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We say that several scalar time series are dynamically coupled if they record the values of mea-

surements of the state variables of the same smooth dynamical system. We show that much of

the information lost due to measurement noise in a target time series can be recovered with a noise

reduction algorithm by crossing the time series with another time series with which it is dynamically

coupled. The method is particularly useful for reduction of measurement noise in short length time

series with high uncertainties.
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In the study of real world dynamical phenomena it is common to record the values of a feature of the phenomenon

as time varies (time series). Such features can be some of the state variables of the dynamics under study or some real

function (observation) of such variables. Typically the measuring device used to record the time series has limited

accuracy, and consequently the recorded signal differs from the clean signal by a measurement error. Noise reduction

means any procedure which eliminates part of the noise, thereby yielding a cleaned signal with geometric, dynamical,

and statistical properties as similar as possible to those of the clean signal. The level of noise reduction achieved can

be seen as a measure of the reduction of risk, of the information gain, and of the increase in forecasting ability.

Powerful methods of noise reduction, such as the Kalman filter, obtain marginal gains in the information processed

only through updating data points when new marginal information arrives. In this paper we show that sharing

complementary information spread among different research teams or institutions makes possible a process exploiting

and recycling existing information.

The results reported in this paper show that substantial reduction of additive measurement noise in a noisy time

series can be achieved by crossing the given time series with other time series with which it is dynamically coupled. We

say that several time series are dynamically coupled (see Ref.1 for other approaches to coupled systems in the setting of

noisy time series) if they are the time ordered values either of some of the state variables or of real functions of the state

variables of the same smooth dynamical system. For instance, classical models in economics show that the pairs of
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time series taken respectively from unemployment and inflation, or from interest rates and gross national product, are

dynamically coupled. The method of reducing measurement noise by dynamical coupling is especially advantageous

when the uncertainty of the time series under study is greater than that of the time series dynamically coupled to

it. For instance, in a predator-prey pair, often the stock of one of the species can be observed with greater accuracy

than can that of the other. In fact, typical real world dynamically coupled time series (think for instance of clinical,

meteorological, or econometric measurements) are heteroscedastic2,3 (have different levels of uncertainty). Some of

the reasons for the heteroscedasticity are that the nature of the data recorded varies (e.g. pressure, temperature,

rainfall, etc.), the devices used to record the data produce different sorts of measurement errors, those who record

social data and the procedures they use to do so are different, and also because some observables are more difficult

to register than others.

It should be remarked that in order to apply the methods proposed in this paper it is not necessary to know the

underlying smooth dynamical system. Rather, there suffices the existence of some dynamical system through which

the measurements are coupled.

The method of dynamical coupling is especially powerful for very short time series. For instance, in a laboratory

time series generated by the logistic map corrupted by a measurement noise with a 50% amplitude and having a

length of only 250 data points, we can obtain (see Subsection III B 2) noise reduction levels of up to 80%.

The good behavior of the dynamical coupling procedure for short time series makes it possible to extend the scope

of application of noise reduction techniques to the social sciences, where many of the methods used in nonlinear

time series analysis have not yet been applied because of the short lengths of the available time series. Also, as a

consequence of the ideas in this paper, the potential importance of sharing information between different research

teams or institutions becomes clearer.

I. INTRODUCTION

In noise reduction problems the mechanism generating the noisy time series is assumed to have the following general

form:

yi+1 = F(yi, ξi), (1)

Xi = H(yi, ei).
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Here yi ∈ Rm is the unobservable state of a system at time i; the function F is the evolution law; H is the measurement

function or observable; ξi, and ei are unknown multivariate random variables; and Xi, i = 1, 2, ..., N, is the available

data set or noisy time series (for continuous time dynamics the model is analogous with
·
y(t) = F(y(t), ξt)). In this

scheme ξi is referred to as the dynamical noise and ei as the observational or measurement noise. The noise is

called additive if it enters in the corresponding equation in an additive way (there exist functions f and h such that

F(yi, ξi) = f(yi) + ξi and/or H(yi, ei) = h(yi) + ei). This paper treats additive measurement noise reduction with

unknown f and h.

The corruption of a deterministic signal by measurement noise may render impractical the estimation of invariant

parameters of the underlying nonlinear dynamics such as fractal dimensions, entropies, or Lyapunov exponents (see

Refs.4–7). Noise can also distort the behavior of forecasting algorithms8, and tests for detecting nonlinearity, chaos9,

continuity10, or smoothness11,12. For this reason it is important to design procedures robust with respect to measure-

ment noise or to use a noise reduction algorithm prior to using such tests or to estimating these invariant parameters.

It is important to point out that the use of a noise reduction algorithm does not imply that a given characteristic of the

underlying dynamics may be better estimated using the cleaned time series than using the original noisy time series.

The quality of the estimation will depend on the noise reduction algorithm, the level and type of noise, and on the

characteristics it is desired to estimate. Consequently, posterior to the noise reduction procedure an analysis is needed

in order to evaluate whether the cleaned time series facilitates improvements in the estimation of the parameters of

interest.

There are many algorithms available for noise reduction13–32, but almost all of them are focused on the reduction of

noise in univariate time series13–29. However, in many experimental problems several observations (scalar time series)

of the unknown state variables can be recorded. These observations typically contain measurement errors of different

amplitudes. The efficiency of the univariate noise reduction algorithms is then limited by the fact that by treating each

signal separately such procedures do not allow the exploitation of the information about the phenomenon contained

in the remaining scalar time series.

The main contribution of this paper is to show the efficacy of the dynamical coupling procedure in noise reduction.

The dynamical coupling procedure can potentially be used for other purposes than noise reduction, as for instance

chaos detection. We remark that the dynamical coupling procedure can be applied to any noise reduction algorithm

designed for multivariate time series (for instance those proposed in Refs.30,32,33). In this paper we use the algorithm

proposed in Ref.32 (described briefly in Section II), but we give also in Subsection III D an example showing the
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utility of the dynamical coupling procedure when using the algorithm proposed in Ref.33. Some of the advantages

and drawbacks of the different noise reduction algorithms are discussed below and in Subsection II B.

In order to show the usefulness of the dynamical coupling procedure we have studied the level of noise reduction

achieved by the noise reduction algorithm with and without the dynamical coupling procedure for noisy time series

obtained from logistic, Hénon, and Lorenz dynamics. Our algorithm32 is an improved version of the one proposed in

Ref.31. The main virtue of the first version of the algorithm31 is that its noise reduction scheme takes into account

the possible variations in the unknown levels of uncertainty that may exist in the coordinates of a multivariate time

series. In the updated algorithm32 the main improvement was the incorporation of an adaptative neighborhood sizing

scheme, which allows reduction of the noise in time series corrupted by high amplitude measurement noise.

Our algorithm proceeds through orthogonal projections of the data points of the time series within certain neigh-

borhoods onto local linear subspaces. These linear subspaces are those closest to the data points in the neighborhoods

with respect to a specific distance: that induced by an estimation of the covariance matrix of the measurement errors

(see the explanation of this metric in Section II B). This distance gives less weight to coordinates (scalar time series)

recorded with lower precision. The noise reduction scheme is iterative. The output time series at a given iteration is

the input time series in the next iteration of the algorithm. The effectiveness of the noise reduction scheme means

that noise levels decrease as the iterations advance. Then the sizes of the neighborhoods must be reduced accordingly,

thereby minimizing the errors due to nonlinearity. In our algorithm the sizes and shape of the neighborhoods32 are

also determined by the remaining level of uncertainty in each coordinate. The neighborhoods will be ellipsoids rather

than simply spheres, with semi-axial lengths related to the uncertainties in the corresponding coordinates. We explain

in Section II C how these unknown levels of uncertainty are estimated using only the noisy time series.

