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A B S T R A C T

We develop a Bayesian inference framework to quantify uncertainties in epidemiological models. We use
SEIJR and SIJR models involving populations of susceptible, exposed, infective, diagnosed, dead and recovered
individuals to infer from Covid-19 data rate constants, as well as their variations in response to lockdown
measures. To account for confinement, we distinguish two susceptible populations at different risk: confined
and unconfined. We show that transmission and recovery rates within them vary in response to facts, and
that the diagnose rate is quite low, which leads to large amounts of undiagnosed infective individuals. A
key unknown to predict the evolution of the epidemic is the fraction of the population affected by the virus,
including asymptomatic subjects. Our study tracks its time evolution with quantified uncertainty from available
official data, limited, however, by the data quality. We exemplify the technique with data from Spain, country
in which late drastic lockdowns were enforced for months during the first wave of the current pandemic. In late
actions and in the absence of other measures, spread is delayed but not stopped unless a large enough fraction
of the population is confined until the asymptomatic population is depleted. To some extent, confinement can
be replaced by strong distancing through masks in adequate circumstances.
Introduction

Since the outbreak of the current Covid-19 pandemic [1,2], Health
Services worldwide report daily data about the status of the epidemic,
which serve as a guide for the design of non-pharmaceutical interven-
tions [3,4]. An increasing number of mathematical studies assess the
efficacy of different policies [4–9]. Moreover, mathematical models
and data analysis are employed to estimate relevant epidemiological
parameters [4,10–14] and to try to forecast the evolution [15–21].
While some of this research is based on direct data analysis [4,13],
machine learning techniques [15,21] or empirical laws for different
populations [9], the use of balance equations to predict population
dynamics is a common approach.

After the pioneering work of Kermack and McKendrick [22], SIR
type models have become a standard tool in epidemiological stud-
ies [23]. The specific structure of the selected models depends on
the available information and on assumptions about the epidemic
spread [24]. Basic SIR models involve populations of susceptible 𝑆,
infected 𝐼 , and recovered 𝑅 individuals, expecting immunity of the lat-
ter [8,14,17,25]. SEIR variants distinguish also the individuals exposed
to the virus 𝐸, which may become infective [11,19]. Immunity of the
recovered is suppressed in SEIRS systems [18,20]. During the 2002–
04 SARS (Severe Acute Respiratory Syndrome) outbreak, these models
were adapted to describe the SARS epidemic in different countries
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by singling out the diagnosed infective 𝐽 [10,26], becoming SEIJR or
SIJR models. Diagnosed individuals are isolated. The virus SARS-CoV-
2 responsible for the illness Covid-19 belongs to the same family as
the virus SARS-CoV, responsible for SARS. The epidemics triggered by
them share some features, such as the role of asymptomatic individuals
in superspread events, see [12] for a quantification of the fraction
of asymptomatic population during Covid-19 spread following this
approach. Here, we will study the effect of confinement measures on
Covid-19 spread by distinguishing two susceptible SEIJR populations:
confined and non confined.

To have a predictive value, we must fit the model parameters to
available data. This can be done applying optimization or adjoint-
based data assimilation techniques to reduce the difference between
recorded data and model predictions for selected parameters [10,14],
for instance. However, data for epidemiological studies are subject to
many sources of noise and uncertainty. In the case of the current Covid-
19 pandemic, different countries, and regions within them, define the
diagnosed, recovered and dead individuals they count in their official
reports in different ways. The number of dead individuals may refer
only to patients who die in hospitals or include also deaths at homes
and care homes. Furthermore, the death of covid patients with previous
health issues may be officially attributed to other causes. On the other
vailable online 5 March 2022
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hand, the number of diagnosed individuals may refer only to cases
confirmed by a PCR (Polymerase chain reaction) test or include also
positive antibody tests, or probable cases with compatible symptoms
and clinical history. Moreover, the results of tests may arrive with a
variable delay, which results in fluctuations and exclusions. Undated
cases may not be counted at all. Tests repeated for the same individ-
uals may be counted as different. Additionally, the number of tests
performed varies largely over the weeks due to supply shortages and
changes in local testing policies, and the accuracy of the tests employed
may fluctuate, yielding false negatives or positives.

Uncertainty in the data propagates to any predictions based on
them. Instead of fixing specific guesses for the model coefficients, it
is convenient to explore approaches that quantify uncertainty [7–9,12,
27]. Unlike most work which does not distinguish undocumented and
documented infected individuals, here we follow the SEIJR approach
and compare data to model predictions of diagnosed infected 𝐽 [10,12,
26], including quarantine measures for them and taking into account
the diagnose rate due to testing. We develop a general framework to
infer SEIJR model coefficients from data with quantified uncertainty,
taking into account confinement measures as they are sequentially en-
forced or lifted by means of two populations: confined and unconfined.
This allows us to analyze variations in the model rates and in the
distributions of the different populations a time grows as a result of
the measures implemented, including undiagnosed infected individuals
and asymptomatic individuals. We focus on the case of Spain during the
first wave of the pandemic. SIR type models assume that the system
is closed: the total population is constant. Spanish data from that
period are singular because the borders were closed and the system
was indeed isolated. Drastic late global lockdowns were enforced at
the same time in the whole country, producing well differentiated
periods in the data along a long time period, see Fig. 1. The situation
is quite different from the German case, in which mild measures were
implemented very early to curb the spread [8], the Italian case, where
strong spatiotemporal differences between regions occurred [6,17], and
from studies of initial stages [11,19]. Nevertheless, our methods apply
to data for diagnosed, dead and recovered individuals from any other
country. The key idea is introducing a susceptible subpopulation at
lower risk, which might also be achieved by milder measures such
as generalized distancing through masks instead of confinement in a
closed system (no individuals enter or exit the system). In fact, in Spain,
the epidemic remained controlled at the end of the first wave in spite of
the fact that home confinement was released and replaced by the usage
of masks in public transportation, indoor activities and also outdoors,
while the system remained closed, see Fig. 8. Once the country borders
were opened to worldwide tourism again, a new wave was triggered.
The analysis of migration and spatial dynamics are relevant topics
[6,12,16], still out of the scope of the present study.

