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Abstract—Statistical inference problems such as the estimation of parameters and testing com-
posite hypothesis about stationary distributions in the set of states of Markov chains are solved. Both,
the estimator and the statistic proposed are based on Rao’s divergence. The asymptotic properties
of the estimator and the critical values of asymptotically «y-level tests are obtained. © 1998 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

We consider a stationary irreducible aperiodic Markov chain X= (X Xj,...) with a state space
{1,...,m}.By P = (pij);’:,.:l, we denote the matrix of transition probabilities of this chain and
by p = (p1,-..,pm)" the stationary distribution, i.e., solution of the equation p = P*p. We assume
that P is from the class P of irreducible aperiodic stochastic matrices with one ergodic class. The
irreducibility means that there are no transient states, i.e., no 1 < ¢ < m with p; = 0. Therefore,
p belongs to the set Ay, = {(p1,...,Pm)* | Lie pi=1,p: 20,i=1,...,m}.

To solve the problem of testing the hypothesis Hy : p = mg € T where T C A,, is simply an one
point set, Tavaré and Altham (1] found the asymptotic distribution of the Pearson’s chi-square
statistic for dependent data. This statistic measures the discrepancy between the observed pro-
portions and the hypothesized proportions. If the discrepancy is “too large”, the null hypothesis
is rejected. The key is the choice of a good test statistic to measure the discrepancy between the
observed proportions and the hypothesized proportions. Every divergence measures this discrep-
ancy. In fact, Menéndez et al. (2] proposed a family of statistics based on Csiszar divergence (3]
to solve this problem and Pardo [4] a family based on Burbea and Rao’s divergence [5]. This last
family is defined as

Ry(Pnim0) =) ¢ (%—’5"—) -3 {Z¢(ﬁm-) + Z¢(m)} : (1)
i=1 i=1 i=1
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where ¢ : (0,00) — R is a continuous concave function, ¢(0) = ltilrg o(t) € (—o0, 0] and

t
. 1< 1 ¢
Pn = (; 21(1)()&),---,Ekz-:ll(m)(xk)>

is the observed cell frequencies in the data X,, = (X;,...,X,) being I the indicator function.

This family has also been used by Pardo [6,7] for testing goodness-of-fit for independent ob-
servations under classical (fixed-cells) and sparseness assumptions, respectively. Some properties
of this family of divergences can be seen in Burbea and Rao [5] and Pardo and Vajda (8].

Otherwise, the null hypothesis is called composite and specifies 7 to be a function of some fewer
number of unknown parameters (i.e., 7 lies in the subset T of A,,) which need to be estimated
from the experimental data X,,. Menéndez et al. [9] study a family based on Csiszar’s divergence
under composite hypothesis.

In Section 3, we consider the composite hypothesis Hy : p = mg, where mo = ¢(8) = (g1(6),. ..,
am(0))! € T C Ay, being 6 = (61,...,6,)' € © C R* the unspecified parameters vector. For
every parameter 6 € 6, we denote by Py the sets of all matrices P € P such that their stationary
distribution p coincides with ¢(#). This goodness-of-fit test requires us to estimate the unspecified
parameters, i.e., to choose one value q(é) € T that is “most consistent” with the data X,, =
(X1,...,X,) about the states. This last problem is solved in Section 2.

2. THE MINIMUM R,-DIVERGENCE ESTIMATOR

In this section, we study the estimation problem. Throughout, we assume that the true chain
parameter is #° € ©. This means that the true chain distribution is specified by the initial
distribution ¢(4°) and by a transition matrix P(6°) € Pgo. The most well-known method to choose
q(é) consists of estimating ¢ by maximum likelihood, but another sensible way to estimate g is
to choose the () € T that it is closed to p,, with respect to the measure Ry (Pn,q(6)). This leads
to the minimum Rg-divergence estimate defined as a 54, € © that verifies

Ry (.9 (85)) = inf Rs (5n,a(9)).

