,.q4. A direct application of Veys’
Theorem to a bad divisaD allows for an extension of the cunie to another curved’ > D,
havingx(PP? \ D) <0, such that the following diagram holds:

¥ X, T PP

wherer is a composition of blowing-ups with center I¥ andrs is a composition of blowing-
downs with exceptional curve containedsin!(D’) and such thak is a ruled surface. We call
this aVeys’ processThe configuration” := 73(7~1(D’)) consists of one of the types (A) or (B)
in Veys' theorem. In particular, the cuni® is a union of fibers and sections of a particular kind
of rational pencils studied by H. Kashiwara in [17] and by T. Kizuka [18] — see Appendix A. Note
that several pencils may match for a given cubve- P? and thus several different constructions
can be acquired. Let us call the rational function defining such a pendiland let us define
R:=7*R.
Veys’ processes can be decomposed in three stages by factoasw, o 7.
e In the first step we consider the minimal embedded resolutionX; — P2 of the local
singularities ofD,.q C P2. At this stagep(C,) is already computed Ay, s whereK x,
is the canonical pull-back df-3/d)Cy. Since—3/d is not a pole 0Z, p(Cy, s) for any
P € Sing(Cy), thenK x, is admissible.
e Next, we consider the resolutiar, : X — X; of the indeterminacy locus of the pencil
A* C X, defined by the function; R — it might happen that, is the identity map.
e Finally, letws : X5 — ¥ be the contraction ok, onto a rational ruled surface.

X3
N
by X1
-
]P>2

From now on, we can also assume thds minimalin the following sense — see [32, (4.3)]:
The mapr : X, — P2 is the minimal morphism that resolves the indeterminacies of the morphism
induced by the penci\.

The irreducible components of the strict transformidin X, have to be either irreducible
components of members of the total transform of the pehoil sections of the mag: X, — P!
(recall that a curve is asectionif the restricted mag|: E — P! is surjective).
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We have proved in the previous lemma that the resjdui#) of a bad divisorD is equal to the
(i x, -invariant of any admissibl@-canonical divisor orX;. Proposition 2.12 shows that (in the
final configurations) théx.,-invariant is zero.

In the following theorem we describe bad divis@rswith p(D) # 0 — in particular, curves of
type (N — 1) —in terms of Veys’ theorem. Using Kashiwara’s notation, we show that they come
from a rational pencilA on P? of type (0,1), i.e. a pencil of rational curves having only one
base point and such that any fiber minus the base point is isomorpfie-teee Appendix A.

We are looking for bad divisors having non-zex@). For this purpose we must understand the
behavior of the maps, andrs, and find out when it is possible that at least one of the blow-ups
in 7o or m3 matches the hypothesis of 2.10(ii), with w?.

THEOREM 2.15. — Let D be a bad divisor oP2. If p(D) # 0, thenD can be transformed,
by means of Veys' process, into a cuivef type(A) with at least three fibers and such that the
irreducible components db are in a pencilA of type(0, 1).

Moreover, at least one generic fibgesp. twg of A is contained inD if the pencil has two
exceptional fibergresp. ong.

Proof. —Note that the first part of the theorem was already proved in Corollary 3.6 in [32] for
the case where the Euler—Poincaré characteristic vexifies — D) < 0.

The irreducible components @ may correspond either to components of the fibers of the
pencil or to sections. Each base point\oproduces a section of the pencil¥,. Therefore, if a
component was transformed into a section after Veys’ process, we would obtain a curve of type
(B) (we will show that this is not possible).

Since the(-invariant of the surfaceX’; and¥ are different, at least one of the blow-ups in
mo: X9 — X1 Or m3: Xo — X is as in 2.10(ii). This means that we have blown up at a point
P € E which is in the conditions of Proposition 2.10 or Corollary 2.11. Let us denotg by
the exceptional divisor in the corresponding rational surface, which comes from a blowing-up at
P € FE changing the -invariant.

CAsE 1. - The changes of th¢-invariant happen ints : X5 — 3.

Since the weight o' in the canonical divisor is equal tg it will be either an exceptional

component fotr = 3 o 7 : X — P2 or an irreducible component @ \ D in Veys’ theorem.

() In the first case, the divisaEl has more thar2 neighbors in the exceptional divisor of
m: Xo — P2, Its weight in the canonical divisor & Note that it is not possible for this
component to become a component of valehay the minimal resolutionr;. The reason
is that, in this case, the neighbor component which is not blown-down has weight equal to
—1 and thus thé k -invariant does not change. Therefdténas more thag neighbors in
the exceptional divisor of, : X; — P2, and—3/d is a pole of the local Denef-Loeser zeta
function of at least one local singularity &f,.q. This implies thatD is not a bad divisor.

(ii) In the second case, the Euler—Poincaré characteristic of the complement changes. This
implies thatD’ is transformed into a curve of type (A) with at least three fibers. As seen
above, in this case the Euler—Poincaré characteristic of the complement is increased by
one from the Euler—Poincaré characteristic on the curve of type (A) or (B). Since we must
keep this invariant non-positive, in the curve of type (A) or (B) we must have a negative
Euler—Poincaré characteristic. This is only possible if the curve is of type (A) with at least
three fibers — see Corollary 2.11. In particular, in this case no componé&hisod section.

