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We calculate the unpolarized transverse momentum dependent fragmentation function at next-to-next-
to-leading order, evaluating separately the transverse momentum dependent (TMD) soft factor and the
TMD collinear correlator. For the first time, the cancellation of spurious rapidity divergences in a properly
defined individual TMD beyond the first nontrivial order is shown. This represents a strong check of the
given TMD definition. We extract the matching coefficient necessary to perform the transverse momentum
resummation at next-to-next-to-next-to-leading-logarithmic accuracy. The universal character of the soft
function, which enters the definition of all (un)polarized TMD distribution/fragmentation functions,
facilitates the future calculation of all the other TMDs and their coefficients at next-to-next-to-leading
order, pushing forward the accuracy of theoretical predictions for the current and next generation of high
energy colliders.
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I. INTRODUCTION

Multidifferential cross sections play a central role in our
understanding of QCD dynamics. In this context the
definition of transverse momentum dependent functions
(TMDs) has been recently revisited, updating the pioneer-
ing work of Collins and Soper [1,2], in order to solve
the subtle issue of the cancellation of spurious rapidity
divergences inside an individual TMD. As a result, one has
achieved the factorization theorems for Drell-Yan, vector
boson/Higgs production, semi-inclusive deep inelastic
scattering, and eþe− → 2 hadrons processes in terms of
individually well-defined TMDs [3–5]. All these processes
are fundamental for current high energy colliders, like the
LHC, KEK, SLAC, JLab, or RHIC, and future planned
facilities, like the EIC, AFTER, the LHeC, or the ILC.
While the formulation of the factorization theorems is

solid, a direct evaluation of an individual TMD at two loops
is still lacking. Such a calculation provides a fundamental
check of the factorization theorem and important informa-
tion for data analysis. The one-loop TMDs with various
quantum numbers have been computed by several groups
[5–11]. At two loops some properties of TMDs have been
deduced from cross section calculations carried out in
QCD (see, e.g., [12–16]). In this work we present the result
of the next-to-next-to-leading-order (NNLO) evaluation of

the unpolarized transverse momentum dependent fragmen-
tation function (TMDFF), which is an essential part of
TMD factorization theorems, both in the nonsinglet and
singlet channels.
The evaluation of individual TMDs at higher orders is

an utterly nontrivial check for their definition, since starting
from the two-loop order, the singularities of various types
mix up. The two-loop calculation (for the first time
presented in this article) shows that the combination of
factors disentangles and cancels the spurious rapidity
divergences within the proper definition of one TMD.
The intermediate pieces of the calculation are also relevant
per se. In fact we define a regulator for rapidity divergences
which can be used in combination with standard dimen-
sional regularization for evaluation of any TMDs. The soft
function (SF) (which is essential for the TMD definition
and whose two-loop result will be presented in a forth-
coming publication [17]) is a key element for the NNLO
calculation of all (polarized) TMDs.
In this article we present the matching coefficient of the

unpolarized quark TMDFF onto the integrated fragmenta-
tion function (FF) at NNLO (both nonsinglet and singlet
channels), using explicitly the formalism of Ref. [5]. This
result can be immediately used in forthcoming phenom-
enological applications; see, e.g., Refs. [18,19]. Our con-
sideration fills the gap in TMD phenomenology, because
NNLO coefficients for transverse momentum dependent
parton distribution function (TMDPDF), another important
ingredient of TMD factorization theorems, can be extracted
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from the NNLO calculations made in the related formalism
[12–16].

II. DEFINITIONS

Individually, TMDs are defined as a product of two
separate matrix elements, the (square root of the) SF and the
corresponding collinear matrix element. The SF is a spin
and process independent vacuum expectation value of
Wilson lines [3,4], and it is defined as

Sðks⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

ib⊥·ks⊥ 1

Nc

× h0jTr½ST†n ~STn̄ �ð0þ; 0−; b⊥Þ½ ~ST†n̄ STn �ð0Þj0i; ð1Þ
where Sn and ~Sn̄ stand for soft Wilson lines along light-
cone directions,1 and n and n̄ are light-cone vectors
(n2 ¼ n̄2 ¼ 0, n · n̄ ¼ 2). The unpolarized collinear matrix
element is defined as