Let us introduce the following regularity conditions before studying the asymptotic properties of
this estimator:

(A1) q: © — A,, is continuously differentiable in a neighborhood of 8° and
a8)—q(®)=Jo (6 -6°)+o(|6—-6°|), forf—6°
where Jo = J(8°) = (J;-(6°)) is the Jacobian matrix being

84;(6
J;e(6) = ___ge( ),

(A2) A§A, is positive definite for

Ao = diag (V=F" (@ @), -, V=0 [Gm (O0)) Jo-
Hereafter, we consider the matrix

Bo = disg (/=97 (4 (6%)) o divg (+/=¢" (4 (%)) ,
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where Qo = DoCo + C{Do — Do — q(6°)g(6°)¢, being Dy = diag(q(6°)) and Cp = (diag(1) —
P(8°) + 1¢(6°)*)~1, with 1 the column vector of m units, is the asymptotic covariance matrix of
the asymptotically normal zero mean random vector

ﬁ (51;1 —q1 (00) yee 7ﬁnm —qm (00))
(c.f. [10] or [1, equation (2.2)]). Put for brevity
Ao = Ao (A540)™",  To = Aodb.

The following theorem summarizes the properties of minimum Rg-divergence estimators of
parameters of stationary distributions of Markov chains. Other similar results for maximum
likelihood and other estimators with independent observations can be seen in [11-15].

THEOREM 1. Let ¢ : (0,00) — R be a twice continuously differentiable concave function. Under
the above regularity conditions and assuming that the function q : © — A,, has continuous
second partial derivatives in a neighborhood of 6°, we have that

By =6+ Al ding (V=¢"(@(@))) (B — 4 (6°)) +o (| — 9 (8°))),

where 9¢ is unique in a neighborhood of 6°.

PRrROOF. From the proof of Theorem 1 of [15], there exits a m-dimensional neighborhood Uy of
g(6°) in R™ and a unique, continuously differentiable function 8 : Uy — R® such that

R, (P,é(P))
— g, j=1,...s
08,
and
-1

6(P)=6"+ (4(6°) A (6°)) A(6°)" ding (V=" (a(®)) (P —q(6°)) +o(||P - a(s)I]),

for all P € Up. Now then by the strong law of large numbers holding for the chains under
consideration (cf. {10])) 7 == ¢(8°), so p, € U, and consequently, 8(P,) is the minimum
n—00

Ry-divergence estimator, édn that satisfies the following:
. -1
65(5n) =0+ (4 (69" 4 (6%) A (6°)'
diog (/=" (@@)) (B ~ 4 (6) +o (5 ~ ¢ (@)1} . ®

THEOREM 2. Under Theorem 1 conditions, we have that

(2) vn(ds — 0°) = N(0,A8BoAo);

(b) vn(q(6s) — q(6°) ~ N(0, diag(\/—¢"(g(6°)))Zt BoZodiag(r/~¢" (¢(6°))))-
Proor.

(a) From above, we know that

V7 (Bn — g (6°))" cs.N (0,90),

and consequently,

Vs disg (v=¢" @(@%)) (B - ¢ (6°)) = N(0,Z),

n-—00
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where
T = Ajdiag (/=" (4 (82))) o diag (v/=4" (4 (6%)) ) Ao.

So the result follows from Theorem 1.

(b) By (Al)
0(6) 00 5 - #) 0 (5]
Therefore,
v (a(8s) —a(6°)) =5 N (0,JoA; Bodrolt) '

REMARK 1. The matrix g, and consequently the matrices By, Ag, and X figuring in Theorems 1
and 2, are known only if P(6°) € Pyo is specified. If this is not the case and the values of these
matrices are needed to obtain confidence intervals or critical regions of statistical tests, then we
can estimate the matrices By, Ao, and Ty consistently by replacing the unknown elements p;;(6°)
of P(6°) in Qo by the relative frequencies

n
kzz I jy (Xk—1, Xk)

n
> Loy (Xk—1)
k=2

Pnij =

as consistent estimates of elements p;;(6°) of the matrix P(6°) (c.f. [10]).

