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Abstract Projected Entangled Pair States (PEPS) are used in practice as an
efficient parametrization of the set of ground states of quantum many body
systems. The aim of this paper is to present, for a broad mathematical audi-
ence, some mathematical questions about PEPS.

1 Introduction

Tensor network states play a prominent role in the rigorous study of central
results in the theory of quantum many body systems -see [6] for a complete
review. In particular, PEPS capture the relevant physics in the low energy sec-
tor of local interacting systems. Then, the study of these systems is translated
into the formal PEPS framework where different mathematical techniques have
been developed. Fruitful advances in this field have arrived thanks to new con-
nections that have been established with different areas in mathematics. The
aim of this paper is to present some mathematical problems related to PEPS,
providing the necessary background and motivation for them. The target au-
dience is the general mathematical community, so some very basic notions on
quantum physics are first introduced for the sake of completeness.
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1.1 Basic notions on quantum physics

Quantum mechanics was developed in the middle 20’s and, since then, it has
become the underlying description of any physical model with the exception,
yet, of gravitation. The generality of quantum mechanics as such universal
framework came from its formulation as four axioms or postulates. These pos-
tulates provide the mathematical framework that has to be followed by any
system and then one has to particularize them for the particular physical setup
under consideration. The postulates are the following:

Systems and states. This postulate provides the frame where the physical ob-
jects are placed; the system is described by a Hilbert space H, which we
suppose in this paper always finite-dimensional, so H = Cd, and the state is
represented as a unit vector in that space. We will use the standard notation
in quantum mechanics, introduced by Dirac [11] and named bra-ket notation,
where (column) vectors v ∈ H = Cd are denoted as kets |v〉. The adjoint
(transpose conjugate) of |v〉 is denoted by the bra 〈v|, which can be under-
stood just as a row vector in Cd. Hence, the scalar product between |u〉 and
|v〉 is just the product 〈u|v〉, and a rank-one operator adopts the form of the
product |u〉〈v|.

The simplest example, but extremely relevant, is H = C2. It is known as
a qubit system, which is the quantum analog of a bit, and the canonical basis
is usually denoted as {|0〉, |1〉}. Instances of qubit systems are the spin of an
electron or the polarization of a photon. Quantum mechanics also allows for
the description of not completely known states; it is a probabilistic theory.
These states are represented as density matrices ρ =

∑

i pi|ψi〉〈ψi|, called
mixed states, where pi ≥ 0 represents the probability for the system to be in
the state |ψi〉 so they fulfill

∑

i pi = 1. The (pure) state |ψ〉 is just represented
as |ψ〉〈ψ| in the density matrix formalism.

Measurements. This postulate describes the way in which quantum measure-
ments are implemented and how they affect the measured system. The mag-
nitude to measure is represented by a hermitian operator O called observable,
in the case of projective measurements (see Ref. [32] for the general case). The
average value or the expectation value of O in the system described by the
mixed state ρ is 〈O〉ρ = Tr[Oρ] (which coincides with 〈ψ|O|ψ〉 for a pure state
|ψ〉).

Multiple systems. The space associated to a composite system is mathemati-
cally represented by the tensor product of the components; H = H1 ⊗ H2 ⊗
· · · ⊗ HN . If we have N systems each of them in the state |ψi〉 ∈ Hi the
global state is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 ∈ H. However, there are also states
that cannot be written in a tensor product form, these are called entangled
states. Let us consider an example, a two qubit system H = C2 ⊗ C2 in the
state |φ〉 = (|0〉⊗ |1〉+ |1〉⊗ |0〉)/

√
2 cannot be written as |φ〉 = |a〉 ⊗ |b〉. This
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property is known as entanglement and it is believed to be the one endowing
quantum mechanics its complexity. We will simplify the notation for tensor
products writing |a〉|b〉 or |ab〉 instead of |a〉 ⊗ |b〉, so |φ〉 ≡ (|01〉+ |10〉)/

√
2.

Evolution. A quantum system changes with time according to a unitary trans-
formation: |ψ(t1)〉 = U(t1, t0)|ψ(t0)〉. The infinitesimal form of such evolution
is described by the Schrödinger equation:

i~
d|ψ〉
dt

= H |ψ〉, (1)

where ~ is Planck’s constant and H is the self-adjoint operator known as the
Hamiltonian of the system. The Hamiltonian is the observable that measures
the energy of the system. Since we are in the finite dimensional case, we can
write the spectral decomposition of the Hamiltonian as H =

∑

i Ei|ei〉〈ei|,
where the eigenvectors |ei〉 are called energy eigenstates and Ei is the en-
ergy of such state. The eigenstate corresponding to the smallest energy, E0 ≡
min{Ei}, is known as the ground state (GS) and the other eigenstates are
called excited states. The difference between the two smallest eigenvalues (en-
ergy levels) is known as spectral gap, or just gap, of the Hamiltonian and plays
a fundamental role in many problems.