CASE 2. — The changes of thé-invariant occur at some blow-up i, : Xo — X;.
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In this case the poinP, at which the blow-up is performed, is a base point of the strict
transform of the pencil\. The exceptional componetit which containsP has weight0 in
the canonical divisor, valenin the dual graph and neighbors with weights) (w # +1).

Once again, the weight dfp is 1. After several blowing-ups we get a tr@eof exceptional
curves based ofv. Note that the component which intersects our origifias weighted byl.

In 7 there is at least one section which has weight greater@hHn¥ is also a section, we have
at least two sections and thus a pencil of type2). We have a curve of type (B). Using the
kind of arguments shown in Proposition 2.12, the weightands, of the two sections in the
corresponding canonical divisor 1 verify s; + so = 0. In this case the weight of is 0 and
the weight of the other section is greater tilamwhich is impossible. Hence, the divisfris not

a section.

Therefore the curve? is a component of a fiber of the pencil. This implies that either
disappears in one of the contractionsmaf or it remains inX. In any case, one of the three
neighbors must be contracted. Due to the minimalityrofit least one of the exceptional
components of the treé€ has to remain on the surfage Thus, one of the original neighbors is
contracted. By the adjunction formula, this means that the other one has waigiintradicting
the hypothesis. Thus this case is also impossible.

Therefore, the only possible situation is given in Case 1(ii). The cAvgives an irreducible
componentr(Ep) of D'\ D, which is a special fiber of the pencil since reduced members of
of pencils of typeg0, 1) are irreducible. Such pencils have at most two special fibers and2hen
contains at least one generic fiber/af O

Remark2.16. — The general ideas of the proof of Case 2 have been pointed out to us by
W. Veys to whom we are grateful. Our original proof was longer and it was based on the analysis
of Kizuka’s work [18].

Example2.17.— As we have seen in the previous example, there are curves matching
the hypothesis of the theorem: two smooth conics with only one intersection point. Using
Kashiwara’s pencils one can construct many such examples. For instance, one can take two
generic elements of a pencil whose generic member is a quartic withy amngularity. Other
examples are obtained by means of the pencil generated by the square of a quintic curve with an
A5 singularity and the fifth power of a conic with highest contact with the quintic at the singular
point. All the other curves of the pencil are generic and have only one singular point with local
equationz* — y2° = 0. Any curve having at least two members of the pencil as components (at
least one generic and at most one special) has a nhon-zero residue.

3. Monodromy conjecturefor SIS

From the previous section we learned that, in order to prove the monodromy conjecture for
SIS, we have to study the candidate paje= —3/d for those SIS whose tangent cofig has all
its components in a pencll of type (0, 1) verifying the conditiong N — 1) or (N — 2):

(N —1) The divisorC; verifiesx(P? \ C;) = 0, so = —3/d is not a pole for the local Denef—
Loeser zeta function at any singular point@fy and p(Cy) # 0. In fact, since its components
are in a pencil of typ€0, 1), C; has only one singular poir®. Furthermores, is a pole if and
only if p(Cy) # 0. In this case it is a simple pole and the cu@g has only two irreducible
components at least one of them being a generic fiber of the pencil. According to the formula
for the characteristic polynomial of the complex monodromy of the SIS, we have to prove that
exp(—2in(3/d)) is a root of the Alexander polynomial of the germ@f at the singular poinP.
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(N —2) x(P?\ Cy4) < 0. Letr be the number of irreducible components(@f (r > 2 and
x(P?\ C4) =2 — ). Sincep(Cy) is related with the residue of the Denef-Loeser zeta function
at—3/d we distinguish two cases:

e If 5o is a simple pole the above discussion also holds, and hence, we must prove that

exp(—2in(3/d)) is a root of multiplicity at leasfr — 1) of the Alexander polynomial of';
atP.

e If sq is a multiple pole, theny = —3/d is a pole of the local Denef-Loeser zeta function at
the singular poinf. In this case, the irreducible componentgifcan also be non-generic
fibers of the pencil (since the residue can be equal to or different from zero). We will prove
thatexp(—2in(3/d)) is a root of multiplicity at leas{r — 1) of the Alexander polynomial
of Cy atP.

The pencilA is defined by a rational functio; on P2. Pencils of typg0, 1) have at most

two special members. We denote them{iy = 0} and{Q, = 0} — see Appendix A.

THEOREM 3.1. — The monodromy conjecture is true for SIS singularities.
After all our previous analysis the above theorem is a consequence of the following result.

THEOREM 3.2. — Let D be a divisor of degred on P? whose support is the cur@; U Cs,
where(1) C4 is the union of any number of different generic memHKéts= 1, } of the pencil
defined byR; and (2) C- is one of the curve$P, = 0},{Q; = 0}, {P.Q, = 0} or {R; = u},
u# ;. Letr be the number of irreducible componentdof

(1) If r > 3 thenexp(—2im(3/d)) is a root of the Alexander polynomial of the germ/ofat
its singular point, and its multiplicity is at leagt — 1).

(2) Otherwise, ifp(D) # 0, thenexp(—2in(3/d)) is a root of the Alexander polynomial of
the germ ofD at its singular point.

In fact, the result will be proved for a (not necessarily reduced) divigpand used in the
following section.

