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Abstract

The action of the S-duality Sl(2, Z) group on the moduli of the Calabi-Yau
manifold W IP12

11226 appearing in the rank two dual pair (K3 × T 2/W IP12
11226) is

defined by interpreting the N = 4 to N = 2 flow, for SU(2) supersymmetric Yang-
Mills, in terms of the Calabi-Yau moduli. The different singularity loci are mapped
in a one to one way, and the (N =2 limit/point particle limit) is obtained in both
cases by the same type of blow up. Moreover, it is shown that the S-duality group
permutes the different singularity loci of the moduli of W IP12

11226. We study the
transformation under S-duality of the Calabi-Yau Yukawa couplings.
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1 Introduction.

The discovery of heterotic-type II dual pairs [1]-[5] opens the possibility to enter into the
realm of string non perturbative effects. The first direct application of heterotic-type II
dual pairs will be its use to derive the exact quantum moduli space of quantum field
theories defined as the low energy limit of heterotic string compactifications. This has
been done for the dual pair defined by (K3 × T 2/W IP12

11226) [5] by analizing the point
particle limit [6]-[9] of the moduli of complex structures of W IP12

11226, reproducing in [9]
the exact results of the Seiberg-Witten solution for pure N = 2 SU(2) supersymmetric
Yang-Mills [10]. In this letter, we will proceed in a somewhat opposite way: instead
of seeking the field theory point particle limit of the string, we will try to read off the
string theory directly from the field theory. To do so, we will focus on pure N=2 SU(2)
supersymmetric Yang-Mills theory from the point of view of the N=4 to N=2 flow [11],
i.e., we will work with the N =2 theory possesing N =4 matter content. In this way, we
start with an extended moduli space, parametrized by û (û ≡ u

f
, with u the Seiberg-Witten

moduli variable, and f = 1
4
m2 the soft breaking mass term) and τ (the N = 4 moduli).

It will be this space the one we will put in correspondence with the moduli of complex
structures of W IP12

11226 [12, 13], mapping, in a one to one way, the different singular loci
of the two spaces. In both cases, the pure N=2 theory can be derived as the blow up of
a weak coupling (τ → ∞/S → ∞) singular point.

The Sl(2, Z) S-duality group, acting on the N=4 moduli τ , induces duality transfor-
mations on a double covering of the moduli of complex structures of W IP12

11226. We study
the transformations of the Yukawa couplings with respect to S-duality.

2 N =4 to N=2 Flow and Duality.

Let us consider N =2 SU(2) supersymmetric Yang-Mills with one hypermultiplet in the
adjoint representation. The curve describing this model is given by [11]2:

y2 = (x− e1(τ)ũ− e21(τ)f)(x− e2(τ)ũ− e22(τ)f)(x− e3(τ)ũ− e23(τ)f), (2.1)

where f = 1
4
m2, with m the mass of the hypermultiplet. In the massless limit we recover

the N=4 curve of the elliptic moduli τ . After the finite renormalization u = ũ+ 1
2
e1(τ)f

2The Weierstrass invariants ei can be defined in the terms of Jacobi theta functions:

e1 =
1

3
(θ4

2
(0, τ) + θ4

3
(0, τ)), e2 = −1

3
(θ4

1
(0, τ) + θ4

3
(0, τ)), e3 =

1

3
(θ4

1
(0, τ) − θ4

2
(0, τ)).
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[11], and the double scaling limit defined by

lim
τ → i∞
m→ ∞

2q1/2m2 = Λ2, (2.2)

where q ≡ e2πiτ , we obtain, from (2.1), the Seiberg-Witten solution for pure N=2 SU(2)
supersymmetric Yang-Mills with u = 〈Trφ2〉. By an affine transformation we can put the
curve (2.1) in the form

y2 = x(x− 1)(x− λ(ũ, τ, f)), (2.3)

where

λ(ũ, τ, f) =
(e3 − e1)(ũ+ f(e3 + e1))

(e2 − e1)(ũ+ f(e2 + e1))
. (2.4)

The elliptic curve (2.3) is characterized by the j-invariant

j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
, (2.5)

which satisfies the relations j(λ) = j( 1
λ
) = j(1 − λ).