The next sections are organized as follows. Section ‘‘SEIJR models
for SARS and Covid-19 type epidemics’’ recalls the structure of SEIJR
models. We intend to quantify uncertainty when fitting these models to
data from the current Covid-19 pandemic. We use the SIJR simplifica-
tion for the initial stage of the outbreak, before contention measures
were taken, and compare to the full SEIJR results. SIJR predictions
usually underestimate the total number of affected people. Section
‘‘Fitting the initial stages of the outbreak’’ explains how to obtain
guesses of model parameters, which play the role of prior knowledge for
the Bayesian studies in Section ‘‘Uncertainty quantification by Bayesian
techniques’’. Section ‘‘Uncertainty in the initial stage’’ analyzes the
initial stage while Section ‘‘Incorporating the effect of contention mea-
sures’’ considers the effect of contention measures, with Spanish data.
We adapt the SEIJR framework to study parameter uncertainty through
the different stages, inferring also key magnitudes such as the time
evolution of the number of asymptomatic and undiagnosed individuals
affected by the virus, or the global number of affected people. In
late interventions, and in the absence of other preventive measures,
2

spread is delayed but not stopped unless a large enough fraction of c
the population is confined for a long enough time, until the number
of asymptomatic and undiagnosed individuals is depleted. Once con-
finement is over, the usage of masks plays a similar role keeping a
fraction of the population at a lower risk in a closed system. Section
‘‘Conclusions’’ summarizes our conclusions.

SEIJR models for SARS and Covid-19 type epidemics

SEIJR models involving populations of susceptible (S), exposed
(E), infective (I), diagnosed (J), and recovered (R) individuals were
proposed in [26] to study the spread of the 2002–04 SARS outbreak.
Here, we will adapt them to describe contention measures for Covid-19.
Considering two populations 𝑆1 and 𝑆2 of different susceptibility, the
model takes the form:

𝑑𝑆1
𝑑𝑡

= −𝛽𝑆1(𝑡)
𝐼(𝑡) + 𝑞𝐸(𝑡) + 𝓁𝐽 (𝑡)

𝑁
,

𝑑𝑆2
𝑑𝑡

= −𝛽𝑝𝑆2(𝑡)
𝐼(𝑡) + 𝑞𝐸(𝑡) + 𝓁𝐽 (𝑡)

𝑁
,

𝑑𝐸
𝑑𝑡

= 𝛽(𝑆1(𝑡) + 𝑝𝑆2(𝑡))
𝐼(𝑡) + 𝑞𝐸(𝑡) + 𝓁𝐽 (𝑡)

𝑁
− 𝑘𝐸(𝑡),

𝑑𝐼
𝑑𝑡

= 𝑘𝐸(𝑡) − (𝛼 + 𝛾1 + 𝛿)𝐼(𝑡),

𝑑𝐽
𝑑𝑡

= 𝛼𝐼(𝑡) − (𝛾2 + 𝛿)𝐽 (𝑡),

𝑑𝑅
𝑑𝑡

= 𝛾1𝐼(𝑡) + 𝛾2𝐽 (𝑡),

𝑑𝐷
𝑑𝑡

= 𝛿𝐼(𝑡) + 𝛿𝐽 (𝑡),

(1)

where 𝑁 = 𝑆1 + 𝑆2 + 𝐸 + 𝐼 + 𝐽 + 𝑅 + 𝐷 is the total population
number, which remains constant. 𝐷 is the number of dead individuals.
The exposed 𝐸 are a class of asymptomatic and possibly infectious in-
dividuals. The possibility of transmission from exposed individuals 𝐸 is
represented by the parameter 𝑞. They may progress to the infective state
𝐼 at a rate 𝑘. The class 𝐼 is composed of symptomatic, infectious, and
undiagnosed individuals. Infectious individuals 𝐼 become diagnosed 𝐽
at a rate 𝛼. The recovery rate of the infective 𝐼 is 𝛾1, whereas the
recovery rate of the diagnosed 𝐽 is 𝛾2. The recovered individuals 𝑅
keep track of the cumulative number of sick individuals who become
healthy again. Diagnosed individuals 𝐽 are isolated from the rest. Their
reduced impact on transmission is represented through a parameter
𝓁. Mortality of infected 𝐼 and diagnosed 𝐽 individuals caused by the
virus is denoted by 𝛿. Finally, 𝛽 represents the transmission rate: how
susceptible 𝑆 individuals become virus spreaders. Time is measured in
days.

The model has to be complemented with initial conditions. This fact
introduces an additional parameter 𝑡in to locate the time at which local
spread started [10]. Other approaches assume the initial data unknown
instead [8], in our case that choice would increase considerably the
number of unknowns. Furthermore, we consider that the risk of in-
fection for 𝑆2 is lower than the risk for 𝑆1 by a factor 𝑝. The total
population is initially partitioned as 𝑆1 = (1 − 𝜌)𝑆, 𝑆2 = 𝜌𝑆, 𝜌 being
the fraction of the susceptible population 𝑆 at a lower risk of infection.
Risk might vary due to specific characteristics of the population (age,
sex, genes) [26]. Here, variations will be due to confinement/protection
measures enforced on part of the population.

Two constraints are usually imposed on the parameters: (1) 𝛼 > 𝛾1
and (2) 𝛾−12 = 𝛾−11 − 𝛼−1 [26]. Moreover, the following expression for
the basic reproduction number [26] holds

0 = 𝛽(𝜌 + 𝑝(1 − 𝜌))
(

𝑞
𝑘
+ 1

𝛼 + 𝛾1 + 𝛿
+ 𝛼𝓁

(𝛼 + 𝛾1 + 𝛿)(𝛾2 + 𝛿)

)

.

he reproduction number represents the expected number of cases im-
ediately originated by one case in a population where all individuals

re susceptible to infection, that is, no other individuals are infected
r immunized (naturally or through vaccination). Instead, the effective
eproduction number 𝑒 is just the number of cases produced in the
urrent state of a population.
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Fig. 1. (a) Daily counts of diagnosed, recovered and dead individuals (PCR confirmed) in Spain since February 25th, 2020, until May 22th, 2020 [28]. After an initial period of
uncontrolled spread (Period 1), borders were closed, while all the population being able to work online, or not working in basic activities, was confined at home in the whole
country (Period 2): education, administration, tourism, shopping, leisure activities... Lockdown was later extended to all non essential activities (Period 3). Only food and medical
supplies, healthcare, security, essential transport and essential production remained active. Confinement was then released by stages, first some workers (Period 4), then the rest,
while introducing recommendations for the use of masks and social distancing. (b) SEIJR based Bayesian inference and predictions for the total number of diagnosed individuals
using counts from Period 1 (red), Periods 1–2 (green), Periods 1–2–3 (blue) and Periods 1–2–3–4 (magenta). For each of them, top colored triangles separate the inference from
the prediction part of the simulations. True data are marked by yellow circles. Solid curves correspond to best fits, dashed curves and dotted curves to different types of sample
averages. Shaded areas and dotted curves define uncertainty regions, see Section ‘‘Incorporating the effect of contention measures’’ for a discussion. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
SEIJR model parameters. Guesses from clinical observation when available [29].