The Hamiltonian plays then a fundamental role in the description of a
system. But its study encounters two main difficulties. On the one hand, this
operator has to be deduced from the physics of the problem –the interaction
between the parties among other considerations– which is not a simple task.
On top of that, the Hamiltonian obtained in this way would be in general
very complex. To simplify the task, effective Hamiltonians are defined that
aim to capture the relevant features of the system. Then, effective models are
proposed to describe the low energy sector of the problem, where the relevant
quantum behaviors are expected to appear. On the other hand, when one has
the effective model, it has to be solved. That is, the ground state and the low-
energy excitations of the Hamiltonian have to be found together their energies.
Since we are interested in many body physics, that is, when a large number
of parties is considered, we have to solve the problem in a huge Hilbert space.
Specifically the dimension of the total Hilbert space grows exponentially with
the number of parties on it because of the inherent tensor product structure.
This means that to describe any (entangled) state an exponential number
of parameters is needed, which makes the task intractable. For example N

qubit systems are described by the Hilbert space C
2⊗N

, so the dimension of
the full space is 2N . But the naive fact that the full Hilbert space of any
quantum system grows exponentially with the number of parties on it is not
an unavoidable obstruction since we are going to impose some restrictions on
the systems of interest in the next subsection.
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1.2 Setup

The systems that we consider are placed on one-dimensional or two dimen-
sional finite size lattices Λ where each vertex v ∈ Λ represents a subsystem.
The Hilbert space of each subsystem Hv is finite dimensional and isomorphic
to Cdv . Then the total Hilbert space is:

HΛ =
⊗

v∈Λ

Hv.

We will focus on square lattices, so the one-dimensional case are just seg-
ments or rings of length L for open boundary conditions or periodic boundary
conditions respectively. In 2D we will consider an L×L square lattice. There-
fore, for periodic boundary conditions the system is placed on a torus (L will
correspond to the lattice size).

The main assumption we will impose is that the interactions of the Hamil-
tonian are local. This is motivated by the physical nature of the interactions:

Definition 1 H is a locally interacting Hamiltonian if it can be written as
follows

H =
∑

i

hi ⊗ 1rest,

where every hi acts only in
⊗

v∈Ωi
Hv and Ωi is a connected sublattice of Λ

with |Ωi| ≤ C (C a constant independent of i and |Λ|).

We will further assume that the system is translationally invariant, mean-

ing that Hv = Hv′ for all v, v′ ∈ Λ, HΛ = H⊗|Λ|
v , where |Λ| is the total

number of vertices, and the local terms h ≡ hi of H are the same operators
acting on translated sublattices. This implies that a given interaction h defines
the Hamiltonian H for any lattice size.

This allows us to define the limit when the system size grows to infinity
(usually called thermodynamic limit). In particular, we can define the key
notion of gapped Hamiltonians.

Definition 2 A family of Hamiltonians H [L] is gapped, where L denotes the
system size, if

∆ := lim inf
L→∞

(

E
[L]
1 − E

[L]
0

)

> 0.

If this is the case ∆ is called the gap of the system.

Note that for a finite Hilbert space the spectrum is discrete and then gapped,
so the relevant information is how the gap behaves when the system size (and
hence the Hilbert space dimension) grows to infinity.

The key observation here is that ground states of locally interacting gapped
Hamiltonians have a very restrictive pattern of entanglement. Then, the states
satisfying this pattern correspond to the subset of the full Hilbert space we
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are interested in. To describe and characterize this pattern let us introduce
a measure of entanglement called entanglement entropy. Given a state |ψ〉 ∈
HA ⊗ HAc the reduced density matrix of the subsystem A ⊂ Λ is defined as
the partial trace on the complementary of A in |ψ〉:

ρA = TrAc [|ψ〉〈ψ|] ,
where the partial trace is defined as the unique linear map fulfilling

TrAc [|a〉〈b| ⊗ |u〉〈v|] = |a〉〈b|〈v|u〉
for |a〉, |b〉 ∈ HA, |u〉, |v〉 ∈ HAc . The entanglement entropy of the subsystem
A is defined as follows

SA(|ψ〉) ≡ SV N (ρA) = −Tr[ρA log(ρA)],

where SV N is the von Neumann entropy. We will now recall some basic prop-
erties of the entanglement entropy that can be found in e.g. [32]. The entan-
glement entropy of A is equal to the one of Ac. For product states, i.e states
that can be written as |ψ〉 = |φA〉 ⊗ |σAc〉, the entanglement entropy is zero.
The entanglement entropy is bounded by the logarithm of the dimension of
the Hilbert space where A lives, SA(|ψ〉) ≤ log |HA| ∝ |A|. In fact this max-
imum rate, a scaling with the volume, is the typical behavior of a random
state [21]. But for ground states of locally interacting gapped Hamiltonians
the entanglement entropy of a subsystem is expected to scale as the boundary
of the region:

SA(|ψ〉) ∝ log |H∂A| ∝ |∂A|.
This is known as the Area Law Conjecture. It has been proven for one dimen-
sional systems [20], [5] and for some higher dimensional cases [18], [26]. See
[12] for a review.

The area law seems to be the characteristic property of ground states of
locally interacting gapped Hamiltonian so the following question arises natu-
rally: does there exist a tractable parametrization of the set of states fulfilling
an area law? The answer is given by the so-called tensor network states, which
by construction fulfill such entanglement pattern.