Using the transformation laws of the ei(τ) as modular forms of weight two with respect
to Γ2, we easily get the following set of duality relations:

1 − λ(ũ, τ, f) = λ(ũM ,
−1

τ
, f) ≡ λ(ũ′, τ, f), (2.6)

1

λ(ũ, τ, f)
= λ(ũ, τ + 1, f) ≡ λ(ũ′′, τ, f) (2.7)

where we have defined

ũM = τ 2ũ, ũ′ =
a− f1(ũ)b

(e2 − e1)f1(ũ) − (e3 − e1)

ũ′′ =
a− f2(ũ)b

(e2 − e1)f2(ũ) − (e3 − e1)
,

(2.8)

with
a = f(e23 − e21), b = f(e22 − e21)

f1(ũ) =
1

λ(ũ, τ, f)
, f2(ũ) = 1 − λ(ũ, τ, f).

(2.9)

Notice from the transformation rule for ũ in (2.8) that ũ transforms as a modular form
of weight two.

In the double scaling limit defined by (2.2) we get

lim
τ → i∞
m2 → ∞

λ(ũ, τ, f) =
u+ Λ2

u− Λ2
≡ λSW (u), (2.10)
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with λSW (u) the value of λ obtained from the Seiberg-Witten curve y2 = (x + Λ2)(x −
Λ2)(x− u) for pure N=2 supersymmetric Yang-Mills. Moreover, in this limit we notice,
using relations (2.6) and (2.7), that the Sl(2, Z) duality transformations T : τ → τ+1 and
S : τ → −1

τ
induce, on the Seiberg-Witten plane, the transformations u → −u and u →

3Λ4+Λ2u
Λ2−u , respectively. These transformations, which generate the group ΓW ≡ Sl(2, Z)/Γ2

[14], interchange the singularities of the pure N = 2 theory. In other words, we observe
how the Sl(2, Z) duality transformations on the N =4 moduli τ permute, in the double
scaling limit, the phases of pure N=2 theory [15].

Next, let us study the singularity locus for the curve (2.1). We will work in the (û, τ)-
plane, with û ≡ u

f
; the use of this dimensionless variable will prove important later on, in

the correspondence with the Calabi-Yau moduli space. The following set of regions can
then be differentiated (see Figure 1):

C∞ ≡ {τ = i∞},
C0 ≡ {û(τ) = 3

2
e1(τ)},

C(1)
c ≡ {û(τ) = (e3 + 1

2
e1)(τ)},

C(2)
c ≡ {û(τ) = (e2 + 1

2
e1)(τ)},

C1 ≡ {τ = 0}.

(2.11)

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆☎

☎
☎
☎
☎
☎
☎
☎
☎
☎☎ ✁

✁
✁

✁
✁

✁
✁

✁
✁

✁

r

r

τ

0

i∞
1 0

A

û

C1

C∞
�✠

C0 C(2)
c

C(1)
c

✻

Figure 1: The different loci described in (2.11). Notice that e2 = e3 at τ = i∞, and
e1 = e3 at τ = 0.

Notice that the loci C0, C(1)
c and C(2)

c correspond to the singularities of the curve (2.1)
when written in û variables. It can be easily proved that the duality transformations (2.6)
and (2.7) permute among themselves the singular loci (2.11). Namely, the transformation
S permutes C1 with C∞, and C0 with C(2)

c , while the locus C(1)
c is mapped into itself; the

transformation T permutes the locus C(1)
c and C(2)

c , and maps into itself the locus C0.
The loci C0, C(1)

c and C(2)
c can be described using the language of double ramified

coverings introduced in [15] in connection with integrable models. In fact, for the double
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ramified covering defined by

{

y2 = (x− e1)(x− e2)(x− e3)
0 = t2 − x+ ũ,

(2.12)

the loci C0, C(1)
c and C(2)

c are defined by the relation ũ(τ), characterizing the values of ũ
for which (2.12) becomes a double unramified covering3.

3 Blowing up and the N=2 Limit.

Let us now consider more carefully the neighbourhood of point A ≡ (û=0, τ= i∞) in the
(û, τ)-plane depicted in Figure 1. Introducing a new coordinate ǫ ≡ 8q1/2, the loci C(1)

c

and C(2)
c in the neighbourhood of the point A can be described in (ǫ2, û) coordinates by

the parabole ǫ2 = û2. This parabole is tangent at the point A to the locus C∞ = {τ= i∞}.
Using standard techniques [16] we can blow up this tangency point. To do it a double blow
up is needed: in the first blow up we introduce the coordinate v = ǫ2

û
, which transforms

the tangency into a crossing between the curve v = û and C∞; in the second step, we
blow up this crossing introducing the coordinate w = v

û
, mapping the parabole to the line

w = 1. The exceptional divisors E1 and E2, and coordinates introduced by this blow up
are described in Figure 2.