Although algorithms for univariate time series predominate in the noise reduction literature, there are algorithms

designed for multivariate time series30 or that may be used for both univariate and multivariate time series (see the

algorithm proposed in Ref.21, which is implemented in the program ghkss in the TISEAN library33). The algorithms

proposed in Refs.30,33 are also based on orthogonal projections onto linear subspaces. These linear subspaces are those

closest to the data points in certain neighborhoods, but with respect to a metric that does not take into account the

different levels of uncertainty in the individual coordinates of the time series. Since these algorithms are designed for

multivariate time series they also allow exploitation of the information contained in multiple observations of a single

dynamical system. However for the problem we address in this paper, our algorithm has some advantages:

(i) The metric we choose for determining the linear subspaces is optimal (in a maximum likelihood sense34) whereas
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the metric used in the cited algorithms is optimal (in a maximum likelihood sense) only if the noise levels in all of

the univariate time series are similar.

(ii) Our algorithm adapts the shape and size of the neighborhoods to the uncertainty remaining in each individual

coordinate, whereas in many of the noise reduction algorithms the neighborhoods are built by setting in advance

a minimum number of neighbors, which is fixed for all neighborhoods and in all the iterations of the algorithm.

Obviously for high noise levels the number of neighbors in early iterations must be significantly higher than in later

iterations, and in many of these algorithms it is not possible to control the number of neighbors in an automatic way

or the computational cost of such control is too high (see Ref.22).

(iii) Our algorithm incorporates a stopping criterion (see Section II D) without computational cost, which does not

require knowledge of the clean time series. In these algorithms the number of iterations is an input parameter, and

only looking at the final results it is possible to determine what number of iterations is best.

The paper is organized as follows. In Section II we describe the main ideas of our algorithm and in Section III we

present some results obtained by our algorithm for logistic, Hénon, and Lorenz time series corrupted by noise. In

order to show the effectiveness of the dynamical coupling procedure we compare these results with those obtained by

processing each time series separately.

II. THE ALGORITHM

We consider the model (1) with additive measurement noise, and an observable h taking values in Rd. Then, there

are d available univariate noisy time series {Xj
i , i = 1, ..., N}, j = 1, ...d where

Xj
i = sj

i + ej
i ; i = 1, ..., N ; j = 1, ..., d.

For each j, j = 1, ..., d, we assume that {ej
i ; i = 1, ..., N} are independent and identically distributed (i.i.d.) random

variables with mean zero and Gaussian distribution, and {sj
i , i = 1, ..., N} is an unknown deterministic time series

obtained from the observation of the first N points of an orbit of a smooth chaotic dynamical system,

sj
i = hj(yi) and yi+1 = f(yi),

where f : M ⊂ Rm → M and hj : M ⊂ Rm → R, j = 1, ..., d are unknown smooth functions. For the case of

continuous time dynamics, the d noisy scalar time series are obtained in an analogous way. We assume first that

d ≥ m, and we will explain how to proceed in the case d < m in Subsection II D.
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The multivariate time series that the algorithm takes as input is {Xi, i = 1, ..., N} ⊂ Rd where Xi := si + ei,

Xi := (X1
i , X2

i ..., Xd
i ), si := (s1

i , s
2
i ..., s

d
i ), and ei := (e1

i , e
2
i , ..., e

d
i ). The aim of our noise reduction procedure is the

separation of the deterministic component {si, i = 1, ..., N} from the observational noise {ei, i = 1, ..., N}, in the sense

that the output time series of the algorithm, denoted {ŝi, i = 1, ..., N}, must recover the main geometric, dynamical,

and statistical properties of {si, i = 1, ..., N}.

We present now the main ideas underlying our algorithm. The details of the implementation can be found in Ref.32.

A. Noise reduction through orthogonal projections onto linear subspaces

The three delay embedding {(si−1, si, si+1), i = 2, ..., N − 1} of the clean data belongs to an m-dimensional

submanifold of R3d. Given any point of this three delay embedding, and a small neighborhood of such a data point,

all the data points of the three delay embedding within such a neighborhood, are close to an m-dimensional linear

subspace (the space tangent to the submanifold at the center of the neighborhood). As result of the noise, the observed

data within the small neighborhoods are separated from the tangent spaces, so the noise can be partially removed

by estimating the m-dimensional linear subspace closest to the data points in each neighborhood and projecting the

data points within the neighborhood onto it. To our knowledge this idea was implemented for the first time in an

algorithm for reducing the noise of a multivariate time series in Ref.30.

Our algorithm requires a three delay embedding {Zi := (Xi−1,Xi,Xi+1), i = 2, ..., N − 1} ⊂ R3d of the observed

time series {Xi, i = 1, ..., N}, a neighborhood Ui for each point Zi, and the center of mass 〈Zi〉 of the points

{Zk, for Zk ∈ Ui}. The noise is partially removed by replacing Zk by Ẑk(i) := 〈Zi〉 + PTi
(Zk − 〈Zi〉), where Ti

is the m-dimensional linear subspace closest (with respect to a distance specified below) to the data points in Ui,

and PTi
(Zk − 〈Zi〉) is the orthogonal projection of the vector Zk − 〈Zi〉 onto Ti. Thus Ẑk(i) is the estimation of

(sk−1, sk, sk+1) ∈ R3d obtained from the neighborhood Ui, provided that Zk ∈ Ui. Since a given point Zk can

belong to many neighborhoods Ui, we have an estimation Ẑk(i) for each such neighborhood. The final estimation

(ŝi−1, ŝi, ŝi+1) of (si−1, si, si+1) ∈ R3d is the average of all of these estimations. This gives a 3d-dimensional time

series and therefore three different estimations for each si, i = 2, ..., N − 1 : those given respectively by the final,

intermediate, and initial d coordinates of (ŝi−2, ŝi−1, ŝi), (ŝi−1, ŝi, ŝi+1), and (ŝi, ŝi+1, ŝi+2). We take as the estimation

of si a weighted average of these three estimates. The weights are the same for all the points and inversely proportional

to the sample variances of the corrections εi := (Xi−1,Xi,Xi+1)− (ŝi−1, ŝi, ŝi+1), i = 2, ..., N − 1.

The metric we implement in our algorithm is that induced by Σ̂, where Σ̂ is an estimation of the covariance matrix
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of the errors contained in the data points Zj , j = 2, ..., N − 1. In Subsection IIC we explain how this covariance

matrix is estimated using only the information contained in the noisy time series. The metric induced by Σ̂ takes

into account the different levels of uncertainty for the different coordinates of the multivariate time series. The m-

dimensional linear subspace Ti is that subspace, in the set Lm of m-dimensional linear subspaces, closest to the data

points {Zj − 〈Zi〉 ,Zj ∈ Ui} with respect to the distance induced by Σ̂. Then Ti is the solution of the problem,

min
T∈Lm

∑
j: Zj∈Ui

wt
j Σ̂−1wj

where wj := Zj −〈Zi〉−PT(Zj −〈Zi〉) and PTZ := arg minu∈T(u−Z)tΣ̂−1(u−Z). This is an optimization problem

with an explicit solution easily implemented numerically (see Ref.32).

Notice that in the homoscedastic case, Σ̂ = σ2I, where I is the identity matrix, the distance dΣ(u,Z) =(
(u− Z)tΣ̂−1(u− Z)

)1/2

gives the same solution as does the Euclidean distance d2(u,Z) = ‖u− Z‖. In the uncor-

related and heteroscedastic case, Σ̂ is a diagonal matrix with entries σ̂2
i , i = 1, ..., 3d, and dΣ is the weighted distance

dΣ(u,Z) =
√

w1(u1 − Z1)2 + ... + w3d(u3d − Z3d)2 with weights wi = 1
σ2

i
, i = 1, ..., 3d. Observe that when σ2

i de-

creases, wi increases correspondingly, with the final effect that the difference (ui−Zi) in the solution u = (u1, ..., u3d)

which minimizes dΣ(u,Z) is forced to be small.