1.3 Tensor Network States

Tensor network states are multi-partite states on a lattice constructed with
the contraction of local tensors placed on the vertices. A tensor is a vector
A ∈ Cd1 ⊗ · · · ⊗Cdr where each element of the tensor product is called index,
and r, the number of indices, is the rank of the tensor. The tensor product
of two tensors A ∈ Cd1 ⊗ · · · ⊗ Cdr and B ∈ Cd′

1 ⊗ · · · ⊗ Cd′
r′ is the tensor

A ⊗ B ∈ Cd1 ⊗ · · · ⊗ Cdr ⊗ Cd′
1 ⊗ · · · ⊗ C

d′
r′ with rank r + r′. We define the

contraction of two indices i and j with di = dj as the map:

δ : Cdi ⊗ C
dj → C

|αβ〉 7−→ δα,β,



6 J. Ignacio Cirac et al.

and extended by linearity. Then, the contraction of two indices of A is carried
out by acting with δ on those indices and with the identity on the rest of them.
The resulting tensor δ ⊗ 1rest(A) has rank r − 2. We will use the standard
graphical notation of tensors, where they are shapes with legs attached, each
of them representing an index:

A

The contraction of two indices is represented as a line connecting the legs
of the corresponding indices, thus δ ⊗ 1rest(A) and the contraction between
indices of different tensors A and B is represented graphically as:

δ ⊗ 1rest(A) ≡
A

, δ ⊗ 1rest(A⊗B) ≡ A B
.

The simplest examples of tensors are vectors and matrices:

|i〉 ≡ i
, A ≡

A
∈ C

D ⊗ C
D ∼= MD,

so the multiplication of a vector by a matrix is

A|i〉 ≡ i

A
,

and the trace of a matrix is represented as

A
.

Let us now consider a rank-3 tensor A ∈ CD ⊗CD ⊗Cd. This is equivalent
to d matrices belonging to MD. We will denote each of these matrices as

Ai =
i

A

≡ i

A
,

where the label above a leg is meant to fix the index to that label. The first
example of a tensor network state is called Matrix Product State (MPS) [13,34]
and it defines a state placed on a unidimensional lattice. An MPS with periodic
boundary condition (the system is placed on a ring) and constructed with
local tensors independent of the site, i.e. translationally invariant, is written
as follows

|ψA〉 =
d
∑

i1,...,iN=1

Tr[Ai1Ai2 · · ·AiN ]|i1, · · · , iN 〉 → · · · . (2)
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Let D be the maximum rank of the virtual indices (those that get con-
tracted) which is called bond dimension. Then, the state is specified by ND2d
parameters instead of the previous exponential dependence (dN ) on the num-
ber of subsystems.

One key aspect here is how D depends on N , since any state can be written
as a tensor network with a bond dimension that grows exponentially with the
number of particles. In fact, to obtain a tensor network description of any
one-dimensional state successive Schmidt Decompositions (SD) can be done
[52]. Performing a SD between the first subsystem and the rest of the chain
we obtain

|ψ〉 =
d
∑

α=1

λ[1]α |α〉[1]|α〉[2,...,N ] =

d
∑

i1=1

d
∑

α=1

A
[1]
i1,α

λ[1]α |i1〉|α〉[2,...,N ],

where A
[1]
i1,α

= 〈i1|α〉[1]. The SD of the first two subsystems with the rest of
the chain can be written as follows:

|ψ〉 =
d2

∑

β=1

λ
[2]
β |β〉[1,2]|β〉[3,...,N ] =

d
∑

i1=1

d
∑

α=1

d2

∑

β=1

A
[1]
i1,α

A
[2]
i2,α,β

λ
[2]
β |i1〉|i2〉|β〉[3,...,N ],

(3)
where we have introduced the resolution of the identity when needed and

A
[2]
i2,α,β

= (〈α|[1]〈i2|)|β〉[1,2]. In this way we obtain the expression

|ψ〉 =
d
∑

i1,...,iN=1

A
[1]
i1
A

[2]
i2

· · ·A[N ]
iN

|i1, · · · , iN 〉, (4)

in which the bond dimension grows in the worst case to dN/2 in the middle of
the chain.

Note that, even if the state |ψ〉 is translationally invariant, the description
obtained in this way does not reflect this fact. In particular, it is not of the
form (2). This can be fixed, but in some cases at the price of growing the bond
dimension with the size of the system [39].

The successive SD are graphically represented as:

· · · → · · · → · · · → · · · .

But suppose that the matrices in (4) have size upper bounded by D. Then |ψ〉
satisfies the area law for any bipartition in right and left. Indeed, in that case
the SD |ψ〉 =∑D

α=1 λα|α〉[R]|α〉[L] has only D terms, and hence the entangle-

ment entropy SR(|ψ〉) = −
∑D

α=1 λ
2
α logλ2α ≤ logD scales as the boundary of

the bipartition, which in 1D is just a constant.
The MPS-analogous tensor network states in two dimensional square lat-

tices are the so-called PEPS [50]. A PEPS is defined by a set of rank-5 tensors
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A[v] ∈ Cd ⊗ (CD)⊗4 where each [v] denotes a vertex and it is represented as
follows

|ΨA〉 = ,

where we will assume periodic boundary conditions, i.e. a torus, but we will
not draw it.