Par. Definition Guess

𝛽 Transmission rate per day
𝑘 Rate of progression to the infectious state per day
𝛼 Rate of progression from infective to diagnosed per day 1/5–1/6 (stats)
𝛾1 Rate at which infectious individuals recover per day 𝛾−11 = 𝛾−12 + 𝛼−1

𝛾2 Rate at which diagnosed individuals recover per day 1/10–1/11 (stats)
𝛿 Covid-19 induced mortality per day 1/10–1/11 (stats)
𝓁 Relative measure of isolation of diagnosed cases 1/14 (practice)
𝑞 Relative measure of infectiousness for the exposed
𝑝 Reduction in risk of Covid-19 infection for class 𝑆2
𝑡in Time at which local spread starts
𝜌 Fraction of the population at a lower risk

This type of models reproduces crudely some characteristics ob-
served in SARS epidemics, such as the emergence of symptomatic and
asymptomatic individuals, superspread events and unequal susceptibil-
ity, for instance. We will use them here with data from the current
Covid-19 epidemic. First guesses for some of the model parameters can
be estimated from average observations, see Table 1. First guesses for
two key parameters, 𝑡in and 𝛽 can be obtained from simplified SIJR
approximations, as we explain in the next section.

Fitting the initial stages of the outbreak

The SEIJR models we have introduced assume that (1) spread takes
place in a closed system, (2) the death rate is the same for everybody
(death by other causes is neglected), (3) the recovered have immunity,
(4) the diagnosed are isolated, and (5) time delays in responses are
neglected. Assuming further that: (6) the exposed phase 𝐸 is neglected,
(7) the susceptibility degree is not distinguished 𝑆1 = 𝑆2 = 𝑆, 𝑝 = 1,
(8) the infected are a small fraction of the whole population, so that
𝑆
𝑁 ∼ 1, we obtain a SIJR simplification [10]:

𝑑𝑆
𝑑𝑡

= −𝛽(𝐼 + 𝓁𝐽 ), (2)
𝑑𝐼
𝑑𝑡

= (𝛽 − (𝛼 + 𝛾1 + 𝛿))𝐼 + 𝓁𝛽𝐽 , (3)
𝑑𝐽
𝑑𝑡

= 𝛼𝐼 − (𝛾2 + 𝛿)𝐽 , (4)
𝑑𝑅 = 𝛾 𝐼 + 𝛾 𝐽 , (5)
3

𝑑𝑡 1 2
𝑑𝐷
𝑑𝑡

= 𝛿(𝐼 + 𝐽 ), (6)

𝑁 = 𝑆 + 𝐼 + 𝐽 + 𝑅 +𝐷, (7)
𝑆(𝑡in) = 𝑁 − 1, 𝐼(𝑡in) = 1, 𝐽 (𝑡in) = 𝑅(𝑡in) = 0 = 𝐷(𝑡in). (8)

Here, 𝑁 = 𝑆 + 𝐼 + 𝐽 + 𝑅 + 𝐷 is the total population number, which
remains constant. SIJR models allow us to fit important parameters,
such as the transmission rate 𝛽 and the onset of local spread 𝑡in,
which determine the exponential growth in the initial stages. Their
solutions admit analytic expressions, detailed in Appendix ‘‘Solutions
of the SIJR model’’. Thanks to that fact, they have been used to analyze
the influence of isolation measures on the inflexion point, see [10] and
references therein. Notice that sign balances in (3) govern the increase
of the number of infected people.

In the SIJR model (2)–(8), we have to fit the parameters 𝛼, 𝛾1, 𝛾2, 𝛿,
𝓁, 𝛽, as well as 𝑡in, defined as the time at which 𝐼(𝑡in) = 1. This can be
done starting from educated guesses and optimizing a cost functional
with respect to them. The clinical information collected during the
current pandemic [29] yields tentative average values for the rates
𝛼, 𝛾1, 𝛾2, 𝛿, and for 𝓁, collected in Table 1. We then seek to fit the
remaining parameters by optimizing a cost. A popular choice is

𝑓 (𝛽, 𝑡in) =
1
2

𝐿
∑

𝑗=1
(𝐽 (𝛽, 𝑗 + 𝑡in) − 𝑦̃𝑗 )2, (9)

where 𝑦̃𝑗 , 𝑗 = 1,… , 𝐿, are cumulative numbers of diagnosed people for
𝐿 days and the cumulative variable 𝐽 solves 𝐽 ′ = 𝛼𝐼 , 𝐽 (0) = 0, with 𝐼
given by (3). This variable 𝐽 is in fact the total cumulative number of
diagnosed individuals, obtained adding to 𝐽 the diagnosed recovered
𝑅𝐽 and the diagnosed dead 𝐷𝐽 , solutions of

𝑅′
𝐽 = 𝛾2𝐽 , 𝐷′

𝐽 = 𝛿𝐽 , 𝑅𝐽 (𝑡in) = 𝐷𝐽 (𝑡in) = 0. (10)

This is an important distinction. Note that Eq. (4) discounts the di-
agnosed people who recover or die, thus 𝐽 tracks only the active
diagnosed cases. In practice, only the diagnosed recovered 𝑅𝐽 , the di-
agnosed dead 𝐷𝐽 and the diagnosed active 𝐽 or total 𝐽 are recorded by
Health Care Systems, since the contribution coming from undiagnosed
infected cases is unknown.

SIJR models are adequate for these fittings because solutions admit
explicit expressions which reduce numerical errors when dealing with
exponentially growing solutions, see Appendix ‘‘Solutions of the SIJR
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Fig. 2. Parameter guess for the first period of data in Fig. 1 (free spread): 𝑡in = 12.3388,
𝛽 = 0.6262, 𝛼 = 1∕5, 𝛾1 = 1∕15, 𝛾2 = 1∕10, 𝛿 = 1∕10, 𝓁 = 1∕14.

model’’. We will resort to the Levenberg–Marquardt–Fletcher algorithm
[30] to optimize the costs.

The final values we obtain for 𝑡in and 𝛽 are 12 days and 0.6262,
starting the optimization from initial guesses 10 and 0.6. This is con-
sistent with the fact that deaths occurred as early as February 13 in
Spain were proven to be caused by Covid-19. Notice that we are fitting
a cumulative magnitude 𝐽 = 𝐽 + 𝑅𝐽 + 𝐷𝐽 . Even if the fitting for 𝐽 is
accurate, as Fig. 2 shows, the results worsen noticeably when we use
these parameters to calculate 𝐽 , 𝑅𝐽 , and 𝐷𝐽 and compare with the data
recorded for each of them.