B. The metric induced by bΣ and alternative metrics

Noise reduction via orthogonal projections of the data in neighborhoods onto linear subspaces is also the basis

of other noise reduction algorithms designed for scalar21–29 and multivariate30 time series. The performance of the

algorithms depends strongly on the metric considered, because the metric determines which linear subspace Ti is

closest to the data points in the neighborhood Ui, what is the orthogonal projection PTi(Zj − 〈Zi〉) of a vector

Zj − 〈Zi〉 onto the linear subspace Ti, and, in our algorithm, also what are the shapes of the neighborhoods Ui.

Furthermore it determines the statistical properties of the estimations34. For these reasons we think that the metric

used should not be the same for scalar and multivariate time series. The algorithms for scalar time series work

with delay vectors, and the level of uncertainty in all the coordinates of the delay vectors is the same. Therefore to

consider a metric which weights all coordinates equally, as is done in Ref.23,24,28,29, seems a reasonable choice. In fact

it gives good results. It has been proved21 that a metric which focuses the noise reduction on the most stable middle

coordinates of the delay vectors (taking the weights corresponding to the first and last coordinates to be large relative

to the other weights, which are set equal to one) gives excellent results for chaotic scalar time series. For this reason
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this algorithm, implemented in the TISEAN package33, is among those most frequently used for noise reduction of

scalar time series.

Although for multivariate heteroscedastic noisy time series, it is known that the Euclidean metric produces biased

estimators (see Refs.14,35,36), this is the metric most frequently used. However the estimations of the true values of

the multivariate time series obtained taking as the metric that induced by Σ̂ have very good statistical properties:

for linear models they are unbiased and consistent estimations of the true values and, for Gaussian errors, they are

those of maximum likelihood (see Ref.34). This metric gives elliptical neighborhoods rather than simply spherical

ones. The univariate time series with more accuracy have more weight in the determination of the linear subspaces

Ti where the data points in neighborhoods are projected, and the greater the degree of uncertainty in a coordinate,

the greater the correction that the algorithm will make to it. Obviously if the multivariate noisy time series is

homoscedastic our algorithm can be applied. The estimation of the covariance matrix of the errors will be a multiple

of the identity matrix, and our metric gives results analogous to those obtained with the Euclidean metric. However,

in the homoscedastic case, the algorithm proposed in Ref.30 might perform even better than ours because it uses

a metric that takes into account that the d central coordinates of the points {Zi, i = 2, ..., N − 1} ⊂ R3d are, for

dynamical reasons, more stable than the remaining 2d coordinates.

C. Estimation of the covariance matrix of the errors

Our algorithm requires at each iteration the estimation of the covariance matrix of the errors in the data points.

This estimation is made using only the noisy time series.

Let {ŝk
i , i = 1, ..., N} ⊂ Rd be the output of the algorithm at iteration k ≥ 1, which is also the multivariate input

time series at iteration k + 1. Let {Z0
i := (Xi−1,Xi,Xi+1), i = 2, ..., N − 1} be the three-embedding of the initial

noisy time series, and let {Zk
i := (ŝk

i−1, ŝ
k
i , ŝk

i+1), i = 2, ..., N − 1}. An estimate Σ̂k of the covariance matrix of the

errors in {Zk
i , i = 2, ..., N − 1} is needed for obtaining the linear subspace Ti closest, with respect to the metric Σ̂k,

to the data points in the neighborhood Ui. The matrix Σ̂k is also needed in the construction of the neighborhoods

Ui := {Zk
j : (Zk

j − Zk
i )t(Σ̂k)−1(Zk

j − Zk
i ) ≤ r} where r is taken as small as possible subject to the requirement that,

with a given confidence level, the relevant information is contained in the neighborhoods (see Ref.32). Finally, the

matrix Σ̂k also determines the orthogonal projection PTi
Z := arg minu∈Ti

(u−Z)t(Σ̂k)−1(u−Z) of a vector Z onto

Ti.

If we do not have any a priori information about the initial level of uncertainty in each coordinate of the time series
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(i.e. about the covariance matrix Σ0), then we run l iterations of our algorithm in order to obtain an initial estimation

Σ̂0 of Σ0. In the first of these l iterations, we take Σ̂0
0 = I, where I is the identity matrix, as the estimation of the

covariance matrix of the errors in {Ẑ0
i , i = 2, ..., N − 1}. For the (k + 1)st iteration, k > 1, we take as the estimation

Σ̂k of the covariance matrix of the errors in {Ẑk
i , i = 2, ..., N − 1} the sample covariance matrix of the corrections

êk
i := Ẑk

i − Ẑk−1
i , i = 2, ..., N − 1,

made by the algorithm at the kth iteration. At the end of the lth iteration, the estimate Σ̂0
l of Σ0 is the sample

covariance matrix of the total corrections

ε̂j := Ẑl
i − Ẑ0

i , i = 2, ..., N − 1,

made by the algorithm in these l iterations. The number l of iterations must be large enough to guarantee that Σ̂0
l

stabilizes. We have observed that eight iterations suffice for guaranteeing stabilization, so Σ̂0
8 is the estimate of Σ0

we have used in all the experiments below.

For the (k + 1)st iteration, k ≥ 1, we take the sample covariance matrix Σ̂k of the corrections made by the

algorithm at the kth iteration as the estimation of the covariance matrix Σk of the true remaining errors in the time

series {Zk
i , i = 2, ..., N − 1}.

D. Stopping criterion and embedding issues

We have explained before that any noise reduction algorithm proceeds iteratively. The stopping criterion we use

is based on our adaptive neighborhood construction. As the iterations increase, the noise levels and the sizes of the

neighborhoods Ui decrease. A clear indication that further iterations of the algorithm will not reduce the remaining

noise is the stabilization of the mean number of points in the neighborhoods, and this is our stopping criterion.

Now we indicate how to treat the case d < m. That is, the case in which the number of scalar time series d is

less than the dimension m of the space where the dynamics is defined. In this case we have to ensure that the three

delay embedding of the d-dimensional clean time series reproduces the main geometric, dynamical, and statistical

properties of an orbit of the original dynamics (see Ref.37). This is guaranteed if d = m, for generic observables hj ,

and also if d < m, provided 3d > 2m holds. If d < m but 3d ≤ 2m, then we take a number n of additional univariate

time series obtained by taking delays of some of the d original noisy time series, with n satisfying 3(d + n) > 2m in

order to guarantee that the three delay embedding {(si−1, si, si+1), i = 2, ..., N − n} of the unknown new clean time

series {si, i = 1, ..., N − n + 1} ⊂ Rd+n provides a good reconstruction37 of the unknown dynamics.
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III. NUMERICAL RESULTS

In this section we show the advantages of dynamic coupling for time series generated by logistic, Hénon, and Lorenz

dynamics corrupted by additive measurement Gaussian noises with zero mean and different amplitudes.

The unknown noise level in the jth observed time series is given by the noise-to-signal standard deviation ratio

NSRj :=

√√√√√√
∑N

i=1

(
ej
i − 〈ej〉

)2

∑N
i=1

(
sj

i − 〈sj〉
)2 , j = 1, ..., d, (2)

where
〈
ej
〉

:= 1
N

∑N
i=1 ej

i and
〈
sj
〉

:= 1
N

∑N
i=1 sj

i .

