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Abstract--Statistical inference problems such as the estimation of parameters and testing com- 
posite hypothesis about stationary distributions in the set of states of Markov chains are solved. Both, 
the estimator and the statistic proposed are based on Rao's divergence. The asymptotic properties 
of the estimator and the critical values of asymptotically -/-level tests are obtained. ~) 1998 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

We consider a stat ionary irreducible aperiodic Markov chain X =  ( X 0 , X l , . . . )  with a state space 
{1 , . . . ,  m}. By P = (Pij)i,"~=l, we denote the matr ix of transition probabilities of this chain and 
by p = (Px , . . . ,  Pro) t the stat ionary distribution, i.e., solution of the equation p = p t p .  We assume 
that  P is from the class P of irreducible aperiodic stochastic matrices with one ergodic class. The 
irreducibility means tha t  there are no transient states, i.e., no 1 < i < m with pi = 0. Therefore, 
p belongs to the set A m {(PI, . .  ,Pro) t I m = = • )-~i=lPi 1,pi ~> 0, i = 1 , . . .  ,m} .  

To solve the problem of testing the hypothesis H0 : p = lr0 E T where T C Am is simply an one 
point set, Tavard and Altham [1] found the asymptotic distribution of the Pearson's chi-square 
statistic for dependent data. This statistic measures the discrepancy between the observed pro- 
portions and the hypothesized proportions. If the discrepancy is "too large", the null hypothesis 
is rejected. The key is the choice of a good test statistic to measure the discrepancy between the 
observed proportions and the hypothesized proportions. Every divergence measures this discrep- 
ancy. In fact, Mendndez et al. [2] proposed a family of statistics based on Csisz~r divergence [3] 
to solve this problem and Pardo [4] a family based on Burbea and Rao's divergence [5]. This last 
family is defined as 

Re ~n ,  r0) = i ~  x'= ¢ . i  +2 r0i - 2 i=l ¢(Pni) + i=l ¢(71"0/ ' (1) 
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where ¢ :  (0, cx)) --, R is a continuous concave function, ¢(0) = l ime(t)  e ( -co ,  oo] and 

1 " I(~)(xk), I(~)(xk) 

is the observed cell frequencies in the data  Xn = ( X 1 , . . . ,  Xn) being I the indicator function. 
This family has also been used by Pardo [6,7] for testing goodness-of-fit for independent ob- 

servations under classical (fixed-cells) and sparseness assumptions, respectively. Some properties 
of this family of divergences can be seen in Burbea and Rao [5] and Pardo and Vajda [8]. 

Otherwise, the null hypothesis is called composite and specifies lr to be a function of some fewer 
number of unknown parameters (i.e., ~r lies in the subset T of Am) which need to be estimated 
from the experimental data  Xn. Mendndez et al. [9] study a family based on Csisz~r's divergence 
under composite hypothesis. 

In Section 3, we consider the composite hypothesis Ho : p = 7to, where r0 = q(8) = (q1(8) , . . . ,  
qra(8)) t E T C Am being 8 = (81, . . . ,8s)  t E 0 C_ R 8 the unspecified parameters vector. For 
every parameter 8 E O, we denote by Ps  the sets of all matrices P E P such that  their stationary 
distribution p coincides with q(8). This goodness-of-fit test requires us to estimate the unspecified 
parameters, i.e., to choose one value q(0) E T that  is "most consistent" with the data  Xn = 
(Xx , . . . ,  X n )  about the states. This last problem is solved in Section 2. 

2. T H E  M I N I M U M  R e - D I V E R G E N C E  E S T I M A T O R  

In this section, we study the estimation problem. Throughout, we assume that  the true chain 
parameter is 8 ° E O. This means that  the true chain distribution is specified by the initial 
distribution q(8 °) and by a transition matrix P(8 °) E P0o. The most well-known method to choose 
q(~) consists of estimating 8 by maximum likelihood, but another sensible way to estimate 7r0 is 
to choose the q(0) E T that  it is closed to Pn with respect to the measure R¢(~n,  q(8)). This leads 
to the minimum R~-divergence estimate defined as a ~'¢ E e that  verifies 

Re (Pn,q (0"¢)) = inf R~ (/~n,q(8)) • BEO 

Let us introduce the following regularity conditions before studying the asymptotic properties of 
this estimator: 

(A1) q : O --* Am is continuously differentiable in a neighborhood of 8 ° and 

q(8) - q (8 °) = Jo (8 - 8 °) ÷ o (II e - 8 ° II), for 8 -~ 8% 

where Jo = J(8 °) = (Jjr(8°)) is the Jacobian matrix being 

Jjr(o) = aq#(o) 
aSr ; 

(A2) A~Ao is positive definite for 

Ao -- diag (x/-¢" (ql (8°)), • • •, ~/-¢" (qm (8°))) Jo. 