Δð0Þ
i→hðz; P̂h⊥Þ ¼

1

2z

Z
dyþd2b⊥
ð2πÞ3 eiðyþk−n̄−b⊥·kn̄⊥ÞTr

×
XZ
X

h0j½ ~WT†
n̄ ψ �ðyþ; 0−; b⊥ÞjX;Phin

× hX;Phj½ψ̄ ~WT
n̄ �ð0Þj0ijzb; ð2Þ

where index i refers to the parton flavor, Ph is the hadron
momentum, z is the Bjorken variable, k−n̄ ¼ P̂−

h =z, and
kn⊥ ¼ −P̂h⊥=z. The subscript “zb” stands for zero bin
subtracted.2 See Ref. [5] for more details regarding the
particular definition of Wilson lines.
Individually both matrix elements have rapidity diver-

gences at every order in the perturbative expansion. These
divergences are neither ultraviolet (UV) nor long-distance
ones and, in principle, are not sensitive to confining
dynamics [3,4,7,28]. As argued in Refs. [3,4,7], such
divergences can be removed in the correct combination
of soft and collinear matrix elements.
The essential property of the SF, which allows one to

remove the rapidity divergences, is that the logarithm of the

SF is maximally linear in the logarithmical rapidity
divergences. Therefore, it can be split into two pieces [4],

~SðLμ;L ffiffiffiffiffiffiffiffi
δþδ−

p Þ ¼ ~S
1
2ðLμ;Lδþ=νÞ ~S

1
2ðLμ;Lνδ−Þ; ð3Þ

where ν is an arbitrary, dimensionless and positive
real number that transforms as pþ under boosts and3 we
introduce the convenient notation

LX ≡ lnðX2b2e2γE=4Þ:
Variables δ� are rapidity regulators that one uses in the n-
and n̄-collinear sectors [our implementation of it is speci-
fied later in Eq. (6)]. Tildes mark quantities calculated in
the coordinate space. In our calculation. the relation in
Eq. (3) has been checked explicitly at NNLO.
The result of the combination of one piece of the SF and

the collinear correlator (Δ) is free from rapidity divergences
and hence can be considered as a valid hadronic quantity.
For the unpolarized TMDFF in coordinate space we have

~Di→hðz;Lμ; lζDÞ ¼ ~Δð0Þ
i→hðz;Lμ;L ffiffiffiffiffiffiffiffi

δþp̄−
p Þ ~S1

2ðLμ;Lδþ=νÞ

¼ ~Δi→hðz;Lμ; λδ−Þ ~S−
1
2ðLμ;Lνδ−Þ; ð4Þ

where we have introduced the shorthand notation

lX ≡ lnðμ2=XÞ; λδ− ≡ lnðδ−=p̄−Þ:
In this equation ~Δi→h represents the naively calculated
collinear matrix element, with no subtraction of the over-
lapping with the soft region. If the hard scale in the process,
say the mass of the virtual photon in eþðpÞe−ðp̄Þ → 2

hadrons, is given byQ2, then ζF and ζD are fractions ofQ2,
satisfying ζFζD ¼ Q4, where ζF ¼ ðpþ=νÞ2 and ζD ¼
ðp̄−νÞ2 (in the following we omit the subscripts F, D
where unnecessary). At small values of the impact param-
eter b the renormalized TMDFF can be factorized again in

~Di→hðz;Lμ; lζÞ ¼
Z

1

z

dτ
τ3−2ε

Ci→j

�z
τ
;Lμ; lζ

�
dj→hðτ; μÞ;

ð5Þ
where di→hðξ; μÞ is the renormalized integrated FF. In Eq. (5)
and in the rest of this article, the repeating flavor index implies
summation. The outcome of this work is the calculation at
NNLOof the nonsinglet and singlet part of quark to quark and
quark to antiquark coefficients, respectively,Cq→qðz;Lμ; lζÞ,
Cqi→qjðz;Lμ; lζÞ and Cq→q̄ðz;Lμ; lζÞ.