We quantify the noise removed by the algorithm in each of the scalar time series using the method standard in the

noise reduction literature7,17–21,23–32: comparing the pointwise distances between the clean time series and the noisy

time series before and after the noise reduction procedure. If the pointwise distance after the noise reduction

dp(ŝj) :=

(
1
N

N∑
i=1

(
sj

i − ŝj
i

)2
)1/2

,

is less than before the noise reduction dp(Xj), then the noise level in ŝj is less than the noise level in the jth coordinate

of the input noisy time series Xj . The percentage of pointwise noise reduction in the jth coordinate of the time series

is Rj := 100
(
1− dp(bsj)

dp(Xj)

)
. A high value of Rj guarantees that any measurement depending on the values of the clean

time series sj (for instance its mean, standard deviation etc.) estimated from ŝj yields better results than those that

would be obtained from Xj .

The calculation of Rj requires knowledge of the clean time series. We use such knowledge only in quantifying the

level of noise reduction. It is used neither in the noise reduction scheme nor in deciding when the algorithm must

stop. In fact, the evaluation of the performance of the noise reduction algorithm is independent of and posterior to

the noise reduction process. The noise reduction requires as information only the given noisy time series, whereas

an evaluation of the performance of the algorithm based on the pointwise distance requires knowledge of the clean

time series. Thus the noise reduction algorithm can work for data generated by an unknown process, although an

evaluation of its performance based on the pointwise distance would not be possible in such a case. However there

exist other measures of noise reduction that do not require knowledge of the clean time series (for instance R̂dyn

defined in (4) in Subsection III F).

We have computed other noise reduction measures in all the experiments below. These alternative noise reduction

measures support in a similar manner the effectiveness of the dynamical coupling procedure. In the interest of brevity,
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we present below only the results corresponding to the noise reduction measure most common in the literature, that

based on the pointwise distance. However, in one example, recorded in Table V in Section III F, we report the noise

reduction values obtained using these other noise reduction measures. We also report there the drawbacks of the noise

reduction measures based on the pointwise distance to the clean time series.

A. Description of the experiments

The equation of the logistic map is

y(k + 1) = 4y(k)(1− y(k)).

The Hénon map is given by the equations

y1(k + 1) = 1− ay1(k)2 + y2(k), y2(k + 1) = by1(k),

where the parameter values are taken to be a = 1.4 and b = 0.3.

The Lorenz dynamics is defined by

·
y1 = σ(y2 − y1),

·
y2 = y1(R− y3)− y2 ,

·
y3 = y1y2 − by3,

where the parameter values are taken to be σ = 16, R = 45.92 and b = 4. These equations were integrated using

a fourth order Runge-Kutta algorithm with an integration step of ∆t = 0.001. The sampling time we consider is

30∆t = 0.03.

Since one of our aims is to show the applicability of dynamic coupling in problems coming from the social sciences,

where time series are usually short, we focus on showing the results of the algorithm for time series of short and

medium lengths, although for completeness we also present some results for long time series.

For short time series the results of the algorithm depend strongly on the realization of the error term, and also

on the clean time series considered. The level of noise reduction achieved by any noise reduction algorithm must be

understood in terms of the distribution of the outputs of the algorithm. For this reason we repeat each experiment

with a given set of conditions several times for different clean time series and realizations of the error term. We take

a long clean time series of 50000 data points. This time series is observed using different observables hj , j = 1, ..., d.

These d time series of 50000 data points are corrupted using d independent and uncorrelated Gaussian noises of

different variances. Finally we split each of these d time series into L time series each having N = 50000/L data

points. We take as the length N of the time series N ∈ {250, 500, 1000, 2500, 5000}, in order to study the behavior of
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the algorithm in time series of very short, short, medium and large lengths. We quantify the level of noise reduction

using the mean
〈
Rj
〉

and the standard deviation sRj of Rj , j = 1, ..., d, obtained using the L time series. Thus for

N = 250, the sample means
〈
Rj
〉

and the sample standard deviations sRj , j = 1, ..., d, are calculated using 200 time

series, whereas for N = 5000 these values are calculated using 10 time series.

B. Results for the logistic map with and without dynamical coupling

1. Medium amplitude and moderated heteroscedastic noises NRS = (10%, 5%, 7.5%)

Table I presents for comparison results obtained by applying our algorithm using two and three dynamically coupled

noisy time series, and Table II records the corresponding results obtained without using the dynamical coupling

procedure. The aims of this experiment are to show the advantages of the dynamical coupling in reducing the noise

of the target time series (the corresponding to the highest noise level), and to show some statistical properties of the

distribution of the outputs of the algorithm when the dynamical coupling procedure is used.

The three noisy scalar time series X1, X2, and X3 correspond to the logistic map, the observables h1(y) =
√

5y + 4,

h2(y) = (y + 2)2, and h3(y) = 2y + 3, respectively, and to the noise to signal ratios 10%, 5%, and 7.5%, respectively.

We record in the second column of Table I the sample mean < R1 > and the sample standard deviation sR1 of the

noise reduction levels obtained for the target time series X1, when it is processed using the coupled time series X2,

corresponding to the observable h2 and NRS2 = 5%. The third column of Table I contains the corresponding values

of < R2 > and sR2 . The fourth column of Table I displays the results obtained for X1 using as input one additional

coupled time series X3, that corresponding to the observable h3 and NRS3 = 7.5%. Again for completeness there

appear in the last two columns of the table the noise reduction values (< Rj >, sRj ), j = 2, 3, obtained for the time

series X2 and X3, respectively. These results can be used to assess the gains, in terms of the improvements in the

noise reduction achieved for the time series X1 and X2, caused by the additional information provided by the time

series X3 corrupted with noise having the intermediate level NSR3 = 7.5%.

Table II records the results obtained without the dynamical coupling procedure. Comparison of these results with

those given in Table I makes apparent the advantages of dynamical coupling over processing each time series separately.

Such a comparison is made below.

The results reported in the second column of Table I show high levels of noise reduction for the target time series

X1 even for very short time series (only 250 data points). The mean noise reduction together with the standard
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deviation value also indicate that surprisingly high levels of noise reduction are attained for all the 200 time series

corresponding to the length N = 250. We can see that the level of noise reduction increases with the number N of

points in the time series and that the standard deviation decreases with N. Although we do not pretend to show

that the dynamical coupling procedure is advantageous in reducing the noise of the most accurate time series X2,

the results reported in the third column also show high mean noise reduction for this time series, especially for large

values of N .

The righthand columns of the table display the results obtained using the additional information provided for the

time series X3 having an intermediate noise level NSR3 = 7.5%. We can see that the mean noise reduction values for

the target time series X1 are higher, for all the lengths N, than those obtained without using the additional coupled

time series X3. The same behavior can also be observed for the most accurate time series X2. The explanation is

that although NSR3 is higher than NSR2, it is less than NSR1. Thus it is more advantageous to process the most

accurate time series X2 jointly with X1 and X3 than it is to process it only with the noisiest time series X1.

To facilitate visualization of the behavior pattern, the results contained in Table I corresponding to the target time

series X1 (the second and fourth columns) are plotted in Figure 1(a).

In Table II we present the results obtained using our algorithm without the dynamical coupling procedure. In this

case the algorithm only uses the information provided for one of the scalar time series. The input time series for the

algorithm are a scalar time series (denoted as dm = 1) or a dm-dimensional delay embedding of such a scalar time

series with dm = 2, 3. The results for the dm-embeddings for dm = 1, 2, 3 of the target time series X1 are on the left

of the table (the second, third, and fourth columns, respectively), and of the most accurate time series X2 are on the

right of the table (the fifth, sixth, and seventh columns, respectively).