We could improve the overall guess using these values as starting
point for an algorithm optimizing the cost

𝑓 (𝛼, 𝛾2, 𝛿,𝓁, 𝛽, 𝑡in) =
1
2

𝐿
∑

𝑗=1
(𝐽 (𝛼, 𝛾2, 𝛿,𝓁, 𝛽, 𝑗 + 𝑡in) − 𝑦̃𝑗 )2, (11)

with respect to all of the parameters, or resorting to more detailed cost
functionals. However, our goal here is to quantify uncertainty in usual
rough fits and predictions obtained with them. Therefore, we will use
them as priors for the subsequent Bayesian studies.

Uncertainty quantification by Bayesian techniques

Bayes’ theorem describes the probability of an event, based on prior
knowledge about it [31]. According to it, the posterior probability of
observing a finite number of parameters 𝝂 given data 𝐝 would be

𝑝(𝝂|𝐝) = 𝑝(𝐝|𝝂)𝑝(𝝂)
𝑝(𝐝)

where 𝑝(𝐝|𝝂) is a conditional probability (the likelihood of observing
data 𝐝 given parameters 𝝂), and 𝑝(𝝂) represents our prior knowledge
on the parameters 𝝂. The normalization factor 𝑝(𝐝) represents the
probability of the data. It is also a marginal probability, which can be
obtained integrating 𝑝(𝐝|𝝂)𝑝(𝝂) with respect to 𝝂.

Let us fit our problem in this framework. The parameters are the
model parameters, that is,

𝝂 = (𝑡in, 𝛽, 𝛾2, 𝛿, 𝛼,𝓁), 𝛾−11 = 𝛾−12 + 𝛼−1, (12)

for the SIJR model or, for SEIJR,

𝝂 = (𝑡in, 𝛽, 𝛾2, 𝛿, 𝛼,𝓁, 𝑞, 𝑝, 𝑘), 𝛾−11 = 𝛾−12 + 𝛼−1. (13)

Then, the prior distribution, the likelihood and the posterior distribu-
tion are defined as follows.

Prior distribution

For the prior distribution, we use a parameter guess 𝝂0 as the mean
of a multivariate normal distribution with a covariance matrix 𝐆pr
constructed from the deviations of each variable
𝑝(𝝂) = 1

(2𝜋)𝑛∕2
1

√ exp(− 1
2 (𝝂 − 𝝂0)𝑡𝐆−1

pr (𝝂 − 𝝂0)), (14)
4

|𝐆pr |
where 𝑛 is the number of parameters. We choose a diagonal covariance
matrix 𝐆pr with elements 𝜎2𝑖 , 𝑖 = 1,… , 𝑛. In practice, we have to modify
this proposal because our parameters are always positive and gaussians
may produce negative values. Thus, we set

𝑝pr (𝝂) =

{

exp(− 1
2 (𝝂 − 𝝂0)𝑡𝐆−1

pr (𝝂 − 𝝂0)), 𝜈𝑗 ≥ 0, 𝑗 = 1,… , 𝑛,
0, 𝜈𝑗 < 0, for some 𝑗.

(15)

This will be our choice of prior distribution 𝑝pr (𝝂). We do not need
to calculate the normalization factor for later use, since our sampling
techniques do not require it.

Likelihood

For the conditional probability density 𝑝(𝐝|𝝂) we set

𝑝(𝐝|𝝂) = 1
(2𝜋)𝐿∕2

√

|𝐆n|
exp

(

−1
2
‖𝐟 (𝝂) − 𝐝‖2

𝐆−1
n

)

, (16)

where ‖𝐯‖2
𝐆−1
n

= 𝐯𝑡𝐆−1
n 𝐯, 𝐆nbeing the covariance matrix representing

the noise in the data 𝐝, and 𝐟 (𝝂) the observation operator. We assume
additive Gaussian noise, i.e., the observations and true parameters
would be related by

𝐝 = 𝐟 (𝝂𝑡𝑟𝑢𝑒) + 𝜺. (17)

Here, the noise 𝜺 is distributed as a multivariate Gaussian  (0,𝐆n) with
mean zero and covariance matrix 𝐆n.

In practice, the data available are daily cumulative counts of diag-
nosed individuals 𝑗𝑚, diagnosed recovered 𝑟𝑚 and diagnosed dead 𝑑𝑚,
𝑚 = 1,… ,𝑀 , see [28]. Putting the three blocks of data together we
have

𝐝 = (𝑗1,… , 𝑗𝑀 , 𝑟1,… , 𝑟𝑀 , 𝑑1,… , 𝑑𝑀 ), (18)

where 𝑗𝑚 = 𝑗𝑚− 𝑟𝑚−𝑑𝑚 are the active diagnosed, those who are neither
dead nor recovered. Following [32], we define the observation operator
as

𝐟 (𝝂) = (𝐽 (1),… , 𝐽 (𝑀), 𝑅𝐽 (1),… , 𝑅𝐽 (𝑀), 𝐷𝐽 (1),… , 𝐷𝐽 (𝑀)), (19)

where the dynamics of the diagnosed recovered 𝑅𝐽 and diagnosed
dead 𝐷𝐽 are governed by (10) whereas the diagnosed individuals 𝐽
in which the infection is active are governed by (4) for SIJR (see
Appendix ‘‘Solutions of the SIJR model’’ for analytic expressions) or (1)
for SEIJR. In (16), we compare these observations to the data 𝒅 using
the distance 1

2‖𝐟 (𝝂) − 𝐝‖2
𝐆−1
n

. To simplify, we consider the noise level
for all observations to be uncorrelated, so that 𝐆n is a real diagonal
matrix, 𝐆n = diag(𝜎21 ,… , 𝜎2𝐿), and set all the variances for the same
magnitude equal to a constant 𝜎2J , 𝜎2R,𝜎

2
D. Thus,

√

|𝐆n| = 𝜎𝑀J 𝜎𝑀R 𝜎𝑀R ,
where 𝐿 = 3𝑀 is the number of data considered. Note that these cost
functionals require more information than those based on total case
counts: we distinguish diagnosed individuals who are dead, recovered
and still sick, and compare with model predictions for them discarding
the contribution of the undiagnosed, unlike [8,10].

Posterior distribution

Combining (15) with (16) and neglecting normalization constants,
the posterior density becomes, up to multiplicative constants,

𝑝pt (𝝂) ∼ exp
(

−1
2
‖𝐟 (𝝂) − 𝐝‖2

𝐆−1
n

− 1
2
‖𝝂 − 𝝂0‖2𝐆−1

pr

)

. (20)

By sampling this posterior distribution, we can visualize the uncer-
tainty in the inference of parameters for a given data set. To do so, we
will resort to Markov Chain Monte Carlo Sampling [33,34]. Once we
have a large collection of samples, we can extract information from the
model (2)–(7) with quantified uncertainty, such as the global number
of people who have been affected by the virus the last day of the period
we are considering. In the next sections we exemplify the procedure for
the different stages of the epidemic as observed in Fig. 1.