��✒

❅❅❘
r

w = ǫ2/û2

C∞

û

Cc

v = ǫ2/û

w = 1

E1

E2

Figure 2: The double blow up of the tangency point A of Figure 1.

Defining Λ2 = 8q1/2f [10] we observe that the coordinate on E1 is given by Λ4/u2 ≡
1/ũ2.

Some comments are now necessary for a proper understanding of the physical meaning
of the above construction. First of all, the point A in the (û, τ)-plane we are blowing up

3A massive vacuum, in the notation of reference [15].
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is a point where the value of λ(û, τ) is undetermined (see equation (2.4)). In order to give
a precise meaning to the double scaling limit in the (û, τ)-plane, we need to blow up the
point A, and to define λSW (see equation (2.10)) as a function on the exceptional divisor
parametrized by w. Notice that in the double scaling limit τ → i∞, m2 → ∞ û goes to
û = 0 for any value of u = 〈Trφ2〉. In other words, the only point in the (û, τ)-plane of
the N =2 theory with N=4 matter content that can have a pure N=2 interpretation is
the enhancement of symmetry singular point (û = 0, τ = i∞). By means of the blow up
of this singular point we create an extra divisor which represents the quantum moduli of
the pure N=2 theory.

Secondly, it should be noticed that in (ǫ, û) coordinates the curve defined by the locus
C(1)
c and C(2)

c in the neighbourhood of the point A can be described by û = ±ǫ. This
crossing can be regularized by a single blow up, with the coordinate on the exceptional
divisor given by w = ǫ

û
= 1

ũ
, and the loci C(1)

c , C(2)
c mapped into the lines w = ±1, which

represents a more natural description of the Seiberg-Witten plane. When we use (ǫ2, û)
coordinates we effectively quotient by the R-symmetry ũ → −ũ4 , paying the price of
creating, by the double blow up, the exceptional divisor (at zero) parametrized by the
coordinate v. In order to match the monodromies when we work with ũ2-coordinates,
we need to take into account, as we move ũ → e2πiũ around the intersection points, the
contribution coming from moving in the w-divisor, and the extra piece arising from moving
in the “orthogonal” divisor. As we will see in next section, the reason for considering the
blow up in (ǫ2, û)-coordinates comes from the fact that the (û, τ)-plane defines a double
covering of the Calabi-Yau moduli space.

In the same way as the point (û = 0, τ = i∞) is used to recover the pure N=2 theory
(f → ∞), the line {û = ∞} can be interpreted as corresponding to the pure N=4 theory
(f → 0). In this sense, there exits an interesting similarity between the singular locus C0

and the “N = 4” line {û = ∞}, namely on the line C0 a component of the elementary
hypermultiplet becomes massless.

4 Calabi-Yau Interpretation.

The interpretation above of the pure N=2 theory as the blow up of a singular (enhance-
ment of symmetry) point in the extended moduli of the N =2 theory with N =4 matter
content, and the results in reference [9] concerning the point particle limit, motivate us
to compare, in more detail, the (û, τ)-plane to the moduli of complex structures of the
Calabi-Yau weighted projective space W IP12

11226. The defining polynomial [12, 13] is

p = z12
1 + z12

2 + z6
3 + z6

4 + z2
5 − 12ψz1z2z3z4z5 − 2φz6

1z
6
2 . (4.1)

4See comment iii) in next section.
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Introducing the variables

x ≡ −1

864

φ

ψ6
, y ≡ 1

φ2
, (4.2)

the singular loci are given [12] by5:

(1) Ccon ≡ {(1 − x)2 − x2y = 0},
(2) C∞ ≡ {y = 0},
(3) C1 ≡ {y = 1},
(4) C0 ≡ {x = ∞}.

(4.3)

I

II

III

C1

Co

Cc

y

1/x1

Figure 3: Singular loci of W IP12
11226 moduli space.

Before entering into a more detailed study of the moduli of W IP12
11226, let us simply

consider the blow up of the tangency point (x = 1, y = 0) between Ccon and C∞. By means
of a two step blow up [9, 12], we obtain two exceptional divisors E1 and E2 (see Figure

4), with coordinates yx2

(1−x)2 and yx
(1−x) , respectively. If we are now bold enough to identify

the blow up in the (û, τ)-plane (Figure 2) with the Calabi-Yau blow up of Figure 4, we
will get the following relation6

yx2

(1 − x)2
=
ǫ2

û2
≡ 1

ũ2
, (4.4)

5In φ, ψ variables, the four singularity loci of W IP12

11226
are (1) {864ψ6 + φ = ±1}, (2) {φ = ±1}, (3)

{φ, ψ = ∞} and (4) {ψ = 0}. In equation (4.3) we give these four loci in the chart with coordinates
(x−1, y) (see Figure 3).