To facilitate visualization of the behavior pattern, the results contained in Table II corresponding to X1 (the second,

third, and fourth columns) are plotted in Figure 1(b).

If we compare the results of Table II corresponding to the target time series X1 (the second, third, and fourth

columns, which are plotted in Figure 1(b)) with those given in Table I (the second and fourth columns, which

are plotted in Figure 1(a)) we can see that the dynamical coupling procedure significantly improves the levels of

noise reduction (see also Figure 1(c)). For instance, the best result obtained without the dynamical coupling is

< R1 >= 74.4198 for dm = 3 and N = 5000, and values of < R1 > higher than 70% require N = 2500 data points.

However, levels of noise reduction higher than 70% are attained with the dynamical coupling procedure (with one

or two dynamically coupled time series) for only 250 data points, and for long time series the values of < R1 > are
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higher than 85%.

Even for the time series X2 corresponding to the initial noise levels of 5%, (compare the results in the fifth, sixth

and seventh columns of Table II with those contained in the third and fifth columns of Table I), the levels of noise

reduction for short or medium length time series are higher when it is processed with the other one or two time

series dynamically coupled with it, even when these time series present a higher level of uncertainty. If the difference

between the initial noise levels were higher, a similar result would not be possible. There do not appear in Table II

the results for X2, and dm = 3 and short time series because our algorithm is not able to reduce the noise efficiently

for such low initial noise level and time series so short.

The results reported in Table II also show that the noise reduction of scalar time series requires a significantly

higher number of points than is needed when we have several dynamically coupled time series, as it indicates the fact

that the values of < Rj >, j = 1, 2 for dm = 3 are smaller than those for dm = 2 if n < 5000. This problem is

more serious when working with dynamics defined in spaces of high dimensions, where in order to guarantee a good

embedding it will be necessary to take an embedding dimension dm large enough (see Ref.37).

2. Highly heteroscedastic noises NRS = (50%, 5%)

The advantage of dynamic coupling is greater when the initial noise levels are very different. This can be seen

in Table III, which gives the results obtained for two dynamically coupled time series corresponding to the logistic

map, the observables h1(y) =
√

5y + 4 and h2(y) = (y + 2)2, and the noise levels NSR1 = 50% and NSR2 = 5%

respectively. The table presents on its righthand side the results obtained without the dynamical coupling procedure

for the target time series X1 and on its left the results using the dynamical coupling procedure (for completeness the

table shows also the results for the dynamically coupled time series X2). The results contained in the second and

fifth columns of Table III are plotted in Figure 2 in order to aid visualization of the patterns of behavior with and

without dynamical coupling (for dm = 2) for the target time series X1.

The results reported in this table and Figure 2 show that, using our algorithm, the advantage of the dynamical

coupling procedure is clear. For N = 250, the values (< R1 >, s1) = (81.4044, 3.3442) obtained with dynamical

coupling are, respectively, approximately double and half the best result (< R1 >, s1) = (42.5436, 7.6653), obtained

without dynamical coupling. This result gives, at least for short length time series, clear evidence of the difficulty, if

using our algorithm, of improving the noise reduction levels achieved for the target time series X1 without using the

information provided for some more accurate dynamically coupled time series. Notice in Table III, for the dynamical
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coupling case, the high levels of noise reduction achieved in the target time series X1 (up to 93% for long time series

and up to 80% for only 250 data points), the moderate values of the standard deviations of such noise reduction

levels, and how the standard deviations decrease quickly as the number of points N increases. However, using only

the information provided by the target time series X1 we can not reach a noise reduction level of 50% for any of the

cases considered.

Although we focus on the advantages of the dynamical coupling procedure for the noisiest time series X1, in this

example its effects for the most accurate time series are also remarkable. The algorithm significantly reduces the noise

for both short and long time series (up to 50% noise reduction for N = 250 and up to 64% for N = 2500), in a case

where the level of initial noise is low (only 5%) and the coupled time series has 10 times its level of uncertainty. In

spite of such values, since the difference between the initial noise to signal ratios of the two time series is so high, in

order to reduce the noise of the scalar time series measured with more accuracy it is better to process such time series

separately.

The output time series obtained with and without the dynamical coupling procedure for one of the numerical

examples reported in Table III (one of the L = 10 time series of length N = 5000 corresponding to the target time

series X1) can be compared from a geometric point of view using Figure 3. It can be seen that the clean time series is

closer to the output obtained using the dynamical coupling procedure than it is to the output obtained by processing

the target time series alone.

C. Statistical properties of the outputs of the algorithm

In Figure 4 we have plotted the two dimensional delay embeddings of each of the coordinates of the outputs obtained

with the dynamical coupling procedure, corresponding to two time series X1 and X2 from observations of the Hénon

map using the linear observables h1(y1, y2) = 2y1 + y2 and h2(y1, y2) = y1 +2y2, respectively, and corrupted by noises

with very different noise to signal standard deviation ratios: 50% and 5%, respectively. The aim is to visualize the

statistical properties of the outputs obtained with the dynamical coupling procedure in each of these two scalar time

series.

We have plotted the two dimensional delay embedding of the outputs corresponding to the target time series X1

(Figures 4(a) and 4(b)) and to the dynamically coupled time series X2 (Figures 4(c) and 4(d)), together with the two

delay embeddings of the corresponding clean and noisy time series. In order to analyze the dependence of the outputs

on the number of points of the time series, we present in (a) and (c) the results for short time series (L = 200 time
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series of only N = 250 data points) and for long time series (L = 10 time series of N = 5000 data points) in (b) and

(d). The outputs for both time series seem to be unbiased estimators of the corresponding clean time series, and the

outputs tend to concentrate quickly around the clean time series when the lengths of the time series increase. These

greater geometric accuracies are also supported for the values of < Rj >, sRj , j = 1, 2 reported in the caption of the

figure. The results for the time series X1 corrupted by 50% noise (target time series) are amazing. Even for short

time series, the outputs seem to recover some of the geometric structure of the clean time series, and for long time

series the mean noise reduction values are very high and the standard deviations small (see these numerical values in

the caption of the figure). The low values of the mean noise reduction and the high values of the standard deviation

obtained for the time series X2 clearly confirm that the dynamical coupling is not advantageous in reducing the noise

of this more accurate time series, especially for N = 250, and therefore it is better to process the time series X2

alone. However it is remarkable that the mean noise reduction value < R2 > increases and the standard deviation

sR2 decreases quickly when the length N of the time series increases, and also that the dynamical coupling procedure

does not seem to distort the signal heavily, even when the dynamically coupled time series X1 has 10 times its level

of uncertainty.

D. Higher dimensional dynamics

We present in Table IV and Figure 5 some results for the Lorenz dynamics with linear observables. The aim is to

show how the dynamical coupling procedure behaves for a three dimensional continuous dynamical system.

The target time series is a noisy scalar time series corresponding to Lorenz dynamics, the linear observable

h1(y1, y2, y3) = −y1+6y2+3y3
4 , and a noise level of NRS1 = 50%. The dynamically coupled time series correspond

to the observables h2(y1, y2, y3) = −y1+2y2+7y3
4 and h3(y1, y2, y3) = −y1+6y2+3y3

4 , with respective initial noise levels

SNR2 = 5% and SNR3 = 10%. The results (see Table IV) with the dynamical coupling procedure are significantly

better than those obtained by processing the nosiest time series separately, and the advantage is maintained also for

long time series.