It is not difficult to see that, for a fixed bond dimension D, PEPS also
fulfill the area law. Hence, one can modify slightly the Area Law Conjecture
and conjecture the existence of MPS or PEPS with small bond dimension that
approximate well the ground state of any locally interacting gapped Hamilto-
nian. This can be seen as the practical version of the Area Law Conjecture since
it comes with a concrete parametrization of the set of (approximate) ground
states. Indeed, many algorithms (including the ubiquitous DMRG algorithm of
S. White [53,54]) aiming to solve locally interacting Hamiltonians implement
different types of optimization procedures to find the MPS or PEPS that min-
imizes the energy. They turn out to work very well in practice (see [41,42,51,
37,33] for reviews on that), supporting the validity of this modified/practical
Area Law Conjecture.

At the level of mathematical proofs, it has been proven that MPS approxi-
mate well any ground state of a locally interacting gapped Hamiltonian in 1D
[20],[5]. Also any MPS is the (essentially unique) ground state of a locally in-
teracting gapped Hamiltonian. So one can claim that the set of MPS coincides
with the set of GS of gapped locally interacting Hamiltonians and hence gives
an efficient parametrization of it. This makes MPS the appropriate mathe-
matical framework to prove statements about 1D systems. In 2D dimensions,
despite some promising results along the same lines [19,31], the full picture is
far from being completed.

It is precisely the aim of this manuscript to formally state all these ques-
tions. We will separate the questions in three main topics, each of them pre-
sented in a separate section. The first one deals with questions related to the
correspondence between PEPS and ground states. The second section deals
with the use of PEPS to prove rigorous results in condensed-matter problems.
The last section collects some open questions about PEPS that appear in
different fields.

Let us finish this section commenting briefly on the graphical description
of operators that act on the Hilbert space. For example consider an operator
acting only in one site:

O ≡ −→ O[2]|ψ〉 ≡ · · · ,

and then the expectation value is represented as:

〈O[2]〉 ≡ · · ·
· · ·

= · · ·
· · · ≡ Tr[O[2]|ψ〉〈ψ|]. (5)
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In general for an operator acting on N sites the representation is the following:

· · ·
· · · .

But one can consider operators coming from a tensor network, that is, Matrix
Product Operators (MPO):

· · · ,

where the local tensor are matrices depending on two virtual indices.

2 Are PEPS and GS of local gapped Hamiltonians the same set?

As commented in the introduction, one of the key features of PEPS is that they
are conjectured to correspond to the set of ground states of gapped and locally
interacting Hamiltonians (modified Area Law Conjecture). This is motivated
by the fact that this is the situation for the one dimensional case with MPS.
This correspondence can be divided in two statements:

1 Ground states of gapped locally interacting Hamiltonians can be well ap-
proximated by PEPS with a small bond dimension (i.e. GS ⊂ PEPS).

2 PEPS are exact ground states of (gapped) locally interacting Hamiltonians
(i.e. PEPS ⊂ GS).

Some comments are in order:
As shown in [14], there are examples of states in 2D that fulfill an area law

and, however, are not ground states of local Hamiltonians (nor well approxi-
mated by PEPS). In this sense, the set of area-law states is too big to capture
the desired set of ground states and it is precisely the family of PEPS the one
that seems to capture better such set.

The gap in statement 2 cannot be always guaranteed, as there are examples
of PEPS that cannot be ground states of any gapped Hamiltonian [49]. This
will be commented in detail in subsection 2.1.4 below.

In the following we will pose the main open questions concerning points 1
and 2, together with the state of the art for both of them.

2.1 Are all PEPS the GS of a local gapped Hamiltonian?

Every PEPS is the GS of a locally interacting Hamiltonian, called parent
Hamiltonian. We revise the construction here.

Let us start with a translationally invariant PEPS on a L×L torus defined
by a tensor A. (The construction can be easily generalized to other sizes and
geometries, and also to the absence of translation invariance, but let us stick
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to this case for the sake of simplicity.) Take a square region R of size n× n in
the torus and define for that region the linear map

ΓR : (CD)⊗|∂R| → (Cd)⊗|R|

which maps, using the tensors A in R, boundary conditions living in the
virtual space to vectors in the physical Hilbert space of the region R. With
the graphical notation of section 1.3:

X ≡ −→ ≡ ΓR(X).

Let us denote GR = Im(ΓR) and define the interaction term hR as the
orthogonal projection onto G⊥

R that is, ker(hR) = GR. The Hamiltonian is
then defined by translating hR, H =

∑

τ τ(hR), where the sum runs over all
possible translations in the torus. It is clear that the given PEPS is a ground
state of H and that H is frustration free, meaning that the ground state of
H minimizes the energy of the local term hR; hR|ΨA〉 = 0. The basic open
question here is the following

Question 1 Which are the minimal requirements on A and the minimal size of
R under which one can guarantee that the given PEPS is the unique ground
state of H and in addition H is gapped?

This question turns out to be very difficult, specially beyond 1D systems.
Let us now go slowly through the known results and divide this question into
more specific ones. For that, we introduce the key concepts of normal and
injective tensors which endow A with some special properties.

Definition 3 A tensor A is called injective if, viewed as a linear map from
the virtual indices to the physical space, it is an injective map. With the above
notation, this is just saying that ΓR is an injective map for the region R of
size 1× 1.

Definition 4 A tensor A is normal if there exists n ∈ N so that ΓR is an
injective map for the square region R of size n× n. In that case, the smallest
such n is the injectivity index of A and we denote it by i(A).