6The variable ũ entering the following definition should not be confused with that used in (2.1).
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which implies, in the neighbourhoood of the point (x = 1, y = 0),

x =
1

1 ± û
+ · · · y = ǫ2 + · · · (4.5)

Notice that relation (4.4) is nothing but the one used in reference [9] to define the point
particle limit. Here this relation is derived by simply identifying the blow ups of Figures
2 and 4. Moreover, using the mirror map of [12], it was suggested in [5] the possibility to
interpret y in terms of the heterotic dilaton S through y = e−S + · · ·. This identification,
together with equation (4.5), strongly suggests the following string interpretation of the
N=2 theory with N=4 matter content:

(α′)−1 ↔ f = 1
4
m2,

e−S ↔ 64q = ǫ2.
(4.6)

Namely, the N=4 bare coupling constant τ can be thought of as the dilaton, and the soft
breaking mass term f for the hypermultiplets in the adjoint representation as the inverse
of the string tension7.

��✒

❅❅❘
r

w = yx2/(1 − x)2

(1 − x)/xyx2/(1 − x)2 = 1

yx/(1 − x)

Ccon

E1

E2

Figure 4: The double blow up as seen in the Calabi-Yau variables.

The formal similarity between the singular loci in (û, τ)-plane and those for W IP12
11226

seems to be more than a coincidence. We can in fact define a one to one map between the
two moduli spaces such that in the weak coupling limit we recover relations (4.5). This
can be done using the following correspondences:

x =
3/2e1(τ)

3/2e1(τ) − û
,

√
y = −e2(τ) − e3(τ)

3e1(τ)
, (4.7)

7The relation (4.5) between x and û was derived for α′ = 1 in reference [6]. The crucial role of α′ in
the whole blow up analysis was first pointed out in reference [9].
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which map the loci (2.11) into the loci (4.3). Some comments are now necessary concerning
(4.7):

i) To fix the correspondence (4.7) we are forced to work with
√
y, i.e., in a double

covering. The reason, already clear in the ± ambiguity appearing in (4.5), is that we
identify the loci C(1)

c and C(2)
c of the (û, τ)-plane with the two conifold branches

√
y =

±
(

1−x
x

)

. It is important to stress that the “monopole” and “dyon” singularities, in

the N=2 field theory language, are identified in the (x, y)-plane.

ii) In the coordinate chart II (x, x2y) of the corresponding toric diagram [12], the strong
coupling loci C1 is tangent to C∞ at the origin. This tangency can be again blown
up in two steps. We get, in this way, the extra divisor {x = 0}. By (4.7) this
divisor corresponds to the loci {û = ∞} in the (û, τ)-plane. Recalling now that û
was defined as u/f , this loci corresponds to the pure N=4 limit f → 0.

The two step blow up in the coordinate chart II produces, as mentioned above,
two exceptional divisors, {x = 0} and D(−1,−1) (in the notation of reference [12]).
This second divisor has no analog in the (û, τ)-plane. The reason is again that the
(û, τ)-plane is properly speaking in correspondence with the plane (x,

√
y), where the

tangency we are working out becomes a crossing with a single step blow up, and one
exceptional divisor, which is the divisor {x = 0}. As mentioned above, the (û, τ)-
plane defines a double covering; thus, the second divisor D(−1,−1) in the Calabi-Yau
moduli will only appear when we quotient by the covering transformation.

iii) By correspondence (4.7), the (û, τ)-plane becomes a double covering of the (x, y)-
plane. The covering transformation is precisely given by the T element in the
Sl(2, Z) duality group, T : (û, τ) → (û, τ+1). Moreover, the action of T corresponds
to the map A : (φ, ψ) → (−φ, αψ), with α12 = 1, i.e., to the transformation between

the two branches
√
y = ±

(

1−x
x

)

of the conifold locus. This explains why the point
particle limit defined as the blow up of the tangency point produces a quantum
moduli parametrized in terms of ũ2 instead of ũ. More precisely the parametrization
in terms of ũ2 does not mean that we can quotient in the rigid theory by the global
R-symmetry u → −u. To arrive to ũ2 we need first to go to the extended moduli
(û, τ), secondly to notice that the (û, τ)-plane is a double covering of the (x, y)-
moduli space and third to quotient by the “stringy” symmetry A which corresponds
to the covering map T : (û, τ) → (û, τ + 1).