The Alexander polynomial of the complex monodromy of a germ of a plane curve singularity
is equal to the Alexander polynomial of its splice diagramLet [, be the multiplicity of the
vertexv andd, its valence. According to [13, p. 96], the Alexander polynomial of a diagfam
is
Sy—2

Ap(t)= (-] -1)

v

the product being taken over all the vertices of the diagram.

Remark3.3. — Letv be a vertex of valencé connected to a vertexX of valence greater than
or equal to3. Then

th —1
tho — 1
is a polynomial, sinceé, dividesl,.

Proof of the theorem. Let n be the number of irreducible components of the cutyeWe
have four different cases to consider, depending on the irreducible components of th€'curve

e The irreducible component @f; is { P, = 0}.

e The irreducible component @f; is {Q; = 0}.

e The irreducible component @f; is {R; = ;1}.

e The irreducible components 6%, are{P, =0} and{Q; = 0}.
We use Kashiwara’s classification of tyf#& 1)-pencils and divide the proof of the theorem in
several steps. O
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3.1. Rational pencilsof type (0,1) belongingto F;;

We begin by studying the sef;; of pencils of type(0,1). From Appendix A, in the case
F1r one has two splice diagrams. The diagrams only appear with the decorations needed in our
computations. The first oneis shown on the left in Fig. 3 and the second @rie shown on the
right, wherem € {m,;1, m;—1}. We need the integer defined as the product of the numbers
which are attached to the non-arrowed vertical edges. On the righthand side of Fig.l% tbe
product of the numbers which are attached either to the non-arrowed vertical edges or to the last
edge on the right.

For each one of the above types of splice diagrams we have four different cases to consider,
depending on the irreducible components of the cudrye

CAsE 1. - The irreducible component 6f; is { P, = 0}.

The splice diagram is shown in Fig. 4. Because of the preceding remark there exists a
polynomialH () € C[t] such that

whereL is the multiplicity of the vertex at which the generic fibéi®; = 11; } separate and’ is
the multiplicity at the right end of the diagram.
We have the following equalities

d= (k14 -+ ky)deg(Ry) + kdeg(P) = deg(P) ((k1 + -+ + kn)mi + k).
To computel, we use the fact that the intersection multiplicity of two generic curves of the pencil

ism? deg(P,)? and the intersection multiplicity of a generic curve of the pencil With = 0} is
my deg(P;)%. Hence,

L= (ki + -4 kp)m?deg(P,)? + kmy deg(P;)>.

Therefore L = dm; deg(P,). Note thatL’ = cmy((ky + --- + k,)m; + k) and ¢ can be
computed usingn; deg(P;) = myme. Thus,

o byt K + ) deg(P)

m
: A
m m
o L L o— —— m o 2 4 _ 1 QU
‘ J l ol
il & o o Qj o R
Fig. 3.
@)
2
m m m
O b b - (L)
I |
b R {Q
&) k) k)
1 n
Fig. 4.
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Assume that3/d)L’ € N, then

mi((k1 + -+ ko) + k) deg(P)  h((k1+ -+ kn)mu + k) deg(R)

m 3 ’

that is,3m; = hm. Sinceged(m;, m) = 1 andged(m, 3) = 1, this is not possible, and thus, it
proves the theorem in this case.

The splice diagran? is shown in Fig. 5. The first part of the computation is analogous to the
previous case. We still have = 2d deg(P,). One can calculaté’ as

L'=(4\ + 1)c(2k +4(k1 + -+ + k),

and compute the intersection number betwégnand Py as2(4\; + 1)c = 2deg(FPy). Thus
L' = 2d and we cannot conclude the proof. Note that we also have

N Gt Vi
A() = H(0) g
and
0 o 2Md
L" =X c(2k+4(k + +kn))—7(4/\1+1).

Finally, if we assume that3/d)L” € N we obtain another contradictory equatibfi\; + 1) =
6A1.

CASE 2. - The irreducible component 6f; is {Q; =0}.

The splice diagrart is shown in Fig. 6. In this case, we have

B (tL _ 1)n
A(t) = H(t)
where, againf (¢) € C[t] is a polynomial.
®
o 2 4 L M )
[ J\ i o
P R
0"k ®)
Y )
Fig. 5.
(L)
m m2 m
o o 5 -— o
[
N T |
k) (ky ®)
Fig. 6.
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@

Fig. 7.

We have the following equalities

d= (k1 + -+ ky)deg(P)my + kmy =my((ky + - - - + kn) deg(P) + k),
and

L= (ki + -+ ky)deg(P)*m] + kdeg(P,)m7.
If (3/d)---L; €N, then
1

deg(Pz)((kl+-~-+kn)deg(Pz)+k):hml( Lt 3) eg(P) + ’

that is, 3deg(P;) = hm;. Note again thatcd(deg(P;),m;) = 1 and ged(my,3) = 1. The
computation is analogous for splice diagram

CASE 3. - The irreducible component éf; is {R; = u}.
The splice diagrart is shown in Fig. 7. The Alexander polynomial is

(tF — 1)+

All)=H(®) (tL/mi — 1)t — 1)

Analogously, we obtain the following equalitiés= (k + k1 + - - - + ky,)m; deg(P;), and