Results in Physics 35 (2022) 105375A. Carpio and E. Pierret
Fig. 3. Initial stage (free spread): (a) counts of diagnosed and dead cases compared to SIJR solutions of (4) and (10) for 𝝂max (solid) and 𝝂mean (dashed), (b) same for counts of
recovered and active cases, (c) SIJR simulations of the dynamics of diagnosed recovered, dead, active and total cases for 𝝂max (solid) and 𝝂mean (dashed). Histograms representing
(d) a discrete approximation to the probability distribution of parameters and (e) probabilities for the total number of people affected by the virus at the end of the period. The
affected people are 25327 for 𝝂mean and 20465 for 𝝂max. Sampling parameters 𝑊 = 500, 𝑆 = 4 × 106, 𝐵 = 𝑆∕4, and acceptance parameter 𝑎 = 2.
Uncertainty in the initial stage

The initial stage of the epidemic corresponds to spread in the
absence of any contention measures, see data reproduced in Fig. 3(a)–
(b). Our goal here is to first fit the coefficients of the models to such
data with quantified uncertainty and then estimate a range of values
for the total number of affected individuals at the end of the period,
including exposed and undiagnosed infected individuals.

We use the guess obtained in Section ‘‘Fitting the initial stages of
the outbreak’’ as a mean for the prior distribution (15), that is,

𝝂0 = (𝑡in,0, 𝛽0, 𝛾2,0, 𝛿0, 𝛼0,𝓁0), 𝛾−11,0 = 𝛾−12,0 + 𝛼−11,0. (21)

For the different rate parameters, the deviations 𝜎𝑖 will not be large.
In the absence of a better insight we can take 𝜎𝑖 = 0.1, 𝑖 = 2,… , 𝑛, for
instance. The first day of the outbreak is subject to the largest variance.
We usually set 𝜎1 = 10. For the likelihood (16), we set 𝑀 = 20 (first
20 days) with deviations 𝜎𝐽 = 𝜎𝑅 = 103 and 𝜎𝐷 = 102. We then sample
the posterior distribution (20) by MCMC techniques [34]. Sampling is
initialized with 𝑊 walkers drawn from the prior distribution, which
generate 𝑊 chains mixed during 𝐾 steps depending on an acceptance
parameter 𝑎. Discarding the first 𝐵 samples produced (to account for
the so-called burn in period), we use the remaining 𝑆 = 𝐾𝑊 − 𝐵
samples to draw histograms representing the marginal probabilities of
the different model parameters, see Fig. 3(d). We set 𝝂max to be the
sample with largest posterior probability and 𝝂mean the mean of the
parameter samples, see Table 2.

Derived magnitudes can be visualized through histograms too, such
as the final number of affected people in Fig. 3(e). It has been calculated
solving Eqs. (2)–(8) with the samples as coefficients and computing
𝐴 = 𝐼 + 𝐽 + 𝑅 + 𝐷 at the final time, 20 days. We have superimposed
the predictions for 𝝂max and 𝝂mean. Note that 𝝂max does not have a
statistical meaning, it keeps track of a possible best fit to the data.
On the other hand, 𝝂 represents some kind of average behavior.
5

mean
Table 2
Values of 𝝂mean and 𝝂max during the initial stage using the SIJR and SEIJR models.

𝝂mean SIJR 𝝂mean SEIJR 𝝂max SIJR 𝝂max SEIJR 𝝂0

𝑡in 7.3786 10.7869 8.3266 11.3098 12.3388
𝛽 0.5938 0.6223 0.5890 0.6078 0.6262
𝛾1 0.0390 0.0370 0.0321 0.0349 0.0667
𝛾2 0.0473 0.0452 0.0372 0.0417 0.1000
𝛿 0.0135 0.0129 0.0115 0.0117 0.1000
𝛼 0.2230 0.2051 0.2366 0.2161 0.2000
𝓁 0.1104 0.1138 0.0625 0.0694 0.0714
𝑞 0.4947 0.4975 0.5000
𝑘 0.4966 0.4809 0.5000
log(𝑝post ) −2.1343 −1.1836 −119.2493
log(𝑝post ) −1.9204 −1.0640 −58.1152

When the distributions under study are symmetric, it will be close to
𝝂max. Otherwise, it may depart from it. In our case, slight asymmetry
is caused by discarding negative values. In principle, we could try
to improve our estimate of the parameter values that maximize the
likelihood by optimization procedures [33]. In practice, enforcing the
positivity constraint while doing it may be problematic, and the best
samples provide reasonable approximations for our purposes.

Panels (a)–(b) in Fig. 3 compare the observations that would be
obtained with 𝝂max and 𝝂mean to the original data. If we solve the
SIJR model for a longer time, for instance, 14 days more, we reach
about 8 − 10 × 105 diagnosed individuals, see panel (c), and about
2.25−3.57 × 106 affected people in the absence of contention measures.

The number of people affected by the virus with a SIJR model
𝐼 + 𝐽 + 𝑅 + 𝐷 does not consider exposed individuals 𝐸. If we wish
to estimate them, we need to use the SEIJR model. Fig. 4 summarizes
some results, quite similar to those for SIJR except for the magnifying
effect of including the exposed 𝐸. The number of affected individuals
𝐸 + 𝐼 + 𝐽 + 𝑅 + 𝐷 increases considerably, however the variation in
𝐼 + 𝐽 + 𝑅 + 𝐷 is small: 22375 for 𝝂 and 26687 for 𝝂 instead of
max mean



Results in Physics 35 (2022) 105375A. Carpio and E. Pierret
Fig. 4. Initial stage using the SEIJR model: Histograms representing (a) a discrete approximation to the probability distribution of some parameters and (b) the probability of
different populations at the end of the period, including the total number of people affected by the virus at that time. The affected people are 45515 for 𝝂mean (green dashed line)
and 37812 for 𝝂max (red dot–dashed line). Data for diagnosed, dead, recovered and active cases are compared to solutions of (1) and (10) for 𝝂max (solid) and 𝝂mean (dashed) in
(c). SEIJR predictions of the numbers of exposed, infective, recovered and dead for 𝝂mean, including undiagnosed and asymptomatic individuals, are shown in (d) for the initial
period and in (e) for a later time. Sampling parameters 𝑊 = 500, 𝑆 = 4 × 106, 𝐵 = 𝑆∕4, and 𝑎 = 2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
20465 and 25327 for SIJR, respectively. See Table 2 for a comparison of
the parameter values for both models. Note the high transmission rate
𝛽 (about 0.6) and the low diagnosis rate 𝛼 (about 0.2). Most infected
individuals are not detected. If we solve the SEIJR model for a longer
time, for instance, 14 days more, we reach about 2.2−3.2×106 diagnosed
individuals and 3.6 − 5.4 × 106 affected people for 𝝂max and 𝝂mean in the
absence of contention measures.