In Figure 5 we show the three delay embedding of one of the L = 200 scalar noisy time series X1 of only N = 250

data points, together with the corresponding clean time series s1, and the time series ŝ1 that the algorithm gives

as output using the two additional dynamical coupled time series. This figure illustrates that even for a short time

series with such a large noise level, the dynamical coupling procedure allows recovery of some of the geometric and

dynamical properties of the clean time series. We can see in Table IV that for a length of only 250 data points the
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mean noise reduction level obtained is 58.9386%.

1. Dynamical coupling with other noise reduction algorithms

In order to give an indication of the effectiveness of the dynamical coupling scheme when using other noise reduction

algorithms, we have run the algorithm implemented in the TISEAN33 package with the name ghkss on one of the

examples of Table IV, corresponding to the length N = 5000. This algorithm can be applied to both scalar and

multivariate time series, using in both cases the Euclidean metric. Without using the dynamical coupling procedure,

and taking a dm = 7 delay embedding of the target time series as the input time series, there results a noise reduction

of R = 54.3435. If the target time series is processed together with the two dynamically coupled time series, then the

resulting noise reduction is R = 74.8087, which is significantly higher than the noise reduction obtained by processing

the target time series separately.

E. Estimation of the covariance matrix of the errors

For all the examples, we have estimated the covariance matrix of the unknown error terms, at any iteration of the

algorithm, as we have explained in Subsection II C. In this subsection we illustrate how the algorithm behaves in the

estimation of the initial covariance matrix of the errors, and in the estimation

N̂SR
j

:=

√√√√√√
∑N

i=1

(
ε̂j
i − 〈ε̂j〉

)2

∑N
i=1

(
ŝj

i − 〈ŝj〉
)2 , j = 1, ..., d, (3)

of the initial noise to signal ratios NSRj , j = 1, ..., d, where ŝj
i denotes the estimation of the clean data sj

i at

the eighth iteration and ε̂j
i := Xj

i − ŝj
i (compare N̂SR

j
, j = 1, ..., d with the true values NSRj , j = 1, ..., d

defined in (2)). The three noisy dynamically coupled scalar time series X1, X2, and X3 of this experiment

correspond to the logistic map, the observables h1(y) =
√

5y + 4, h2(y) = (y + 2)2, and h3(y) = 2y + 3, re-

spectively; to the noise to signal ratios 10%, 5%, and 7.5%, respectively; and to a length N = 5000. The

true covariance matrix of the errors is Σ0 =


1.2531× 10−3 1.0103× 10−5 −2.8674× 10−5

1.0103× 10−5 7.6455× 10−3 −5.8485× 10−5

−2.8674× 10−5 −5.8485× 10−5 2.8445× 10−3

 and the es-

timation obtained from the sample covariance matrix of the corrections made by the algorithm in eight itera-
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tions is Σ̂0 =


1.2616× 10−3 −9.7567× 10−5 −2.1806× 10−5

−9.7567× 10−5 6.2035× 10−3 −3.9168× 10−4

−2.1806× 10−5 −3.9168× 10−4 2.7860× 10−3

. The true noise to signal ratios are NSR =

(10.0059%, 4.9148%, 7.5070%) and the estimations are N̂SR = (10.0520%, 4.7969%, 7.4322%). Considering that Σ̂0

and N̂SR
j
, j = 1, 2, 3, are obtained using only eight iterations of the algorithm, they are reasonable estimations for

the unknown Σ0 and NSRj , j = 1, 2, 3.

F. Effectiveness of dynamical coupling with other measures of noise reduction

In all the examples above we have quantified the noise reduction achieved by the algorithm using a measure

based on the pointwise distance to the clean time series. The other standard way of measuring noise reduction is

based on the dynamical properties, in particular the forecasting power, of the time series before and after the noise

reduction7,13,14,17–21,24,30–32. If we denote by f∗ the shift dynamics for the clean time series (i.e. f∗(si) := si+1), then

a measure of how well the cleaned time series represents the dynamics is

edyn(ŝ) :=

(
1

N − 1

N−1∑
i=1

(ŝi+1 − f∗(ŝi))2
)1/2

,

and a measurement of the level of noise reduction achieved by a noise reduction algorithm is obtained by comparing

edyn(ŝ) with edyn(X), taking for instance Rdyn := 100(1− edyn(bs)
edyn(X) ) (we can define an analogous measure of the noise

reduction in each of the d components of the cleaned time series). If f∗ is unknown then an analogous measure of

noise reduction êdyn can be obtained by replacing the unknown shift dynamics f∗ by its local linear estimation f̂∗i at

si in each of the terms of the sum defining edyn. Then

R̂dyn := 100(1− êdyn(ŝ)
êdyn(X)

) (4)

is a measure of the noise reduction that requires knowledge of neither the clean time series nor the dynamics.

The two standard measures of noise reduction (the based on the pointwise distance dp and the dynamical distance

edyn), might not guarantee the efficacy of the cleaned time series for the estimation of every geometric, dynamical,

or statistical feature of the underlying dynamics. In Ref.38, relating to applications of noise reduction to clinical

measurements, it is reported that some features of clinical relevance contribute little to the variance of the signal,

so a small pointwise distance to the clean time series does not guarantee small distortion of the clinically important

features. The opposite situation is also possible: in Ref.4,7 the authors have pointed out that a noise reduction
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algorithm can shift the data slightly in a systematic way, or that the cleaned time series could be considered as a

cleaner data set for a slightly different value of the parameters in the generating model, resulting in either case in

large values of dp and edyn. One of the alternatives they propose is to consider the short-term predictability of the

data using any nonlinear predictor (this is also the spirit of êdyn). Even a third possible situation is reported in Ref.31:

algorithms using respectively the pointwise and the dynamical distance resulted in very different evaluations of the

noise reduction achieved. For this reason we proposed in that paper two other measures of noise reduction that use a

Hausdorff-like distance dh instead of the pointwise distance. The dh-distance to the clean time series of the cleaned

time series is defined by

dh(ŝ) := max
i=1,...,N

min
j=1,...,N

‖sj − ŝi‖ ,

and Rh := 100(1− dh(bs)
dh(X) ) is the dh-based measure of the percentage of noise reduction. By the definition of dh, poor

performance of a noise reduction scheme at even a single point can perturb badly the global noise reduction measure

Rh. Conversely, a high level of noise reduction in an Rh sense gives strong evidence of the convergence of the support

of the empirical measure associated to the cleaned time series to that of the underlying invariant measure. This might

be useful, for instance, in the case of clinical data where outliers can be very relevant.

The second noise reduction measure R<h> we proposed in Ref.31 avoids the drawback pointed out for Rh by

replacing dh by d<h> where

d<h>(ŝ) :=
1
N

N∑
i=1

min
j=1,...,N

‖sj − ŝi‖ .

A joint analysis of the values Rh and R<h> might be used to detect bad behavior of the noise reduction algorithm

localized at a small number of points. These measures of noise reduction Rh and R<h> require the use of some

technique of fast neighbor search such as the box-assisted method39 in order to make the algorithm more efficient.

We also use such a technique in the construction of the neighborhoods.

Finally, the most important drawback of noise reduction measures based on the pointwise distance or on edyn is

that they require the knowledge of either the clean time series or the shift dynamics f∗, which are unknown in most

applications (for instance in time series coming from clinical data such as electrocardiograms or electroencephalo-

grams). Noise reduction measures which do not require knowledge of the time series are proposed in Ref.7 (see also

the references therein) and in Refs.29,40. Furthermore, there is an extensive literature41 about different techniques for

estimating the noise level in time series (through correlation dimension estimations, entropies, recurrence plots, false

neighborhoods, etc.), and many of these techniques can be used for quantifying the noise reduction by comparing the
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estimated noise levels of the time series before and after the noise reduction.