L=(k+ki+-+kym?deg(P)? = (k+ki+--+kp)em?,

I = deg(Pym2 ottt in,
m
Assume that3/d) - -£; € N. Thus,
1

k+ki+-+kn
(k+k1+-~+%mykggﬂ2:hdqﬂﬂhm———ij;————,
that is,3 deg(F;) = hm; which is impossible. I{3/d)L’ € N, then

k+ki++kn k+ki++kn

This gives3m,; = hm which is impossible. The theorem is, hence, proved in this case.
The splice diagrar? is shown in Fig. 8. We can write the Alexander polynomial as

(tL . 1)n+1
D 1)

A(t) = H(t)
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L)
2 4 Ay

O e o @)
T J\ i ol
P R
k
g
k) L)
Fig. 8.
(L)
m ) m ) - PR
o 1 1 o @ 2 4 o 1
‘ ‘¥ i ‘ J\ i apl Q)
Q P R "
P<k> Rm *) ®) oy 0w
1 [ (ky) L
Fig. 9.

The computation of. is the same as above. The computatio.bfgives
L' =4 c(k+ ki + -+ kp).
Note that2(4A; + 1)c = 2deg(F). Thus,

k+kittka

L' =4\
TN 1

If (3/d)L" € N, one hassA; = h(4\; + 1) with » € N, which is impossible.
CASE 4. — The irreducible components 6 are { P, = 0} and {Q; = 0}.

Note that in this case the number of irreducible components,as n > 1, because we are
in the casg N — 2) with multiple pole. The splice diagrathis shown on the lefthand side of
Fig. 9. The Alexander polynomial of the local singularity is

whereH € C[t] is a polynomial. The following equalities hold

L=m}deg(P)?(k1 + -+ kn) + kmy deg(P)? + K'm? deg P,

d=kdeg(P) + (k1 + - + kn)my deg(P,) + k'my.

ThenL = m;deg(P,)d.
The splice diagran is shown on the righthand side of Fig. 9. Computations are the same.
Then we are done for the case where the corresponding rational functioftjs.in

Example3.4. — Computing the value fofy = —3/d in the examples given in Appendix A,
one sees that, in fack, = —3/d is a pole of the local Denef-Loeser zeta function of the
corresponding SIS singularity.

For example, for

Qo =y — 7, P0=(y—$2)2—2$y2(y_$2)+95'
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o 2T 13 425 T 5 o
P R
0 0 Q 0

Fig. 10.

Its splice diagram is shown in Fig. 10. The local Denef-Loeser zeta function of the curve
D ={Py =0} U{Ry = pu} atthe origin is

Zoo(Ds) = — 2 L2
top:0 29+ 1505 | (20 1 1505)(15 + 765) | 15+ 765 20 1 150s
1 1 1

_15+7m‘%@9+1amx1+sf+u5+7&x1+g
and Zop o(D, —3/d) + 2d/(d — 3) = —51/4. The Alexander polynomial of the curd@ at its
only singular point is
(t150 _ 1)(t76 _ 1)
D@ 1)

We will come back to this example in Section 5.

Alt)=(t—1)

3.2. Rational pencilsof type (0,1) belonging to F;

We next compute the Alexander polynomial in c&Se — see Appendix A. For this purpose,
families1(0) andI™(N;\1,..., \n) are considered simultaneously.
e The splice diagram for Case 1 and Case 3 is shown in Fig. 11.
Its Alexander polynomial is

(tr—1"
A(t)=H(t)————
() = HO
whereH (t) is a polynomial. One has = md and L’ = d/2. Thusexp(—6ir/d) is a root
of multiplicity n of the Alexander polynomial.
e The splice diagram for Case 2 and Case 4 is shown in Fig. 12.

One has\(t) = H(t)(t* —1)"~!. ThusL = md. This implies that the conjecture is verified
in this case ifn # 1.

The remaining family inF; is I~ (N; A1, ..., An).
e The splice diagram for Case 1 and Case 3 is shown in Fig. 13.
One has

(tr—1)"
tb—1 -
We still haveL = md, but we now havd,’ = d andL” = d Ai If A1 =2 and there exists only
one component, i.ex = 1, thenexp(2im(—3/d)) is not a root of the Alexander polynomial.
In order to prove the monodromy conjecture in the two remaining cases we have to prove that
the bad divisorD verifiesp(D) = 0. The curveD consists of (at least) two generic members of
a pencil of typel —(N;2,..., \n).
From its resolution graph — see Appendix A — one can check that the only possible contraction
to the ruled surfac® in these cases is the blowing-down of the l{fg = 0}. The curve{Q = 0}
is the only special fiber of these pencils, itis also a multiple fiber. In any case, itis readily checked

or A(t)=H(t)
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Fig. 11.
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k)
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k)
P m A L)

2 . (
(k) — —
w l Ayl

1
L)

Fig. 13.

that the mapr, is the identity (one resolves the pencil when resolving the curve, since there are at
least two generic fibers). The blowing-ups of type (i) in 2.10 produce special fibers of the pencil.
Thus, only one such blowing-up can take place. It is easily seen that the blowing-up producing
{Q =0} occurs in a component of valency one, and in this cas€-ihgariant does not change
and the residug(D) is zero.

e For Case 2 and Case 4 the arguments of the proof are analogous and we leave the proof to

the reader.