In the next section we study the influence of contention measures
on the subpopulations by means of the SEIJR model distinguishing two
populations, one of which is confined.

Incorporating the effect of contention measures

To incorporate the effect of confinement we consider the SEIJR
model with two populations 𝑆1 (unconfined) and 𝑆2 (confined). During
the first period of free growth [𝑡in, 𝑇1], we have 𝑆2 = 0. The different
periods for the data shown in Fig. 1(a) are marked by variations in these
populations as a result of confinement measures. In each 𝑖−th period
[𝑇𝑖−1, 𝑇𝑖], 𝑖 > 1, we solve the SEIJR model (1) using as initial values
the final values from the previous period at 𝑇𝑖−1, for all the variables
except for 𝑆1 and 𝑆2:

• Period 2: (1−𝜌)𝑆1(𝑇1) and 𝑆2(𝑇1)+𝜌𝑆1(𝑇1) are used as initial data
for 𝑆1 and 𝑆2, respectively.

• Period 3: (1−𝜌)𝑆1(𝑇2) and 𝑆2(𝑇2)+𝜌𝑆1(𝑇2) are used as initial data
for 𝑆1 and 𝑆2, respectively.

• Period 4: 𝑆1(𝑇3)+(1−𝜌)𝑆2(𝑇3) and 𝜌𝑆2(𝑇3) are used as initial data
for 𝑆1 and 𝑆2, respectively.

Recall that in the first period, the initial values for all the variables are
zero, except 𝐸(𝑡in) = 1 and 𝑆1(𝑡in) = 𝑁 − 1. No parameter 𝑡in appears in
the next periods, we set it equal to zero. Instead, we introduce 𝜌 ∈ (0, 1)
6

to quantify the abrupt changes in the fraction of people confined at the
start of each period. We assume that the transmission rate for 𝑆2 is
lower by a factor 𝑝, that is, 𝑝𝛽 instead of 𝛽, due to the reduction of
contacts with other people. Due to possible interaction with already
sick people or people still working outside at home, we cannot set it
equal to zero.

We adapt the framework presented in Section ‘‘Uncertainty quantifi-
cation by Bayesian techniques’’ assembling these periods as we explain
next. To consider stages 𝑖, 𝑖 = 1,… , 𝑄, we multiply the number of
parameters by 𝑄. The first block of 9 parameters is the standard one
for the first period. The remaining blocks correspond each to one
additional period, with 𝑡in replaced by 𝜌. We keep the same initial
guesses of the parameters used in Section ‘‘Uncertainty in the initial
stage’’ as prior knowledge in all the periods, except for 𝜌, which is
set equal to 3∕4, 4∕5, 15∕16 respectively, an approximation of the
population switches at the different stages. The deviations are kept
equal to 0.1 for all, except 𝑡in, for which we set it equal to 10. As for
the data, we keep the same deviations as in Section ‘‘Uncertainty in the
initial stage’’ in all the periods, in the absence of better information.

Let us consider first the initial confinement period. Fig. 5(a) com-
pares to data the evolution of the diagnosed subpopulations. Population
dynamics is calculated solving the SEIJR model in two sequential steps,
in [𝑡in, 𝑇1] and [𝑇1, 𝑇2], using in each of them the parameter values
obtained for that period and the initial data stipulated earlier. Panel (b)
represents the solutions of the SEIRJ model including the contribution
of undiagnosed and asymptomatic individuals. Panel (d) compares the
distribution of some parameters in the two periods. The transmission
rate 𝛽 increases slightly in the second period, while the diagnose rate
remains low. These histograms are discretizations of the probability, so
that the height of each bin is the number of samples in the bin divided
by the total number and by the basis of the bins (which is the same
for the histograms corresponding to the same parameters in this figure
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Fig. 5. First and second periods: (a) Data for diagnosed (asterisks), dead (crosses), recovered (triangles) and active (squares) cases, compared to solutions of (1) and (10) for 𝝂max
(solid) and 𝝂mean (dashed), extended in (c) for a longer time. (b) SEIJR simulations of the numbers of exposed, infective, recovered and dead individuals for 𝝂mean including the
undiagnosed and asymptomatic. (d) Histograms comparing the distribution of some parameters in the two periods. (e) Histograms representing the probability of the status of
different populations at the end. Vertical lines mark the values for 𝝂max (red dot–dashed line), 𝝂mean (green dashed line), and the mean for all samples (black dotted line). Sampling
parameters 𝑊 = 500, 𝑆 = 4 × 106, 𝐵 = 𝑆∕4 and 𝑎 = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Same as Fig. 5(a) and (e) for three periods of increasing confinement. Note the decrease in the numbers of exposed 𝐸 and infected 𝐼 cases. Sampling parameters 𝑊 = 500,
𝑆 = 5 × 106, 𝐵 = 𝑆∕4 and 𝑎 = 2.
and the previous ones to allow for comparisons). Fig. 5(e) quantifies
uncertainty in the total number of people affected by the virus after
these two periods. If we keep the parameter values 𝝂max or 𝝂mean up to
time 𝑇3 > 𝑇2, growth slows down, but it does not stabilize, see Fig. 5(c).

We incorporate next the third additional period in which an even
larger fraction of the population is confined at home. The results are
reproduced in Fig. 6. Finally, the growth trend moderates, also in
predictions for longer times, see Fig. 1(b). Table 3 reports the mean
values 𝝂mean obtained after MCMC sampling, as well as the values
corresponding to the best sample 𝝂max. As mentioned earlier, 𝝂max has
not a statistical meaning. It represents a best fit whose coefficients may
fluctuate a bit with the number of samples. Instead, 𝝂mean conveys a
statistical trend of the coefficients of the samples. Comparing the values
of 𝛽 for 𝝂 , we remark an increase in 𝛽 in the second period. This
7

mean
fact is also observed in 𝝂max and the trend was already present in the
histograms for 𝛽 in Fig. 5(d). According to the information available on
the Spanish outbreak, and taking into account that infected people can
take up to 14 days to show symptoms, this might be a delayed reflection
of crowd gatherings occurred at the end of the first period, or also, a
result of the lack of protective equipment for overwhelmed health care
and security workers. We also observe a reduction in the mean recovery
rates for 𝛾1 and 𝛾2 in the second period, which may be reflection of
the saturation of the health care system and the scarceness of medical
resources during the second period. Notice that the diagnose rate 𝛼 is
quite low. A large fraction of affected people remains undetected.