Hereafter, we consider the matrix 

Bo:  diag (q (e0)))O0di  (q 
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where fro = DoCo + CtDo - Do - q(O°)q(O°) t, being Do = diag(q(0°)) and Co = (diag(1) - 
p(o o) + lq(0O)t)-1, with 1 the column vector of m units, is the asymptotic covariance matrix of 
the asymptotically normal zero mean random vector 

(P'nl - ql (/90), . . .  , P n m -  qm (/~o)) 

(c.f. [10] or [1, equation (2.2)]). Put  for brevity 

A0 = A0 (A~Ao) -x , E0 = AoA~. 

The following theorem summarizes the properties of minimum Re-divergence estimators of 
parameters of stationary distributions of Markov chains. Other similar results for maximum 
likelihood and other estimators with independent observations can be seen in [11-15]. 

THEOREM 1. Let ¢ : (0, ~ )  --* R be a twice continuously differentiable concave function. Under 
the above regularity conditions and assuming that the function q : {9 ~ Am has continuous 
second partial derivatives in a neighborhood of 8 °, we have that 

~V = 8 ° + A~ diag ( x / - ¢ "  (q (80))) (ff~ - q (/9°)) +o ( 1 1 ~  - q (8°) II), 

where 0¢ is unique in a neighborhood of 8 °. 

PROOF. From the proof of Theorem 1 of [15], there exits a m-dimensional neighborhood Uo of 
q(8O) in R m and a unique, continuously differentiable function O: Uo ~ R s such that  

O R , ( P , O ( P ) )  = 0 ,  j = l , . . . , s  

and 

O(P) 8 ° + ( A ( O ° ) t A ( O ° ) )  -1 o , = A(O°) td iag(v / -¢" (q(OO)) )  (P-q(O°))+ ( l lP -q(0° ) l t )  

for all P E U0. Now then by the strong law of large numbers holding for the chains under 
consideration (cf. [10]) ff c.% q(/9o) ' so Pn E U0, and consequently, ~(Pn) is the minimum 

Re-divergence estimator, ~V, that  satisfies the following: 

o~ ( ~ ) = 8  0 + (A (80) ̀  A (8 ° ) ) - I A  (80) ` 

d i a g ( v / - ¢ " ( q ( / ? ° ) ) )  (~-q(O°))+o(ll~-q(O°)H). ! 

THEOREM 2. Under Theorem 1 conditions, we have that 

C a) v~(~¢ - 0 °) ~ N(0, A~BoAo); 
(b) v~(q(~¢) - q( O°) ) ,,~ Y ( O, diag( v / - ¢ "  ( q( O° ) ) ) EtoBoEodiag( v / - ¢ "  ( q( O° ) ) ) ). 

PROOF. 

(a) From above, we know that  

v ~ ( ~  - q (0°)) ' c.s.Y (0, ~o), 

and consequently, 

vrnA~diag ( ~ / - ¢ ' ' ( q ( 0 ° ) ) )  ( P n - q ( O ° ) )  n--,ooL N(0, E), 
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where 
---- A~diag (%/-¢"  (q(O0)))~0 diag (X/ -¢"  (q(O°))) AO. 

So the result follows from Theorem 1. 
(b) By (A1) 

o°_oo ) 
Therefore, 

REMARK i. The matrix no, and consequently the matrices Bo, Ao, and Zo figuring in Theorems 1 
and 2, are known only if P(O °) 6 P0o is specified. If this is not the case and the values of these 
matrices are needed to obtain confidence intervals or critical regions of statistical tests, then we 
can estimate the matrices Bo, Ao, and ~,o consistently by replacing the unknown elements pij(O °) 
of P(8 °) in flo by the relative frequencies 

I(id) (Xk-1, Xk) 
Pni j  : k=2 n 

E *(~) (xk_ 1) 
k=2 

as consistent estimates of elements po(O °) of the matrix P(O °) (c.f. [10]). 

3. C O M P O S I T E  N U L L  H Y P O T H E S I S  

In this section, we consider statistical tests of composite hypothesis introduced in Section 1 
using the Re-divergence statistics (1). Assumptions (A1) and (A2) of Section 2 are supposed to 
be fulfilled. 