The theorem is proved.O

4. Monodromy conjecturefor homogeneous polynomials

B. Rodrigues and W. Veys have proved the monodromy conjecture for any homogeneous
polynomialfy € Clz1, x2, 3] with x (P2 \ {fs=0}) #0, see [26].

In fact, in the proof of their Theorem 4.2 they showed that for any homogeneous polynomial
fa € Clz1, 2, 23] of degreed and for any polesy # —3/d of Ziop,0(f,s), exp(2imsg) is
an eigenvalue of the local monodromy §f at some complex point of the effective divisor
D= f;(0).

One of the key points in their proof of the homogeneous case, is the following equality — see
[26, (3.6)]
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Ztop,()(fdas) = Z(D?S)

34ds
1

- 3+ds <X (PQ \ D) + Z 1X—E-Dai)s + Z Ztop,P(Dv S)) )

i=1 PeSing(Drea)

<

whereD = a;D; + - - + a,D, andD; := D; \ Sing(D;cq).

We are interested in the remaining cagéP? \ {fs = 0}) = 0 and the candidate pole
so = —3/d.If sg is a pole of order greater thanthen eitheg, = —3/d is a pole 0fZp, p (D, 5)
(and thus the monodromy conjecture for curves implies ¢hat2irs) is a root of the local
monodromy off,; at some complex point ab) or so = —3/d is the pole—1/a;, for somea;.

In such a case, iP € D; N Sing(D) # 0 then the branches dp at P have multiplicitya; and

W. Veys showed tha¥., p(D, s) has—1/a; as a pole. Again, the monodromy conjecture for
curves implies thatxp(2imsy) is a root of the local monodromy qgf; at some complex point
of D.

The discussion above translates into the followifygs= —3/d is a simple pole 0%, o(f4, s)
if and only if D is a bad divisor ofP? andz(D, —3/d) = p(D) # 0, cc. However, according to
Theorem 3.2xp(2in(—3/d)) is an eigenvalue of the monodromy of its only singular point.
Thus, the monodromy conjecture is also proved in this remaining case. The results by B.
Rodrigues and W. Veys and the above discussion show the following theorem.

THEOREM 4.1. —For any homogeneous polynomidl; € Clz1,x2,23] the monodromy
conjecture holds.

5. Rational arrangements of plane curves

The results of this paper can be applied to prove the non-existence of some arrangements of
rational curves ifP2. For such a reason we restrict ourselves to arrangements whose complement
in the plane has Euler—Poincaré characteristic

Let D =JC; be an arrangement of reduced rational curves. The dual graph of the minimal
embedded resolution db is determined by the following data:

(1) The degreesg; of the irreducible components &f.

(2) The list of the Denef-Loeser types of the local singularitie®of

(3) The irreducible component @ which contains each brandéhof D at a singular point.

We call these datthe combinatorial typef the curveD in P2. We also call the data in (2)
together with the total degrekof D the local combinatorial dataf D in P2.

As a corollary of Theorem 2.15 and Theorem 3.1 one obtains the following result, which is
equivalent to the monodromy conjecture for SIS.

COROLLARY 5.1.— Let D be a bad divisor of degre¢ onP2. If p(D) # 0 thenD has only
one singular point andxp(2ir(—3/d)) is an eigenvalue of the complex monodromy at that
singular point.

Given a divisor D on P? and a pointP € D, the local Denef-Loeser zeta function
Ziop,p(D, s), the residuep(D) and the eigenvalues of the complex algebraic monodromy of
(D, P) are determined by the local combinatorial datd&ofHence the monodromy conjecture
gives necessary conditions on the local combinatorial dafa fofr D to exist.

We have developed a program with MapleV (available upon request) which calculates the local
embedded resolution of the singularities of a cufvethe local Denef-Loeser zeta function
Ziop,p(D, s), the residuep(D) and the eigenvalues of the complex algebraic monodromy of
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(D, P) from the local combinatorial data d?. Thus, given local combinatorial data &f the
above necessary conditions can be easily verified. Let us present some few examples.

Example5.2. — LetD consist of two conics which only meet at one point and a line which is
tangent to each conic in different points. Using elementary properties of pencils of conics it is
easy to see thaD does not exist. In this case, the resigy®) would be—3/5 (different from
0) but there would be three singular points. Thus it would give a counterexample to the above
corollary.

Example5.3. — Consider a rational curv@ of degree six with only one singular poiiit
which is a simple singularity. TheR can be either ai\;9 or Ay singularity. It is known that
the A9 case exists, e.g. see [34]. The double covering“ofamified alongC is a K 3-surface.
Using K 3-surface theory one shows that the, case is not possible.

Let D = C U C; be the curve whose components are the sextith the Ay singularity at
P andCs, where the latter is the unique conic passing through the first five infinitely near points
of C' at P. We suppose that this conic in fact passes through the sixth infinitely near pdint of
at P. Hence the conic only meets at its singular point. The residy€ D) would be different
from 0 and the characteristic polynomial of the monodromyf P) would turn out to be

(t—1)(7 —1)(t>* - 1)
ET-nE -1

Ap p(t)=

Hence D does not exist becausep(2ir(—3/8)) is not an eigenvalue of the complex
monodromy ofD at P.