Table V reports the levels of noise reduction obtained with our algorithm using measures of noise reduction other

than the one based on the pointwise distance (< Rdyn >, < R̂dyn >, < Rh > and < R<h> >). We have designed

an experiment where the advantage of the dynamical coupling procedure is subtle, in order to check which of these

measures can detect this subtle advantage. The target time series has a medium noise level of NSR1 = 10%, and

corresponds to a Hénon map, the nonlinear observable h1(y1, y2) = ln(4+y1), and a length N = 5000. In the first case

this target time series is processed with only one dynamically coupled noisy time series corresponding to the nonlinear

observable h2(y1, y2) = (2y1 + 5)2 and a noise level NSR2 = 5%. In the second case we add a second dynamically

coupled time series with a noise level NSR3 = 7.5% and corresponding to the linear observable h3(y1, y2) = 2y1 + 3.

The mean values of noise reduction obtained with L = 10 time series of length N = 5000 that appear in Table V

show, for all these noise reduction measures, higher values of noise reduction when using the additional information

provided by the third of the dynamically coupled time series. Although they are not reported in this paper, this

agrees with the results we have obtained in all the previous examples, so we infer that all these measures are able to

detect the effectiveness of the dynamical coupling in noise reduction.

IV. CONCLUSIONS

This paper shows the advantages of sharing and recycling all the information available from different research

teams or institutions. The advantage is clear for the owners of the most uncertain information. The owners of the

information with smaller uncertainty may also benefit from the sharing of information in the case of short length time

series or when their levels of uncertainty are only slightly smaller.

Moreover, the method we propose allows a firm or institution to asses the value of new information in terms of

the shadow price of the noise reduction level. This shadow price is the maximum monetary quantity that a buyer

would agree to pay for the extra reduction in uncertainty achieved with the new information. For instance, as can be

seen in Tables I and II, for short length noisy logistic time series with NSR = 10%, the mean noise reduction level

with only one observable is 48.76%. If we use one additional noisy time series dynamically coupled with the first with

NSR = 5%, then the mean noise reduction achieved is 72.16%, and if we use two dynamically coupled time series,

being the noise to signal ratios of 5% and 7.5% respectively, then the mean noise reduction achieved is 73.1%. The

shadow price of the information provided by these new time series is the quantity the buyer is willing to pay for this

extra noise reduction. We can also see in the mentioned tables that for long time series the gains in noise reduction
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with new information decrease drastically, so the shadow price will be lower for long time series.

In order to asses such shadow price, the final level of noise reduction must be quantified. In this paper the noise

reduction levels are calculated using the information provided for the clean time series, which in real situations is

unknown. However, there exist several methods that allows to estimate such noise reduction levels without using the

information provided for the clean time series (see Ref.4,41).

As a consequence of the results of this paper the algorithms for noise reduction for multivariate time series acquire

a relevance similar to those designed for scalar time series, which are pervasive in the noise reduction literature. The

dynamical coupling procedure can be implemented using any noise reduction algorithm for multivariate time series (see

Ref.30,33 for instance), and yields better results than those that would be obtained where each time series is processed

separately. However, if there can be obtained a dynamically coupled time series with a noise level significantly lower

than that of the target time series, our algorithm is preferable because it takes into account the noise levels in each

of the time series used in the noise reduction scheme.

The dynamical coupling procedure is especially useful for short time series, and surprisingly this good behavior

does not decay seriously for higher dimensional dynamics (see for instance the results for the Lorenz dynamics). Since

these are common features in social sciences - high dimensional dynamics, short time series, and an abundance of

complementary information - we hope that the dynamical coupling method will soon have applications in these areas.
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TABLE I: Noise reduction effectiveness using two and three dynamically coupled time series.

Sample mean noise reduction level < Rj >, and sample standard deviation sRj of Rj , j = 1, 2, 3 (in parentheses) obtained

using the dynamical coupling procedure with noisy logistic time series. On the left of the table there are the results using two

noisy dynamically coupled time series, and on the right using three noisy dynamically coupled time series. The length of the

time series is N , and L is the number of time series used to calculate < Rj > and sRj , j = 1, 2, 3. The dynamically coupled

noisy time series correspond to the logistic map, the observables h1(y) =
√

5y + 4, h2(y) = (y + 2)2, and h3(y) = 2y + 3

respectively, and Gaussian additive measurement noises with NSRs of 10%, 5%, and 7.5%, respectively.

Two observables Three observables

NSR = (10%, 5%) NSR = (10%, 5%, 7.5%)

(N, L)
< R1 >

(sR1)

< R2 >

(sR2)

< R1 >

(sR1)

< R2 >

(sR2)

< R3 >

(sR3)

(250, 200)
72.1558

(3.1759)

57.2543

(4.3878)

73.0973

(3.2823)

59.2482

(4.6489)

69.2822

(3.2649)

(500, 100)
78.2957

(2.2286)

64.0965

(2.9998)

80.2954

(2.2635)

69.0632

(3.1964)

77.4221

(2.2967)

(1000, 50)
81.4837

(1.7280)

67.3679

(2.7840)

83.4224

(1.8337)

72.6099

(2.4393)

80.4309

(1.7521)

(2500, 20)
84.2583

(1.3913)

70.9704

(2.0683)

85.5285

(1.2452)

75.0332

(2.0689)

82.3555

(1.3295)

(5000, 10)
85.2670

(0.8255)

72.0466

(1.1132)

86.4148

(0.9055)

75.3407

(1.5972)

83.0978

(0.9629)
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TABLE II: Noise reduction effectiveness without using the dynamical coupling procedure.

Sample mean noise reduction levels < Rj > and sample standard deviations sRj , j = 1, 2 (in parentheses) obtained without the

dynamical coupling procedure for the first two noisy scalar time series X1 and X2 of Table I. The results for X1 are on the left

of the table, and the results for X2 are on the right of the table. The input time series are dm-dimensional delay embeddings

of each of these two noisy scalar time series. The noisy time series X1 and X2 correspond to the logistic map, the observ-

ables h1(y) =
√

5y + 4, and h2(y) = (y+2)2, and Gaussian additive measurement noises with NSRs of 10% and 5%, respectively.

< R1 >

(sR1)

for h1 and NSR1 = 10%
< R2 >

(sR2)

for h2 and NSR2 = 5%

(N, L) dm = 1 dm = 2 dm = 3 dm = 1 dm = 2 dm = 3

(250, 200)
48.7575

(4.8831)

39.2307

(7.7380)

26.7612

(7.3026)

49.6479

(4.2419)

46.2020

(6.6799)

(500, 100)
54.6265

(3.3760)

53.1635

(4.5989)

35.2890

(5.2448)

58.4035

(3.2405)

52.7725

(4.8983)

(1000, 50)
55.6982

(2.8036)

68.0615

(2.6997)

50.9355

(4.6053)

62.0200

(2.4349)

66.7358

(4.4920)

46.9185

(8.0153)

(2500, 20)
56.3709

(1.2945)

73.9164

(1.2800)

71.4198

(2.1565)

66.4834

(2.2776)

75.2390

(1.4355)

63.4777

(4.0926)

(5000, 10)
58.3522

(1.5633)

73.9624

(0.9374)

74.4198

(1.2380)

66.4813

(1.1258)

76.5039

(1.1027)

75.4329

(1.6512)
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TABLE III: Efficacy of the dynamical coupling for logistic time series corrupted by highly heteroscedastic noises.

Sample mean noise reduction levels < Rj > and sample standard deviations sRj of Rj , j = 1, 2 (in parentheses) obtained

with L noisy logistic time series X1 of length N corresponding to the observable h1(y) =
√

5y + 4 and a noise level of

NSR1 = 50% , with and without the dynamical coupling procedure. The left side of the table shows the results obtained using

one dynamically coupled time series X2 corresponding to the observable h2(y) = (y + 2)2 and a noise level of NSR2 = 5%.