In a fourth period, a fraction of the population is released from
confinement. The number of undiagnosed and exposed individuals is
depleted and the spread of the epidemic is contained. Unlike before, the
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Fig. 7. Same as Fig. 6(a)–(b) for four periods. Additional dotted lines in the lower part of panel (a) represent solutions of (1) and (10) for 𝝂0. The numbers of exposed 𝐸, infected
𝐼 and active diagnosed 𝐽 individuals are depleted.
Table 3
Values of 𝝂mean and 𝝂max for three periods using the SEIJR model, with log(𝝂mean) =
−32974, log(𝝂max) = −188, log(𝝂0) = −71097, respectively. In the first row, the first
columns represent 𝑡0, while the rest correspond to 𝜌.

𝝂mean 1st 𝝂mean 2nd 𝝂mean 3rd 𝝂max 1st 𝝂mean 2nd 𝝂max 3rd

𝑡in, 𝜌 12.3479 0.7202 0.2236 7.9770 0.8064 0.2527
𝛽 0.6173 0.6902 0.5898 0.6894 0.7028 0.6796
𝛾1 0.0741 0.0363 0.0446 0.0410 0.0290 0.0318
𝛾2 0.1426 0.0437 0.0551 0.0532 0.0343 0.0461
𝛿 0.0696 0.0310 0.0131 0.0141 0.0180 0.0098
𝛼 0.1541 0.2148 0.2343 0.1791 0.1851 0.1022
𝓁 0.1056 0.1245 0.1031 0.1253 0.1800 0.0219
𝑞 0.4978 0.5301 0.5082 0.3872 0.7778 0.4234
𝑝 0.1139 0.0643 0.1845 0.0001
𝑘 0.4984 0.5106 0.5251 0.5802 0.5703 0.5339

SEIJR solutions for 𝝂max still fit the data quite well, but the solutions
for 𝝂mean deviate from the data towards the solution for the prior 𝝂0,
see Fig. 7(a). This reflects some kind of bimodality, with a collection of
SEIJR solutions close to the prior while most of them remain close to
the data as the model coefficients range through the sampled parame-
ters. This may be a consequence of fixing prior guesses for the model
parameters that worsen with time. Note that the predictions that would
be obtained using the prior are rather poor, compared to true counts,
as time grows. However, the predictions provided by 𝝂max fit the data
quite well, even for later times, see Fig. 1(b).

Note that as we add data from new periods, we are including more
information in the analysis. The best coefficient values estimated for
previous periods change slightly and we infer more moderate numbers
of affected individuals, as compared with the previous studies done
using less data. However, the same trends persist: increase of 𝛽 in the
second period, while 𝛾1 and 𝛾2 decrease, decrease of 𝛿 and low diagnose
rate 𝛼. Very few tests were done during these periods. In fact, the
usefulness of tests would be to increase the diagnose rate, augmenting
the number of quarantined infected and asymptomatic individuals.

Fig. 1(b) provides a global view of our analysis. Shaded areas
represent the total number of diagnosed cases 𝐽 + 𝐷𝐽 + 𝑅𝐽 obtained
solving (1) and (10) for the last 1000 sampled parameters in each
of the four frameworks we have considered: red for Period 1, green
for Periods 1–2, blue for Periods 1–2–3, magenta for Periods 1–2–3–
4. Dotted lines represent the mean of the curves obtained for all the
samples. Thicker lines represent the total number of diagnosed cases
𝐽 + 𝐷𝐽 + 𝑅𝐽 for 𝝂max (solid), 𝝂mean (dashed) and 𝝂0 (dash–dotted).
Yellow circles represent the data: total counts of diagnosed people
(dead, recovered and active). Colored triangles separate the ‘inference’
from the ‘prediction’ regions for each of them. At the back of the
triangles, we have the inference region, corresponding to the data we
use to infer the parameter values and the total number of affected
8

people. At the front of the triangles, we use model solutions to predict
the time evolution keeping the conditions of the last period considered
in the inference studies. Taking no measures leads to the evolution
represented in red. Confining people who are able to work online or
do not work in basic activities results in the dynamics marked in green.
Extending the confinement to all the population not working in strictly
essential activities leads to the forecast painted in blue. Releasing this
last fraction of the population results in the evolution represented in
magenta. Notice that the solid magenta curve corresponding to 𝝂max
agrees very well with the data past day 68 (last day used to calculate
it), whereas some magenta samples deviate considerably. This fact is
reflected in the dotted averages, which define somehow a confidence
region. After day 68 the population was released from confinement by
stages, and the use of masks was enforced, lowering the risk for the
users. The country remained closed. The different predictions associ-
ated to the four inference studies we carried out are not only due to
the confinement or the release of population fractions, but to the fact
that we allow for variations in the model coefficients in the different
periods to adapt them to additional amounts of data. The fact that
the transmission coefficient 𝛽 decreases with time due to improved
conditions is fundamental.

These studies are limited by the data quality. As mentioned earlier,
the order of magnitude of the population counts in official records
changes noticeably when only PCR confirmed cases are taken into
account or also probable cases are included. In the Spanish outbreak,
the number of probable cases may have been five times higher and
the number of dead individuals twice as much. Repeating our previous
studies scaling the data in that way, we find estimates about 2 million
people, consistent with the official conclusions inferred from selected
testing campaigns.

Finally, let us focus on the available data until the borders opened
on July 2, 2020, after which the country was no longer closed. As said
before, home confinement had been replaced by mask usage indoors
and outdoors. Fig. 8 compares the predictions obtained for the period
May 2 until July 15, 2020, with the parameters corresponding to 𝝂max
obtained while fitting the model to the four previous periods. The
number of total diagnosed people is well fitted. This suggests that
masks were an effective tool to contain the spread. The number of dead
people is overestimated, due to the fact that the official number of
dead individuals was reduced by about 2000 people on May 25. We
cannot compare our predictions with the official counts of recovered
individuals because there were no longer updated in this period.

Conclusions

The attempt to devise mathematical models to study the progres-
sion of a pandemic faces the need to handle large uncertainty in the
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Fig. 8. True counts of diagnosed (asterisks) and dead (crosses) individuals versus
predictions (solid lines) obtained solving the model up to the end of the first wave,
with the parameters corresponding to 𝝂max obtained while fitting the model to the four
previous periods.

available data. We have developed a Bayesian framework to quantify
uncertainty in the effects of lockdown measures through the coefficients
of SEIJR and SIJR models for human-to-human transmission. A key idea
is the introduction of two populations, one of which has a lower risk of
infection than the other. Lower risk may be due to confinement, as it
happens for the data we consider here, or to preventive measures, such
as the use of masks. Therefore, our methodology is not constrained to
lockdown measures.