Example5.4. — ConsidelC a rational curve of degre&) with only one singular point”
whose multiplicity sequence id,4,4,4,4,4,1,1,1,1] = [4¢] (this curve exists and it appears
in the classification of H. Kashiwara, see Appendix A).

Let D = C U C; be the curve whose components &randC5, where the latter is the unique
conic passing through the first five infinitely near pointoat P; by Bezout's theorem there is
no other intersection point. In this case the resid®) = —3 andexp(2ir(—3/12)) is a root
of the characteristic polynomial of the monodromyiofat P. Its Alexander polynomial is the
following:

(t—1)t* —1)(#120 - 1)

Ao =" @ 1)

The following is a list of several possible cuspidal rational curves of defieehich might
exist. We give each singularity as a sequence of multiplicities.

[45, 26], [45,25] + 1Ag, [45,24] + 2Ao, [45,24] + 1Ay,
[45,23] + 3Ao, [45,25] + 3A9, [45,23] + 1Ao + 1Ay, [45,23] 4+ 1Ag,
[45,23] + 1Eg, [45,22] + 4Ao, [45,22] + 2A0 + 1Ay, [45,22] + 24y,

[45,22] + 1A0 + 1Ag, [45,22] + 1A0 + 1Eg, [45,3] 4+ 1A2 + 1Ay,  [45,3] 4+ 3Az,
[45,3] + 1A, [45, 3] + 1Eg, [45,22] + 1As.

If one considers the corresponding cueas the union of the curve of degré@ with these
singularities and the conic as before, then all of them define bad divisors with regiByie 0.
Thus all of them but the first one do not exist because they have more than one singular point. In
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fact, the first one would also give a counter-example to the above corollary. The invariants for a
SIS(V,0) whose tangent cone is a curve with such properties are

9354758454 + 43624214453 + 20423914652 + 711734415 + 5854275
7(1+ s)(1 + 45)(59 + 2345) (81 + 3255) (175 + 702s) ’

Ztop,O(Va S) =

(t819 + 1)(t364 _ t351 + t13 _ 1)(t260 + t195 + t130 + t65 + 1)
-1

Thensy = —1/4 is a pole of the Denef-Loeser zeta function biit= exp(2ir =) is not an
eigenvalue of the complex monodromy. Hence such a curve does not exist.

Ay(t) =

Question— Suppose one gives a set of local data, the question arises whether there exists a
curve satisfying such combinatorics. In this situation we will say we hgp@ential curveNote
that concepts such as rationallity, bad divisor or residue at a singular point only depend on the
combinatorics, so we can talk about these concepts for a potential curve. Hence, Corollary 5.1
gives a necessary condition for a potential rational bad diviswiith p(D) # 0 to exist, namely
exp(?iw%g) is an eigenvalue of the complex monodromy at its singular point.

An interesting question is whether such condition is also sufficient or not, that is, for any
combinatorial data for a potential bad divisBrwith p(D) # 0 if exp(QiW%) is an eigenvalue of
the complex monodromy at its singular point then a curve with these data always exists.

6. Onaquestion by D. Siersma

Throughout this section lef; € C[z1, 22, 23] be a degre@d homogeneous polynomial such
that the projective curvé = fd’l(O) c IP? is reduced. Because of the homogeneity condition,
fa defines a local and a global object in the following sense.

D. Siersma in [27] studied singularities withladimensional critical locus. In particular his
results can be applied to the Milnor fibration of the gefim (C3,0) — (C,0). Its Milnor fiber
F has non-vanishing homology groups concentrated in dimensiaonand?2. In fact, Hy (F, Z)
is a free group and{, (F,Z) can have torsion. One has the algebraic monodromy actirfg on

T;:H;(F,Z) — H;(F,Z).

Sincef, is homogeneous, the Milnor fibration can be extendedtq, fd‘l(o). This has been
studied by A. Dimca in [11]. From [27] or [11] it is known that a necessary conditiod a0
be equal to the identityl, = 1, is (P2 \ D) = 0. It was an open question if this condition is
also a sufficient condition.

A characterization of such a condition would be of interest after the following theorem of
A. Dimca and A. Némethi, [12].

THEOREMA. — For i =0, 1, 2 the following statements are equivalent.
(@ T; =1,
(b) the(reduced homology monodromy representation
p(fa)i:m1(C* pt) — Aut (fL(F, Z))

is trivial.
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D. Siersma listed several examples where the conditid@? \ D) = 0 was also sufficient.
In all of these examples the residu@D) = 0. Consider Example 2.14, namely consisting of
two conics meeting at only one poiftwhich is anA; singularity, that isSing(D) = {P}. The
curve D has degred and y(P? \ D) = 0. This example appeared on D. Siersma’s list, but his
equation is not ai\; singularity.