First, it is necessary to obtain the asymptotic distribution of R¢(~n, q(O)) under H0, where ion = 
(Pnl,... ,Prim) t is the relative frequencies observed in the data Sn and q(O) = (ql(O),..., qm(O)) t 
being 0 the maximum likelihood or minimum Re-divergence estimator. 

THEOREM 3. Let ~ : (0, co) --* R be a twice continuously differentiable concave function. Let Pn 
be the relative frequencies vector, q : O --* Am a function with continuous second partial deriva- 
tives in a neighborhood of 0 ° and ~¢. = q(0¢.), then we have that 

m 

n-- -~OO 
i=1 

where the X 2 are independents and the Pi are the eigenvalues of the matrix 

Lo = diag (-~" (q (o°))) r~ 

being 

PROOF. By Lemma 1 in [8], on being Pn and ~'¢. V~-consistent estimates, we have that 

8 ~ R , ( ~ . , ~ , . )  ~ ~ ( ~ .  ^ ~ " ( - ¢ "  - q , . )  dlag (q (0°) ) )  (~ .  ~ , . ) .  

From Theorem 2 

vfn (~',.-q(O°)) = x/'nJoA~ diag (X/-¢*" (q (0°))) (Pn - q(O°)), 
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8o 

v <  - ) = v <  - q (O°) ) + (q (O °) - ) 

vCn(I  - JoAtodiag(x / -¢"(q(O°) ) ) )  ( ~ n - q ( O ° ) ) .  

Consistent ly,  

v ~ ( P n -  q'¢') L N(0 ,  E1) 

so 8nR¢(~n, ~'¢*) is a sympto t i ca l ly  d is t r ibuted  as )-~m__ i P~X~ where the  X 2 are independents  and 
the  p~ are the  eigenvalues of  the  ma t r i x  L0. 

REMARK 2. Small  values of  T = 8nR~(~n,~¢.) suppor t  H0 but  large values are not.  Hence 

for large n, Ho should be rejected a t  a level 7 if T > t~ where t~ is the  uppe r  ~-quant i le  of the  
d is t r ibut ion  of ~-~im 1 PIXY. This  quanti le  can be app rox ima ted  by  the  corresponding quanti le  of the  
d is t r ibut ion  of AX2m where  A is de te rmined  so t h a t  ~-~m=l P~X~ and AX 2 have the  same  expec ted  
values, t h a t  is A = (~im=l p j m ) .  See, for instance,  S o t z  et al. [16] and Rao  and Scot t  [17]. 
In this case, t~ is a p p r o x i m a t e d  by A t imes  the  uppe r  "y-quantile of the  chi-square dis t r ibut ion 

2 with  m degrees of  freedom, t h a t  is t~ = AXm,~. However,  the  var iance of AX2m is smaller  t han  
m 2 or equal  to  the  var iance  of ~-~i=l P~X1 with  equal i ty  if and only if all eigenvalues p~ are equal. 

Following Sa t t e r thwa i t e  [18] or Scheffd [19], we can app rox ima te  the  d is t r ibut ion  of ~ - ~ 1  P~X~ 
by the  d is t r ibu t ion  A(1 + a2)x2v where a and v are de te rmined  so t h a t  the  two dis t r ibut ions  have 
the same expec ted  value and the  same variance.  This  leads to 

v - and a 2 = i----1 

i=l 

or equivalent ly  
( t r  (L°))2 A(1 + a  2) t r  (L2) 

u = t r  (L 2) and = t r  (Lo-----ff" 

In  this case, we consider  t~ = A(1 + a2)x~,.r 

REMARK 3. T h e  eigenvalues P x , . . . ,  Pm depend not  only  on the  unknown chain t rans i t ion  ma-  
t r ix  P(O°), bu t  also on the  unknown s t a t iona ry  d is t r ibut ion  p(O°). Replacing the  ma t r i x  by the  
consis tent  e s t ima te  Pno defined in R e m a r k  1 and p(O °) by the  consis tent  e s t ima te  ff~, we obta in  

an e s t ima te  Ln of  the  m a t r i x  Lo. Similar ly as in R e m a r k  1, we can argue t h a t  the  eigenvalues 
Pal , . . . ,  Prim of Ln are consis tent  es t imates  of  the  eigenvalues Pl , .  • . ,  pro. Thus,  the  critical values 
are ob ta ined  by  replacing the  unknown eigenvalues Pl . . . . .  pm by their  e s t imates  p ~ l , . . . ,  p~m. 
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