These techniques allow us to calibrate important magnitudes to
forecast the evolution of the epidemic, such as the variation in the total
number of affected people (including asymptomatic individuals), and
could be adapted to infer coefficients from data from any country. We
show how enforcing measures that deplete the number of undiagnosed
and asymptomatic individuals, while reducing the transmission rate,
we can stop the spread. We have focused on the data available for
Spain during the first wave, which shows well differentiated data
periods according to the measures taken. Moreover, the borders of
the country remained closed, so that the system was indeed closed, as
assumed by SIR type models. We see that the model coefficients in each
period vary with the circumstances. For instance, transmission rates
may augment as a result of increased interaction and lack of protective
measures and recovery rates may decrease as a result of scarceness
of resources. The diagnose rate is low, resulting in large number of
undiagnosed individuals. Performing more PCR tests would increase the
diagnose rate, allowing to quarantine more infected and asymptomatic
individuals.

An additional difficulty when applying this inference framework
for large periods of time (months) is the fact that uncertainty in the
observed data accumulates over time when using cumulative data. This
poses the problem of selecting adequate variances for the analysis. In
the absence of reliable information in that respect, we have kept them
fixed. Calculations with daily data do not show significative differences
in the observed trends in our case. Moreover, we have used official
data for PCR confirmed patients only. The effect of adding probable
cases, which may have been five times higher, would require further
consideration.

SIR type models assume that recovered individuals have immunity.
This may not be the case here, thus additional studies taking this factor
into account would be advisable [18,20]. Furthermore, standard SIR
type models [12] are formulated for closed systems. Introducing spatial
mobility [6,12] is an important issue that should be a subject for future
work. Moreover, imperfect implementation of contention measures
leads to delays, which might be better described by differential-delay
models [35]. We have focused on human-to-human transmission here.
Coronaviruses originate in animals, such as bats, and arrive to humans
through intermediate animal species which act as reservoirs for future
9

waves [36], subject deserving further studies.
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Appendix: solutions of the SIJR model

Let us obtain explicit expressions for the solution of the (2)–(8)
model. Consider the Eqs. (3)–(4) for 𝐼 and 𝐽 . Set 𝐷1 = 𝛼 + 𝛾1 + 𝛿,
𝐷2 = 𝛾2 + 𝛿. The system matrix is

𝐴 =
(

𝛽 −𝐷1 𝓁𝛽,
𝛼 −𝐷2,

)

with eigenvalues

𝜆1 =
𝛽 −𝐷1 −𝐷2

2
− 1

2

√

𝛽2 − 2𝛽𝐷1 + 2𝛽𝐷2 + 4𝛼𝓁𝛽 +𝐷2
1 − 2𝐷1𝐷2 +𝐷2

2 ,

𝜆2 =
𝛽 −𝐷1 −𝐷2

2
+ 1

2

√

𝛽2 − 2𝛽𝐷1 + 2𝛽𝐷2 + 4𝛼𝓁𝛽 +𝐷2
1 − 2𝐷1𝐷2 +𝐷2

2 ,

and eigenvectors:

𝐯1 = (−𝓁𝛽, 𝛽 −𝐷1 − 𝜆1), 𝐯2 = (−𝓁𝛽, 𝛽 −𝐷1 − 𝜆2).

The general solution is

(𝐼(𝑡), 𝐽 (𝑡)) = 𝑧1𝐯1𝑒𝜆1𝑡 + 𝑧2𝐯2𝑒𝜆2𝑡, 𝑧1, 𝑧1 ∈ R.

We obtain the solutions for the initial value problem combining the
solutions with initial data (1, 0) and (0, 1). The coefficients 𝑧1, 𝑧2 for (0, 1)
are

𝑧1 = −1∕(𝜆1 − 𝜆2), 𝑧2 = 1∕(𝜆1 − 𝜆2).

For (1, 0)

𝑧1 = (𝐷1 − 𝛽 + 𝜆2)∕(𝛽𝓁(𝜆1 − 𝜆2)), 𝑧2 = −(𝐷1 − 𝛽 + 𝜆1)∕(𝛽𝓁(𝜆1 − 𝜆2)),

provide the solution to our problem.
Set

𝑐1 =
𝛽 −𝐷1 − 𝜆2
𝜆1 − 𝜆2

, 𝑐2 =
𝛽 −𝐷1 − 𝜆1
𝜆2 − 𝜆1

.

Then the number of infected people is

𝐼(𝑡) = 𝑐1𝑒
𝜆1𝑡 + 𝑐2𝑒

𝜆2𝑡, (22)

and the cumulative number of infected people 𝐼𝑐 such that 𝐼 ′𝑐 = 𝐼 ,
𝐼𝑐 (0) = 0, is

𝐼𝑐 (𝛽, 𝑡) =
𝑐1
𝜆1

𝑒𝜆1𝑡 +
𝑐2
𝜆2

𝑒𝜆2𝑡 −
(

𝑐1
𝜆1

+
𝑐2
𝜆2

)

. (23)

The number of diagnosed people is

𝐽 (𝑡) = 𝛼 𝑒𝜆1𝑡 + 𝛼 𝑒𝜆2𝑡. (24)

𝜆1 − 𝜆2 𝜆2 − 𝜆1
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𝐽

𝐷

w

𝐷

a

R

The cumulative number of diagnosed people 𝐽𝑐 is then the integral
of this magnitude, 𝐽 ′

𝑐 = 𝐽 starting from zero 𝐽 (0) = 0:

𝑐 (𝑡) =
𝛼

𝜆1 − 𝜆2

(

𝑒𝜆1𝑡 − 1
𝜆1

− 𝑒𝜆2𝑡 − 1
𝜆2

)

. (25)

We can now integrate the equations for 𝑆, 𝑅 and 𝐷:

𝑆(𝑡) = −𝛽𝐼𝑐 (𝑡) − 𝛽𝓁𝐽𝑐 (𝑡), (26)
𝑅(𝑡) = 𝛾1𝐼𝑐 (𝑡) + 𝛾2𝐽𝑐 (𝑡), (27)
(𝑡) = 𝛿𝐼𝑐 (𝑡) + 𝛿𝐽𝑐 (𝑡). (28)

If we work with the diagnosed recovered and the diagnosed dead,
e get

𝑅𝐽 (𝑡) = 𝛾2𝐽𝑐 (𝑡), (29)

𝐽 (𝑡) = 𝛿𝐽𝑐 (𝑡). (30)

The formulas given here set 𝑡in = 0. To use them with initial data at
generic 𝑡in we just replace 𝑡 by 𝑡 + 𝑡in in the formulas obtained here.
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