We are going to prove th&t, # 1 for f; defining D, for instance

fa= (w1x3 — x%) (:101:103 - :C% + xf)

This fact and the following well-known formula for the zeta-function of the monodromy of
homogeneous polynomials, [1], prove that the condi§¢A® \ D) = 0 does not implyl’, = 1:

det(l — tTg) det(l — tTQ) . (1
det(1 —tT1) B

2
_ t4)X(P \D) _ 4

To computel; we use the method described in [3] — see also [11,14,20,23] for other interesting
methods. Letr : X — P2 be the minimal embedded resolution of the singularitpadt the point
P.Hencer*(D) =Cy + Cy + 2E, + 4E5 + 6 E5 + 8FE, is a normal crossing divisor. Consider
for k =1, 2, 3 the ideal sheal* onP? defined as follows:

o If Q € P?\ Sing(D), thenZf, = Op= 4.

e If P € Sing(D), thenZ} is the following ideal 0fOp: p: if h € Op2 p, thenh € ZF if and

only if the vanishing order of* () along eacl¥; is, at least—(v; — 1) + [%] (where].]
stands for the integer part of a real number).

Forl > 0, the following map

ok HY(P?,0(1)) — Op2.p/TF :h— hp + T}

is well defined (up to scalars). The following result was proved in [3]:

STATEMENT. —The dimension of the eigen-subspace corresponding to the eigenvalue
exp(2im(k/4)) of the algebraic monodroniy; of D is equal todim coker oy,_3 .

In particular, fork = 3 one hast/°(P?, 0(0)) = C, and

{—(ui 1)+ {3?} }4 ={0,1,1,2}.

i=1

Let x,y be local coordinates & such thatr = 0 is the tangent line oD at P. It is easy to
see thafl? = (z,y?). It turns out thatlim coker oy 3 is greater thaf. In particular7; is not the
identity.

Question— For any curve{f, = 0}  P? such thaty(P? \ {fs = 0}) = 0, it would be
interesting to study if there is any relationship between the monodromy conjecture and the fact
that the monodromy representatipfy,) is the identity.
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Appendix A

Since we are concerned with rational functionsnwith rational fibers, we review some
facts related to this theory. All assertions in this appendix are explained in much greater detail in
[17,18].

Let A be a pencil on the projective plai#é defined by a non-constant rational functiinLet
{p1,-..,ps} be the set of base points of the pencil. The functibdefines a well-defined map
R:P2\ {p1,...,ps} — PL.

We say thatA (or R) is of type(g,n) if the irreducible components of a generic fiber of the
map R are open Riemann surfaces of geguwith n points on the boundary. A pencil (or a
rational function) of typ€0, n) is calledrational. In addition, if it is of type(0,1) or (0,2) then
we say that\ (or R) is of special type

H. Kashiwara in [17] (resp. T. Kizuka in [18]) classified the pencils of ty@d ) (resp. pencils
of type(0,2)).

The pencils of typg0, 1) on P? have only one base poiiit, all the members of the pencil
are irreducible curves of typ@, 1) whose only singular point i®, and all the members of the
pencil, but at most two, are reduced.

The pencils of typ&0,2) on P2 have at most two base points (this will give two sections in
the resolution process), one member of the pencil has two irreducible components and the other
members are irreducible.

The pencils of special type are classified in two classes: (1) dfassall pencils of special
type for which there exists a member of the pencil which is a projective line and (2)E}ass
the pencils not having a line as a member.

In this appendix we collect the graphs for the pencils of tipé ) obtained by H. Kashiwara.

We translate her graphs into Eisenbud—Neumann splice diagrams [13].

Next we recall the required results of H. Kashiwara. They are expressed in terms of the
resolution graphs. We will also give them in terms of splice diagrams, which are more convenient
for our purposes.

Let G, denote the uppermost graph in Fig. 14 ¥ 25 — 1, j > 1, the one at the bottom
lefthand side if =25, j > 1, and the one at the bottom righthand side=f 0.

7 -1 2

j 2 2 2 3 2 j-1 2 4
<+)w—v<w—o—o—o—%>—<$>
5

+:
%:
|
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LEMMA A.l.— Definem;, [ €N, by
mo =2, my =5, my=3m;_1 — my_2.

If i=25—1,j > 1, thenm, is the determinant of the graph on the lefthand side of E&.If
l=2j,j > 1, thenm, is the determinant of the graph on the righthand side of Eg.

Proof. —Denote byn; the determinant of the above graphs. The computation of these
determinantsis due to N. Duchon and is explained in [13, p. 153}; For, it is easy to compute
thatn; =5 andny = 13. One easily has the recurrence formuaja= 7n;_o — n;_4. The lemma
is proved. O

H. Kashiwara decomposég; in different sets that will be studied independently. FerN,
let R; € F; be arational function given by

my
il

Rl = deg Pl :
l

Let X be the resolution graph of the pendi}. Let aIspS‘O and S, be the strict transforms
of {P, =0} and{Q; = 0} respectively. The grapR U Sy U S, is given in [17, Theorem 6.1,
p. 536].

Case 1.-II (1),1>0.
Forl > 0, the grapht U Sy U S+ is shown in Fig. 16.

LEMMA A.2.-The splice diagram of the gerfiP, = 0} U {R; = p} U {Q; = 0} at its
singular point is shown in FiglL7.