It is known [13,6] that, given a normal tensor A with injectivity index
i(A), by taking R as the square region of size i(A)+1, the parent Hamiltonian
associated to R with the above construction has the PEPS |ΨA〉 as the unique
ground state with zero energy H |ΨA〉 = 0.

Therefore, the bounds on the injectivity index correspond to the bounds on
the interaction length of the parent Hamiltonian. To comment on such bounds
we will start with the case of 1D. There, in order to briefly illustrate about the
techniques used so far, we will make a small detour and talk about a classic
inequality of Wielandt in the context of stochastic matrices.
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2.1.1 Wielandt inequalities

In 1950 [55], Wielandt proved that the index of primitivity of a primitive
stochastic matrix A ∈ MD×D must be less or equal than D2 − 2D + 2, and
that this bound is optimal.

Let us recall that an stochastic matrix A = (Ai,j)i,j ∈ MD×D is a ma-
trix with Ai,j ≥ 0 for all i, j and

∑

iAi,j = 1 for all j. This implies that if
p = (pi)i is a probability distribution (pi ≥ 0 and

∑

i pi = 1), the same holds
for Ap = (

∑

j Ai,jpj)i. In this sense, A models a noisy memoryless communi-
cation channel acting on an alphabet of size D – the basic object in Shannon’s
information theory.

A stochastic matrix A is called primitive if there exists n ∈ N such that
(An)i,j > 0 for all i, j. The minimum of such n is called the index of primitivity
of A.

The range of applications of Wielandt’s inequality is wide: Markov chains
[46], graph theory and number theory [3], or numerical analysis [48] to name
a few.

In quantum information theory, the object that models a memoryless noisy
channel is a trace-preserving completely positive linear map (also called quan-
tum channel) T : MD×D → MD×D [32]. The quantum channel T , by means of

its Kraus decomposition, is nothing but a map of the form T (X) =
∑d

i=1 AiXA
†
i ,

where the Kraus operators Ai are D×D matrices fulfilling
∑

iA
†
iAi = 1 (this

is precisely the trace preserving condition) and A† denotes the adjoint matrix
of A.

Note that quantum channels include stochastic matrices as particular cases.
Given a stochastic matrix A = (ai,j), the quantum channel TA with Kraus
operators

√
ai,j |i〉〈j| has the following property: given a probability vector p,

if we consider the diagonal matrix ρ = diag(p) =
∑

i pi|i〉〈i| then, TA(ρ) is
exactly diag(Ap). That is, the quantum channel TA restricted to the diagonal
matrices is exactly the stochastic matrix A.

The following definition is the natural quantum (non-commutative) ana-
logue of the notion of primitivity for a stochastic matrix [39].

Definition 5 A quantum channel is called primitive if there exists an n ∈ N

so that T n(ρ) is full rank for all positive semi-definite input ρ. The minimum
of such n is called the primitivity index p(T ).

Note that given a stochastic matrix A, the associated quantum channel
TA is primitive if and only if A is primitive. Moreover, the corresponding
primitivity indices coincide. There is an equivalent notion of primitive quan-
tum channel, related to the classical Perron-Frobenius-like characterization of
primitivity for the stochastic case [39]:

Proposition 1 A quantum channel T is primitive if and only if T has a
unique non-degenerate eigenvalue λ with |λ| = 1 and the corresponding eigen-
vector (which is necessarily semi-definite positive) is full rank.
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A natural question arises:

Question 2 Which is the optimal upper bound for the primitivity index of a
primitive quantum channel T acting on MD×D?

In [39] it is shown that p(T ) ≤ (D2 − d + 1)D2. This result has been
recently improved [36] to p(T ) ≤ 2(D − 1)2. The order O(D2) is optimal just
by invoking the optimality of the classical Wielandt inequality. However, the
exact optimal bound is still unknown

As shown in [39], this type of bounds gives universal thresholds for the
behavior in time of the zero-error classical capacity of a quantum channel,
denoted by C0(T ), defined as the optimal rate (measured in number of bits
per use of the channel) at which a quantum channel can transmit classical
information without errors [24]. The following dichotomy result can be shown
[39]:

Proposition 2 Let T be a quantum channel with a full-rank fixed point. Then,
either C0(T

n) ≥ 1 for all n ∈ N or C0(T
p(T )) = 0,

2.1.2 Index of injectivity of a MPS

Let us now connect the previous discussion with the injectivity index of an
MPS, as defined in Definition 4.

We recall that a translationally invariant MPS is given by a rank-3 tensor
A, which is nothing but a set of matrices Ai ∈ MD×D, i = 1, . . . , d, and hence
it naturally defines a completely positive linear map EA(X) =

∑

iAiXA
†
i .

Such map is usually called the transfer operator associated to the MPS. Using
the transformation Ai 7→ Y AiY

−1 that leaves invariant the MPS |ψA〉, one
can assume w.l.o.g that the transfer operator EA is trace-preserving and hence
a quantum channel (see e.g. [7] for details).

It is easy to see [39] that the MPS is injective if and only if its associated
transfer operator is primitive. In the normal case, the injectivity index of an
MPS is an upper bound to the index of primitivity of its associated transfer
operator, i.e. i(A) ≥ p(EA). This finally brings us to the following key question:

Question 3 Which is the optimal upper bound for the injectivity index of a
normal MPS in terms of its bond dimension?