The right side of the table shows the results for the target time series X1 without using the dynamically coupled time series,

and taking as the input time series a dm-dimensional delay embedding of X1 with dm = 1, 2, 3.

Dynamical coupling Without dynamical coupling

Two observables (h1, h2)

NSR = (50%, 5%)

< R1 >

(sR1)

for h1 and NSR1 = 50%

(N, L)
< R1 >

(sR1)

< R2 >

(sR2)

dm = 1 dm = 2 dm = 3

(250, 200)
81.4044

(3.3442)

50.9736

(5.1603)

35.3211

(5.4111)

42.5436

(7.6653)

36.8192

(8.2089)

(500, 100)
86.1104

(2.2790)

58.7388

(3.2391)

36.7394

(4.3142)

44.5127

(6.0664)

40.4621

(5.7711)

(1000, 50)
89.1018

(1.5642)

61.7666

(3.8835)

36.1591

(2.9624)

45.6408

(4.7604)

41.2277

(3.860)

(2500, 20)
91.9465

(0.9764)

65.1723

(4.3370)

35.9484

(1.7779)

47.2789

(2.7879)

45.9071

(2.6735)

(5000, 10)
93.1878

(0.5395)

64.0106

(1.5160)

29.6034

(1.2317)

47.5461

(2.4870)

46.7443

(2.3428)
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TABLE IV: Efficacy of the dynamical coupling for Lorenz time series corrupted by highly heteroscedastic noises.

Sample mean noise reduction level < R1 > and sample standard deviation sR1 (in parenthesis) obtained using L noisy Lorenz

time series of length N corresponding to the observable h1(y1, y2, y3) = 3y1+2y2+3y3
4

and NSR1 = 50%, with and without the

dynamical coupling procedure. In the first case the noisy time series is processed together with two additional noisy time series

with which the target time series is dynamically coupled. Such coupled time series correspond to the observables and levels of

noise h2(y1, y2, y3) = −y1+2y2+7y3
4

with NSR2 = 5% and h3(y1, y2, y3) = −y1+6y2+3y3
4

with NSR3 = 10%, respectively. In the

second case the input time series is a 7-delay embedding of the noisy scalar time series.

< R1 > and sR1 for noisy Lorenz time series

(N, L) (250, 200) (500, 100) (1000, 50) (2500, 20) (5000, 10)

Dynamical coupling

NSR = (50%, 5%, 10%)

58.9386

(4.2907)

71.9751

(3.3092)

76.7067

(2.8505)

81.5473

(2.0410)

84.2294

(1.1641)

Without dynamical coupling

NSR = 50%; dm = 7

47.4752

(3.6892)

50.3395

(3.4044)

51.9087

(2.5399)

52.7861

(1.8111)

53.4961

(1.5803)

TABLE V: Effectiveness of the dynamical coupling procedure using noise reduction measures other than that based on the

pointwise distance.

Mean noise reduction measures and sample standard deviations (in parentheses) obtained using L = 10 noisy time series

corresponding to the Hénon map, the observable h1(y1, y2) = ln(4 + y1), NSR1 = 10%, and N = 5000. The results in the top

part of the table are obtained by processing the target time series with one dynamically coupled noisy time series corresponding

to the nonlinear observable h2(y1, y2) = (2y1 + 5)2 and a noise level NSR2 = 5%. The results in the bottom part are obtained

by processing the target time series with an additional dynamically coupled time series corresponding to the linear observable

h3(y1, y2) = 2y1 + 3 and NRS3 = 7.5%.

< R1 > < R1
dyn > < bR1

dyn > < Rh > < R<h> >

Two coupled time series
70.0265

(0.7226)

80.40958

(1.0398)

96.7622

(0.6965)

62.3924

(20.2805)

75.8628

(3.3847)

Three coupled time series
73.0497

(1.2218)

81.9136

(1.27277)

98.0892

(0.7942)

78.6847

(10.5651)

89.4506

(0.9819)
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FIG. 1: Summary of the results reported in Tables I and II corresponding to the target time series X1.

Sample mean noise reduction levels < R1 > and sample standard deviations sR1(with error bars) obtained for the target time

series X1:

(a) using two (in blue) versus three (in red) dynamically coupled time series (second and fourth columns of Table I, respectively).

(b) without using the dynamical coupling procedure, for different values of dm (second, third, and fourth columns of Table II).

(c) using three dynamically coupled time series (in red) versus without using the dynamical coupling procedure and dm = 2

(in blue) (fourth column of Table I and third column of Table II, respectively).
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FIG. 2: Summary of the results reported in Table III corresponding to the target time series X1.

Sample mean noise reduction levels < R1 > and sample standard deviations sR1(with error bars) obtained for the target time

series X1 using the dynamical coupling procedure versus without using the dynamical coupling procedure with dm = 2 (second

and fifth columns of Table III).
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FIG. 3: Output time series for a noisy logistic time series with and without the dynamical coupling procedure.

Two dimensional delay embeddings of the target time series for the clean, noisy, and output time series obtained with and

without the dynamical coupling procedure. The target noisy time series corresponds to the logistic map, the observable

h1(y) =
√

5y + 4, and the noise level NSR1 = 50%. The time series in (a) are the clean and the noisy time series. The cleaned

time series shown in (b) is obtained using our noise reduction algorithm with a dynamically coupled noisy logistic time series

corresponding to the observable h2(y) = (y + 2)2 and corrupted by a Gaussian noise of 5%. The cleaned time series shown

in (c) is obtained without using the dynamical coupling procedure and taking as the input time series for the noise reduction

algorithm the two-dimensional delay embedding of the target time series. The noise reduction levels are R1 = 93.9378 for the

cleaned time series represented in (b) and R1 = 50.1631 for the cleaned time series represented in (c).
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FIG. 4: Distribution, according to the length N , of the outputs of the algorithm for two dynamically coupled time series.

Two-dimensional delay embeddings of L noisy, clean, and cleaned time series of length N of each of two dynamically coupled

time series. The input noisy time series correspond to the Hénon map, the observables h1(y1, y2) = 2y1+y2, h2(y1, y2) = y1+2y2,

and the noise levels NSR1 = 50% and NSR2 = 5% respectively. The cleaned time series are obtained using the dynamical

coupling procedure.

(a) Observable h1 with NSR1 = 50%, N = 250 and L = 200. < R1 >= 70.8096 and sR1 = 3.7620.

(b) Observable h1 with NSR1 = 50%, N = 5000 and L = 10. < R1 >= 87.5648 and sR1 = 1.1196.

(c) Observable h2 with NSR2 = 5%, N = 250 and L = 200. < R2 >= 22.1851 and sR2 = 8.1841.

(d) Observable h2 with NSR2 = 5%, N = 5000 and L = 10. < R2 >= 54.1915 and sR2 = 2.7755.
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FIG. 5: Output using the dynamical coupling scheme in a short noisy Lorenz time series.

Three-dimensional delay embedding of a noisy (a), clean (b), and cleaned (c) time series using the dynamical coupling technique.

The target noisy time series corresponds to the Lorenz dynamics, N = 250 data points, the observable h1(y1, y2, y3) =

−y1+6y2+3y3
4

, and a noise level of NRS1 = 50%. The dynamical coupling procedure is made using two additional noisy time

series, corresponding to the observables h2(y1, y2, y3) = −y1+2y2+7y3
4

, h3(y1, y2, y3) = −y1+6y2+3y3
4

, and the initial noise levels

are SNR2 = 5% and SNR3 = 10%. The level of noise reduction is R1 = 68.7497.
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