iv) Taking into account the transformation rules of the roots ei we can use the correspon-
dences (4.7) to map different regions of H+/Γ2 (see Figure 5) into the (x, y) moduli
space. So, the domain I:[τ = i, τ = i∞] goes into the domain [y = 0, y = 1/3]. In
just the same way, the interval [i, 0] goes into the domain [y = 1/3, y = 1]. For
the domain III of Figure 5, we consider the line going from τ = 0 to the point
τ = 1

2
(i − 1); this point is the ST transformed of τ = i. Using (4.7) we see that

8



y(τ = 1
2
(i − 1)) = ∞, and therefore we map the domain III of Figure 5 into the

region [y = 1,∞].

10.5-0.5-1

I

II

IIIIII

IVIV

Figure 5: Modular domain of Γ2.

v) The previous discussion can be repeated “mutatis mutandis” for the Calabi-Yau
weighted projective space W IP8

11222. The relevant difference between these two
spaces is the modular group in the limit y → 0, which is Sl(2, Z) for W IP12

11226,
and Γ0(2)+ for W IP8

11222 [17]. In both cases we can recover the rigid SU(2) Seiberg-
Witten solution [9, 18]. The enhancement of symmetry point for W IP12

11226 is given
by Theterotic = i, while for W IP8

11222 is Theterotic = i/
√

2, reflecting the difference in
the mirror map: Jacobi’s j function for W IP12

11226, and the Haupmodul for Γ0(2)+

in the case of W IP8
11222. In the above construction, leading to the correspondence

(4.7), these differences between W IP12
11226 and W IP8

11222 are not taken into account;
we will come back to this point in next section.

vi) As a last comment on the correspondence (4.7), we consider the behaviour at τ =
1
2
(i − 1). Since e1(

1
2
(1 − i)) = 0, the point (û = 0, τ = 1

2
(1 − i)), which is in the

locus C0, blows up by (4.7) into the whole line (x, y = ∞). This fact has indeed its
counterpart in the Calabi-Yau moduli space. Namely, at the point y = ∞ (φ = 0),
the locus C0 = {ψ = 0} corresponds to an undetermined value of x = − φ

864ψ6 .

9



5 S-Duality and Yukawa Couplings.

We will use the map (4.7) to induce the action of the S-duality group Sl(2, Z), acting on
the N=4 moduli τ , on the Calabi-Yau space.

As already mentioned in the previous paragraph, points related by the T -transformation
(û, τ) → (û, τ + 1) map into the same (x, y) point. The T action is in fact non trivial
only when we work in the double covering space with coordinates (x,

√
y). On this space

the T transformation is interchanging the two branches of the conifold locus, and the two
branches

√
y = ±1 of the singular locus C1.

The non perturbative generator S : τ → − 1
τ

induces the change

x(û, τ) → x(ûM ,− 1
τ
) ≡ x′(û, τ),

y(τ) → y(− 1
τ
) ≡ y′(τ).

(5.1)

where

ûM = τ 2
(

û+
1

2
(e2(τ) − e1(τ))

)

(5.2)

has been defined using the transformation of ũ (u = ũ+ 1
2
e1f) as a modular form of weight

two. From the map (4.7) it is now easy to derive

x′ =
1

2

1 + 3
√
y

1 +
√
y − 1

x

,
√
y′ =

1 −√
y

1 + 3
√
y
. (5.3)

The transformations of the different loci under S, as defined by (5.3), are given as

follows. The positive branch
√
y = +

(

1−x
x

)

of the conifold locus is mapped by S into

C0, while the negative branch
√
y = −

(

1−x
x

)

is mapped into itself. In a similar way,
the negative branch

√
y = −1 of the locus C1 is mapped into itself, while the positive

branch
√
y = +1 is mapped into C∞. Moreover, the enhancement of symmetry point

(x = 1, y = 0) is mapped by S into the point of crossing between C0, C1 and Ccon.
Now we pass to study the action of the S duality group Sl(2, Z) on some geometrical

objects. In what follows, we will reduce ourselves to the Yukawa couplings; this check
will again be unable to distinguish between W IP12

11226 and W IP8
11222, since the couplings

of both spaces are identical up to a global factor of four [12, 13]. From reference [13] we
take8