In [39] it is shown that if A is normal then i(A) ≤ (D2 − d + 1)D2. This
result has been recently improved [27] to p(T ) ≤ 2D2(6 + log2(D)). Up to
a logarithmic factor, the order O(D2 log(D)) is optimal just by invoking the
optimality of the classical Wielandt inequality. As before, the exact optimal
bound is still unknown.
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2.1.3 Index of injectivity of a PEPS

Motivated by the connection between the injectivity index and the interaction
length of the parent Hamiltonian, one may ask the analogue of Question 3 in
2D.

Question 4 Which is the optimal upper bound for the injectivity index of a
normal PEPS in terms of its bond dimension?

As opposed to the 1D case, the only known result, proven recently in [28]
is the existence of a function of the bond dimension f(D) that bounds i(A) for
every PEPS with bond dimension D. Unfortunately, in principle such function
could be uncomputable.

Indeed, checking normality becomes undecidable if one generalizes the no-
tion of normal PEPS as those tensors A with the following properties:

1. There exists an orthogonal projector P : CD → CD so that the tensor
B = (1d ⊗ P⊗4)A is normal and

2. the PEPS associated to A and B coincide for every system size, i.e. |ΨA〉 =
|ΨB〉.

This can be proven easily with the techniques in [40]. Therefore a weaker
version of Question 4 should be considered:

Question 5 Give an explicit (computable and if possible polynomial) function
f(D) which is an upper bound for the injectivity index of a normal PEPS.

2.1.4 Spectral gap in PEPS

Let us finish this subsection tackling the problem of the spectral gap of the
parent Hamiltonian. It is proven in [13] (see [23] for an alternative proof) that
the parent Hamiltonian of a normal MPS is always gapped. Unfortunately,
this is not the case for 2D in PEPS, as it is shown in [49] by constructing an
explicit counterexample.

In fact, for general PEPS the existence of gap in the parent Hamiltonian is
undecidable, as shown in [40], which highlights the complexity of the problem.
Moreover, the spectral gap of even the simplest non-trivial PEPS –the AKLT
model [1] as the paradigmatic example– is still open.

However, some light has been shed on checking whether a Hamiltonian is
gapped or not translating the question into a problem on the boundary. For
instance, in [9], motivated by the holographic correspondence uncovered by
Li and Haldane in [25], an exact bulk-boundary correspondence was found,
constructing for every PEPS a (family of) 1D mixed states, named as bound-
ary states. In that work it is conjectured (see also [23]), based on numerical
evidence that
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Conjecture 1 The gap of the parent Hamiltonian of a PEPS corresponds
exactly to the possibility of writing the boundary states as Gibbs states of 1D
short range Hamiltonians

ρ = e−βH , with H =
∑

i,j

hi,j , ‖hi,j‖ ≤ Je−α|i−j|,

where hi,j acts non-trivially only on spins i and j.

The boundary states are simply the semi-definite operators defined on
(CD)⊗|∂R| obtained in the boundary of a region when tracing out the bulk
as shown in the figure

ρR = · · ·
· · ·

α

β

· · ·
· · · =

∑

α,β

(|Ψ [R]
A 〉)α(σRc)α,β(〈Ψ [R]

A |)β

As in any holographic correspondence, one is interested in creating a dictio-
nary that maps bulk properties to boundary properties. The reason that such
dictionary is expected in PEPS comes from the way in which expectation val-
ues are computed (see Eq.(5) in Section 1.3 ): the boundary states are exactly
the operators that mediate at the virtual level the correlations present at the
physical level. Then,

Question 6 Is Conjecture 1 true?

An important step in this direction was given in [23], proving one of the
implications for the case of a faster than exponential decay in ‖hi,j‖.

2.2 Can any GS of a local gapped Hamiltonian be represented as a PEPS?

One of the main features of PEPS, and the one that makes them a rele-
vant ansatz in the classical simulation of quantum systems, is the conjectured
fact that PEPS approximate well ground states of locally interacting gapped
Hamiltonians. To formalize this, we consider a gapped, translationally invari-
ant Hamiltonian on an L × L torus given by a finite range interaction h,
H =

∑

τ τ(h). We will assume a unique ground state denoted by |ΨGS〉.
There are two types of relevant approximations, global and local, depending

on whether one is interested in approximating an extensive or an intensive
quantity in the ground state.

In the global approximation problem, the aim is to find a function f(L)
such that one can guarantee the existence of a (non-necessarily translationally
invariant) PEPS |ΨPEPS〉 with bond dimensionD ≤ f(L) so that in the Hilbert
norm

‖|ΨPEPS〉 − |ΨGS〉‖2 ≤ 1

poly(L)
.

For the local approximation problem, the goal is to find a function, if
it exists, g(ǫ), so that one can guarantee the existence of a translationally
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invariant PEPS |ΨA〉 given by a tensor A, with bond dimension D ≤ g(ǫ), so
that in trace-class norm,

lim
L→∞

‖ρ[L]
R,GS − ρ

[L]
R,A‖1 ≤ ǫ ,

where ρ
[L]
R,GS is the reduced density matrix of the region R associated to |ΨGS〉

in the torus of size L×L (ρ
[L]
R,A is defined analogously). Note that being both

|ΨA〉 and |ΨGS〉 translationally invariant, the exact position of region R in the
torus is irrelevant. This type of approximation guarantees that in the thermo-
dynamic limit, compactly supported observables can be well approximated by
translationally invariant PEPS (with finite bond dimension).