Proof. —The strict transform of R; = u} is transversal to the unique component, in the
resolution graph, with self-intersectionl. Using the relation between resolution graphs and
splice diagrams as explained in [13], one can check that the corresponding splice diagram is that
in Fig. 18.

j-1 !
—(—0—)—0— —(—0—)—0—
7 5 7 2
Fig. 15.
, 2
- ) . o m MM+ M1
G—o0o— 6
1+1
. Pl Rl Ql
Fig. 16.
Fig. 17.
O a9 a Q\b 2 Tb 1 O
P R
1 1 Ql
Fig. 18.
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By Lemma A.1, curve§ P, = 0} and {Q; = 0} only meet at(0,0). The computation of
intersection multiplicity, which is also explained in [13], yieldsh; = m;m;11 andb; = myy1.
Moreover, since{R; = 0} is a generic member of the pencilpb;m;11 = ai1bamy. Since
ged(my,my41) = 1, one hasi; = m} andby = m7, . Thus the lemma is proved.o

Note that, along the lines, we have also proved the following

LEMMA A3.—If I=2j—1, j > 1, then the integem, is the determinant of the graph on
the left-hand side of Figl9. If [ = 25,5 > 1, thenm; is the determinant of the graph on the
right-hand side.

The simplest example of rational functionslin(l) is described in Example 3.4. Its splice
diagram can be seen in Fig. 10.

CASE 2. —ITT(I,N;M1,...,An), 1 >0.

We denote bﬁl the graphc_v'Z when read from right to left and b‘y@ the graph@> whose
weight at the left end is increased by one. The graph is shown in Fig. 20, where , \y
belong toZx, if [ > 1 and toZs if I = 0. The N-tuple (A1,...,An) determines (and it is
determined by) the resolution graphs of the vertical sides. We do not use them so we do not need
to be more explicit.

LEMMA A.4.—-The splice diagram of the gerfi’, =0} U{R; = u} U {Q; =0} is shown in
Fig. 21.

Proof. —=From Lemmas A.1 and A.3, we know that the splice diagram is the one shown in
Fig. 22.

2 2 2 3 2 j1 2 4 3 02 2 2 2 3t a2 s
(—O0—0—0——0—0——(—0—) —0 tO—0—0—0—"0 )— (—0—)
Fig. 19.
' |
| ‘ |
31 1 | | [ .
g*&fffbfffofff ————0—— S
1
Fig. 20.
2
O m;\ m}-\ o m|+|
A R i : i Ql|
Fig. 21.
o DN a b o ~ M o
g th i Q
Fig. 22.

4€ SERIE— TOME 35 — 2002 -N° 4



MONODROMY CONJECTURE FOR SOME SURFACE SINGULARITIES 637
Since {R, = 0} is a generic fiber of the pencil, we haven? = am; deg(P,). Since
ged(my, myy1 deg(P,)) =1 andged(a,b) = 1, we haven = m?. O

An example of such a rational function is given by the following formulae. Let

¢p=ay—a® —y°, Py =y—2a? P =(¢°+ P) /P,

F=¢P; +aP,, P=(F°+P®)/P.

The polynomialP has degreé2, and is in a(0, 1)-pencil with P,. Its splice diagram is shown
in Fig. 23.

CASE 3. —II" (0, N; A1,...,AN).
The resolution graph is shown on the lefthand side of Fig. 24.

LEMMA A.5.—The splice diagram of the gerfiP, =0} U{R; = u} U {Q; = 0} is shown on
the righthand side of Fig3.

The proof uses the same argument as above.
One example of such a rational function is

= qSPEl + a3yP§1 + a2y3P31 +a1y°P_y + apy’, P= (le + Ff)/y

The polynomialP has degre@3 and is in &0, 1)-pencil with P_ . Its splice diagram is shown
on the righthand side of Fig. 24.
CASE 4.—IT" (I, N; M\q,...,An), 1> 1.

Its resolution graph is given in Fig. 25.

132 27 169 25 5415

o A o)
IS Y R
Fig. 23.
[
| | |
. | | 5 69 3
004(1}777{)777&777 777@*(‘6*)L> o o o ?3 %
l10‘ R(J i
Fig. 24.
! \
\ ‘ !
o \ | \ <
G 1 +
'—0--—-——-4---0--- -————0-- 6,
1
Fig. 25.
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LEMMA A.6.—The splice diagram of the gerfiP, =0} U{R; = u} U {Q; = 0} is shown on
the lefthand side of Fig26.

The proof uses the same argument as above. One example of such a rational function is
F=¢Py+aQs,  P= (P +F3)/Qu

The polynomialP has degre88 and is in &0, 1)-pencil with . Its splice diagram is shown on
the righthand side of Fig. 26.
Next we recall the graphs that H. Kashiwara gives for the ¢gse

Caste 1.-1(0).

Let us consider the graph on the left-hand side of Fig. 27. This produces the splice diagram on
the right-hand side of Fig. 27, which fits the case of the two conics mentioned in Example 2.14.

CASE 2. —TT(N;A,.. ., AN)-
In this case we have the graph and the splice diagram shown in Fig. 28.
CASE 3. =17 (N;A1,...,AN).

In this case we have the graph and the splice diagram shown in Fig. 29.

™ 5 289 25 1444 3 132

TITTTT CTTTT

Fig. 26.

Fig. 27.

| I

| I
1 2 3 3 3 2 2
~—O0—0 - 0— - O 4%—#74)—T—<:

Fig. 28.

iy

Ay N
1 2 | 3 3 2 Aq-l 2 Ayl P
~—O0—0 - -0—-0 —O—+—0— y ) [— — >
O ) b

2

Q

Fig. 29.
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