3. COMPOSITE NULL HYPOTHESIS

In this section, we consider statistical tests of composite hypothesis introduced in Section 1
using the Ry-divergence statistics (1). Assumptions (A1) and (A2) of Section 2 are supposed to
be fulfilled.

First, it is necessary to obtain the asymptotic distribution of Ry (P, q(é)) under Hy, where p,, =
(Pn1y-- -, Pnm)t is the relative frequencies observed in the data S,, and ¢(6) = (¢:(9),...,qm(8))*
being § the maximum likelihood or minimum Ry-divergence estimator.

THEOREM 3. Let ¢ : (0,00) — R be a twice continuously differentiable concave function. Let 7,
be the relative frequencies vector, ¢ : © — A,, a function with continuous second partial deriva-
tives in a neighborhood of 6° and g4+ = g(64+ ), then we have that

m
~ o~ L
8nRg(Pn, 9s-) —2 X; pix3,
=
where the x? are independents and the p; are the eigenvalues of the matrix

Lo = disg (~4" (¢ (6%))) =1
being
21 = (I - Jondiog (V=87 (@ (@) ) 0 (I - JoAbdiag (V=57 @(#)))) -
PRrROOF. By Lemma 1 in [8], on being p,, and gy- /n-consistent estimates, we have that
8nRy(Pn, Gp-) = n(Pn — Gp-)'ding (—¢" (¢ (6°))) (Pn — Gp-)-
From Theorem 2

VA (@ —a(6)) ~ Vol ding (V=67 (@ (®%)) (P — a(6%))
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flo]

VA (Bn — Gp+) = V' (B — ¢ (6°)) + v (9 (6°) — Gp-)
~ v/ (1= Joih diag (/=¢" (@(@))) ) (5 — 4 (6%)) -

Consistently,
ViiPn = §s) o N(0,%1)

50 8nRy(Pn, Gp+) is asymptotically distributed as Y7, p;x? where the x? are independents and
the p; are the eigenvalues of the matrix Lg.

REMARK 2. Small values of T = 8nRy(Pn,gs-) support Hp but large values are not. Hence
for large n, Ho should be rejected at a level v if T > ¢, where t, is the upper vy-quantile of the
distribution of "~ | p; x3. This quantile can be approximated by the corresponding quantile of the
distribution of Ax2, where X is determined so that 3°i~, p;x? and Ax2, have the same expected
values, that is A = (302, pi/m). See, for instance, Kotz et al. [16] and Rao and Scott [17].
In this case, t., is approximated by A times the upper y-quantile of the chi-square distribution
with m degrees of freedom, that is ¢, = /\xfn,.,. However, the variance of Ax2 is smaller than
or equal to the variance of Z:’;l pix? with equality if and only if all eigenvalues p; are equal.
Following Satterthwaite [18] or Scheffé {19], we can approximate the distribution of > [ pix}
by the distribution A(1 + a%)x2 where a and v are determined so that the two distributions have
the same expected value and the same variance. This leads to

m 2 m
( » m) 5 (0 - 32
_ 1= 2 — 1=
v= —_i r and a o
(3
i=1

or equivalently

(tr (Lo))? 2y _ tr (L)
=— d Al = —t.
Y@ M) =g
In this case, we consider ¢, = M1 +a?)xZ ..
REMARK 3. The eigenvalues p;, ..., p, depend not only on the unknown chain transition ma-

trix P(6°), but also on the unknown stationary distribution p(8°). Replacing the matrix by the
consistent estimate $,;; defined in Remark 1 and p(6°) by the consistent estimate p,, we obtain
an estimate L,, of the matrix Ly. Similarly as in Remark 1, we can argue that the eigenvalues

Pnly« -~y Pnm Of fn are consistent estimates of the eigenvalues py, ..., pm. Thus, the critical values
are obtained by replacing the unknown eigenvalues py, ..., pm by their estimates pn1,..., pnm.
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