Both the global and local approximation problems have a positive satisfac-
tory solution in 1D, with the current best bounds being

f(L)) = eO(log3/4 L) (6)

g(ǫ) = eO(log3/4 1
ǫ ) .

proven in [5] and [22] respectively .
Both results come from refined versions of the so-called detectability lemma

[2,4]. For simplicity, we will state it in 1D for nearest-neighbor interactions but
a similar result holds in any dimension for finite range interactions.

Lemma 1 (Detectability Lemma in 1D) Let P be an orthogonal projector
on C

d ⊗ C
d and Q = 1 − P its orthogonal complement. Denote by Pi the

projector P acting on sites i, i+1 of a chain of L spins with periodic boundary
conditions. Let H =

∑L
i=1 Pi be a frustration free Hamiltonian and let DL(H)

be the operator

DL(H) =

(

⊗

i even

Qi

)(

⊗

i odd

Qi

)

Then

∥

∥|ΨGS〉〈ΨGS| −DL(H)ℓ
∥

∥

∞
≤





1
√

∆
4 + 1





ℓ

= e−αℓ,

where ∆ is the spectral gap of H (and α = 1
2 log(

∆
4 + 1)).

To get an intuition of its application, let us briefly show how to use Lemma
1 to show approximation in operator norm of the ground state projector of H
by a MPO. Each Qi in DL(H) is a two-body operator so both operators can
be represented graphically as:

Qi = ⇒ DL(H) = · · · · · · .
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Then, by doing a SVD decomposition in each Qi;

= U Σ V † ≡ ,

it is easy to see that DL(H)ℓ is an MPO with bond dimension D ≤ d2ℓ:

( )

···

( )

≡
( )

···

( )

.

Now, fixing ǫ and solving ǫ = e−αℓ (see Lemma 1), we get ℓ = 1
α log 1

ǫ and,
by Lemma 1, the operator DL(H)ℓ approximates within ǫ the ground state
projector on operator norm and has bond dimension

D ≤ d2ℓ = d
2
α log 1

ǫ =

(

1

ǫ

)
log d2

α

= poly

(

1

ǫ

)

.

In order to have the required approximation in trace class norm, and to
get it beyond frustration free systems, more sophisticated versions of Lemma
1 are required [5], leading to the bounds of Eq.(6).

However in 2D the analogue problems are quite open. First of all, there
is no known solution of the local approximation problem. Second, the best
known function associated to the global approximation problem is superpoly-
nomial f(L) = eO(log2 L) and, moreover, it can only be guaranteed to work
under extra spectral assumptions on the Hamiltonian. Specifically, under the
following assumption about the absence of concentration of eigenvalues close
to the ground state energy: for each M > 0, the number of eigenstates with
energy lower than E0 +M grows at most polynomially with the system size
L.

Three questions arise here which can be seen as variants of the Area Law
Conjecture.

Question 7 Does there exist a global approximation result in 2D only under
the spectral gap assumption?

Question 8 Can the function f(L) be taken polynomial in L?

Question 9 Does there exist a local approximation result in 2D? Is this possible
assuming only the spectral gap assumption? Can g(ǫ) be taken polynomial in
1
ǫ ?

3 PEPS as a framework to give formal proofs in cond-mat problems

The results and questions stated in the previous section point to the informal
statement that PEPS = GS. This opens the possibility to analyze relevant
questions for GS, that are really hard to solve in the case of arbitrary systems,
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using the framework of PEPS where rigorous mathematical proofs can be
found.

An illustrative example is the study of 1D GS that are invariant under
symmetries. In particular the question is the following: in how many different
ways a group can act as a symmetry in a quantum many body system? The
inequivalent ways of that action classify the so-called Symmetry Protected
Topological (SPT) phases and they are defined formally as follows:

Definition 6 Consider two gapped locally interacting Hamiltonians H0 =
∑

τ τ(h0) and H1 =
∑

τ τ(h1) on a ring Λ, supported on local Hilbert spaces
H0 = Cd0 andH1 = Cd1 respectively and such that they commute with unitary
representations U0 : G → U(d0), U1 : G → U(d1) of a group G (meaning that
[Hi, Ui(g)

⊗|Λ|] = 0 for all g ∈ G) respectively. We say that H0 and H1 are
in the same SPT phase if there exist another local ancillary Hilbert space
Ha = Cda and a locally interacting Hamiltonian Hλ =

∑

τ τ(hλ) with local
Hilbert space H = H0 ⊕H1 ⊕Ha so that

1. [0, 1] ∋ λ 7→ hλ is smooth (real analytic) (where H0 and H1 are embedded
in the corresponding sector of H.)

2. There exists a representation Ua : G 7→ U(da) so that Hλ commutes with
(U0 ⊕ U1 ⊕ Ua)

⊗|Λ| for all λ.
3. The spectral gap of Hλ is bounded from below by a constant c > 0 which

is independent of λ and the system size |Λ|.

It is clear that this definition gives rise to an equivalence relation, the
different equivalent classes being the different SPT phases. Then, one can
rephrase the question by: how many SPT phases are there for a given group
G?