Yxxx =
1

x3∆
, Yxxy =

1 − x

2x2y∆
, Yxyy =

2x− 1

4xy(1 − y)∆
. (5.4)

where ∆=(1− x)2 − x2y is the conifold locus discriminant. Under the S-transformations

8These couplings are obviously invariant under the T transformation.
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(5.3) the Yukawa couplings are transformed as follows:

Yx′x′x′ =
(

∂x
∂x′

)3
Yxxx = 1

x′3∆′
,

Yx′x′y′ =
(

∂x
∂x′

)2 (

∂x
∂y′

)

Yxxx +
(

∂x
∂x′

)2 (

∂y
∂y′

)

Yxxy = 1−x′

2x′2y′∆′

(

−
√
y′

(1−x′)(1−
√
y′)

)

,

Yx′y′y′ =
(

∂x
∂x′

) (

∂x
∂y′

)2
Yxxx + 2

(

∂x
∂x′

) (

∂x
∂y′

) (

∂y
∂y′

)

Yxxy +
(

∂x
∂x′

) (

∂y
∂y′

)2
Yxyy =

= 2x′−1
4x′y′(1−y′)

1
∆′

(

2x′−1−(1+
√
y′)

(2x′−1)
√
y′

)

(5.5)

In the above calculations we have made use of the following property, derived from
the transformations (5.1):

∆(x′, y′) =
∆(x, y)

(1 − x(1 +
√
y))3

(5.6)

As an example, using ( dx
dx′

) = (1 − x(1 +
√
y))x/x′ and (5.6), it is immediate to obtain

Yx′x′x′ as given in (5.5).
From (5.4) and (5.5) we observe that Yxxx is invariant, while the others pick up, by

the S-duality transformation, an extra factor. It is important to observe the non trivial
fact that in all cases the extra factor becomes one on the negative branch of the conifold

locus . This branch is precisely the locus which is mapped into itself by the action of
the S-duality transformation. In this sense, we can interpret results (5.5) as reflecting
the different “modular weights” of the Yukawa couplings with respect to the S-duality
group Sl(2, Z) [19], a difference that should certainly vanish on the locus that is mapped
into itself by the S-duality transformation. Moreover, it should be noticed that the extra
factors in (5.5) are due to the fact that the transformations (5.3) are defined on the double
covering.

6 Comments.

To conclude this letter we reduce ourselves to mentioning some aspects of our analysis
that deserve a deeper understanding.

i) The physical picture, as described in the (x, y) plane, differs from the one we will
obtain in its double cover in many aspects. In particular, the S-duality action, as
defined in this letter, can only be implemented on the double covering; namely the
T part of the Sl(2, Z) duality group is precisely the transformation interchanging
the two branches of the double covering. A second aspect related with the double
covering goes to the more technical point on the blow up of the tangency between
C1 and C∞. If we work in the double covering, we only need one exceptional divisor,
which is precisely the one describing the pure N=4 theory.
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ii) It would also be interesting to work out the physics of the singular locus C0, which
in our approach is the S-dual of the negative branch of the conifold, a fact again
hidden by working in (x, y) variables.

iii) The N=4 to N=2 flow framework we have used in our study is, as was pointed out
in reference [15], intimately connected with the relation between integrable models
and N = 2 theories [20, 21]. A natural question that appears from our study will
be the connection between these integrable models and the Calabi-Yau manifold
used to reinterpret the N = 4 to N = 2 flow. Moreover, it would be important to
understand whether the connection between N = 2 gauge theories and integrable
models can be reinterpreted from the point of view of the underlying string theory.

iv) At a more speculative level, we can wonder whether the stringy interpretation of
the N=4 to N=2 flow described in this letter can be extended to a flow from N=2
to N=0 or N=1.

v) The role of N=4 in our approach, and in this sense the physics of the double cover-
ing, can be perhaps understood if we think of the N =4 theory as the dimensional
reduction of N=2 in D = 5, in the spirit of reference [2]. The strong coupling spec-
trum is interpreted ,in Kaluza-Klein terms, in parallel to the D = 11 interpretation
of the strong coupling regime in string theory. It would also be interesting to have
a D-brane interpretation [22, 23] of the hypermultiplets in the adjoint that control
the strong coupling loci in a similar way to Strominger’s interpretation [24] of the
conifold locus.

This work is partially supported under grant by European Community grant ER-
BCHRXCT920069, by PB92-1092. The work of E. L. is supported by M. E. C. fellowship.
The work of R. H. is supported by U.A.M. fellowship.
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