In order to solve this question in unique GS of local gapped Hamiltonians,
one can restrict to the case of injective MPS (and their parent Hamiltonians)
that are invariant under the action of a symmetry, i.e. MPS so that

|ψA〉 = U(g)⊗L|ψA〉. (7)

It is proven in [44] that Eq.(7) holds for all L if and only if there exists a
projective representation Vg of G acting on the virtual space MD×D so that

U(g)
=

V -1
g Vg

, ∀g ∈ G. (8)

From there, one can prove [44] that 1D SPT phases in MPS are exactly
given by the different non-equivalent projective representations of G, which is
exactly the second cohomology group H2(G,U(1)).
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3.1 Fundamental theorem in PEPS

It is clear from the above argument how crucial it is to have a local (single
tensor) characterization as in Eq. (8) of the existence of a global symmetry
(7). In fact such local characterization is just a particular case, by fixing g and
defining B = U(g)A, of the following more general question for PEPS:

Question 10 What is the relation between two tensors A and B that define
the same PEPS, i.e. |ΨA〉 = |ΨB〉, on a torus L× L for all possible sizes L?

The so-called Fundamental Theorem of MPS [7] shows that this happens
in 1D if and only if there exists an invertible matrix Y so that

B
=

AY -1 Y
. (9)

The reason behind the name Fundamental Theorem stems from the fact that it
is ubiquitously used in very different contexts, ranging from quantum cellular
automata [8] to the description of 2D topological orders [7]. Formally, one
needs to bring first A and B to the so-called canonical form to state the
Fundamental Theorem –see [7] for details.

For two and larger dimensions, a similar result holds true if the tensors A
and B are normal [35,29]. Unfortunately, as opposed to the 1D case, in 2D the
restriction to normal tensors excludes all non-trivial SPT phases. This is why
extending the Fundamental Theorem in 2D beyond normal tensors becomes a
crucial question to solve (see [30] for one such extension to the case of so-called
quasi-injective PEPS).

On the opposite direction, it is shown in [40] that it is undecidable to know
whether two general local tensors give rise to the same state for all system sizes
in 2D. Therefore, if there is a local characterization of such fact must be an
uncomputable (and hence useless) one.

The big question then is to fill the gap in between these two extremes
points: the true but rather incomplete normal case and the undecidable general
case:

Question 11 Give a Fundamental Theorem in 2D (and higher dimensions) for
the largest possible family of PEPS.

The relation between the tensors A and B has been investigated so far
from the equality of their defining PEPS, nevertheless other conditions can
be considered. One of those could be the approximability of two PEPS in the
thermodynamic limit:

Question 12 Given A and B such that there exists an ǫ > 0 and a system size
L0 such that for all L ≥ L0

‖|ΨA〉 − |ΨB〉‖2 ≤ ǫ,

is there a local relation between both tensors?

In contrast to previous questions, here there are no known results; one first
step would be answering the question for normal PEPS.
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4 Miscellanea

There are many other relevant questions about PEPS that were not formu-
lated in the previous sections due to the need of introducing too specialized
prerequisites. In this section we will list a selection of those, with the hope that
researchers in the corresponding fields could be attracted to such problems:

Machine Learning. MPS (and other Tensor Networks such as MERA) have
been successfully used numerically in the context of Supervised Machine Learn-
ing (ML) [47]. They lack however an in-depth theoretical analysis. A concrete
(relevant) question is the following:

Question 13 Can one write the Rademacher complexity or the Vapnik-Chervonenkis
(VC)-dimension for such ML algorithms as a function of the bond dimension?

Computational Complexity. Part of the difficulty of dealing with PEPS is that,
as we saw before, they can encode hard (even undecidable) problems. For some
type of problems concerning PEPS, the exact complexity class is known [43].
In [40] it is shown that zero-testing in 2D PEPS is a central question to un-
derstand their fundamental limitations and the NP-hardness of that problem
is proven (see also [15]).

Question 14 Which is the exact complexity class for 2D PEPS zero-testing?

Topological complexity The complexity of a state (in particular a PEPS) can
also be measured in an operational way by the depth of the quantum circuit
required to construct it from a different (usually simpler) state. Indeed, fast
(meaning low-depth) convertibility in both directions between different states
is the quantum-information-like definition for two states to belong to the same
quantum phase (see [10] for an in-depth discussion on that). One would expect
however that one can always reduce complexity fast. Making this statement
rigorous for topologically ordered phases boils down to find low-depth circuits
of (noisy) gates that implement dynamically the notion of anyon condensa-
tion. The formal question becomes (see [10] for the necessary notions and
definitions):

Question 15 Is there a low-depth noisy quantum circuit that maps the quan-
tum double phase associated to a finite group G to the one associated to a
normal subgroup H?.

Quantum Cellular Automata. Quantum Cellular Automata (QCA) are unitary
evolutions on a lattice that have a finite propagation cone [45]. By means of
the Lieb-Robinson bounds they can be seen as discrete analogues of time-
evolutions of locally interacting systems. In [8] (see also [38]) it is shown that
1D translationally invariant QCAs correspond exactly with the set of Matrix
Product Unitaries MPU (MPOS that are unitary for all system size). This
opens the possibility to combine techniques from MPS and QCAs in order to
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classify the different QCAs up to continuous deformations, as illustrated in [8]
and [16]. The question is:

Question 16 Which is the exact relation between PEPS and QCA in 2D and
higher dimensions?

See [17] for recent work in this direction.
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