III. REGULARIZATION

The choice of the infrared (IR) and the rapidity regulari-
zation scheme is one of the central points for the evaluation of
TMDs. The regularization should satisfy several important

1The superscript T onWilson lines in Eq. (1) implies subsidiary
transverse links from the light-cone infinities to transverse infinity,
see details in Refs. [20–22]. These links guaranty gauge invariance
and are necessary for calculations in singular gauges. The
presented calculation has been performed in Feynman gauge,
where the contribution of transverse links vanishes.

2The zero-bin subtraction is the term used in the soft collinear
effective theory (SCET) literature to account for the double
counting with the soft sector. These definitions are equivalently
stated inQCDand SCET; see, e.g., Refs. [4,23–26]. Here, we apply
this term since the definition that we follow [5] was originated
within SCET. However, the present calculation is performed in
standard QCD. For the used regularization, the application of zero-
bin subtraction is equivalent to calculate the collinear matrix
element naively [Eq. (2)] and then subtract the soft function matrix
element in Eq. (1), thereby obtaining the so-called “pure collinear”
matrix element: Δpure ∼ ΔnaiveS−1. The precise details on the
definition will be presented in Ref. [27].

3We denote by pþ and p̄− the large components of the
incoming and outgoing parton momenta, respectively, in a
semi-inclusive deep inelastic scattering hard process.
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demands, such as, it should respect the exponentiation
property ofWilson lines [which is necessary for the existence
of the relation in Eq. (3)]; it should match the singularities of
the naively calculated collinear matrix element in the soft
limit with the ones of the SF (which is necessary for a
straightforward treatment of the zero-bin subtraction, see
footnote 2). Additionally, the chosen regularization scheme
should be convenient for multiloop integral computations.
One of the popular choices of regularization is to use

tilted Wilson lines; see, e.g., Refs. [6,9]. However, with this
regularization the number of loop integrals and their
difficulty is significantly higher than with others. The
analytical regulator, that was used in the NNLO calculation
in Refs. [15,16], is highly efficient for computation and
satisfies the necessary requirements, but it is not capable of
regularizing rapidity divergences of the SF, which is crucial
in the proper definition of an individual TMD.
Here we regularize the rapidity divergences with the δ

regularization, which has been used for the same purpose
by many authors; see, e.g., Refs. [5,7,8,29]. To regularize
the rest of the UV and IR divergences we use standard
dimensional regularization with D ¼ 4 − 2ε, while the
incoming/outgoing partons are on shell and massless.4

To match the required demands at multiloop level the δ
regularization is here modified. First, in order to supply the
non-Abelian exponentiation property [30,31], and hence
the relation in Eq. (3), the δ regulator should be imple-
mented at the operator level; see, e.g., the discussion in
Ref. [32]. We thus modify the definition of Wilson lines as5

~Wn̄ð0Þ ¼ P exp
h
−ig

Z
∞

0

dσA−ðσnÞ
i

→ P exp
h
−ig

Z
∞

0

dσA−ðσnÞe−δ−σ
i
;

~Sn̄ð0Þ ¼ P exp
h
−ig

Z
∞

0

dσAþðσn̄Þ
i

→ P exp
h
−ig

Z
∞

0

dσAþðσn̄Þe−δþσ
i
;

Snð0Þ ¼ P exp
h
ig
Z

0

−∞
dσA−ðσnÞ

i

→ P exp
h
ig
Z

0

−∞
dσA−ðσnÞeþδ−σ

i
; ð6Þ

where δ� → 0þ. Second, in order to match the IR soft
singularities of the naively calculated collinear matrix
element and the SF, the δ in Δi→h should be rescaled by
z, i.e., δ → δ=z.
Such a modified regularization is appropriate for being

used in multiloop calculations and for the evaluation of the
relevant matrix elements separately.

IV. EXTRACTION OF THE MATCHING
COEFFICIENT

In order to extract the matching coefficient at NNLO
one needs to evaluate the SF and the collinear matrix
element in Eq. (2) partonically at NLO and NNLO. The
obtained functions, together with the renormalization
multipliers should be combined into the partonic
TMDFF, Eq. (4). The partonic TMDFF then is matched
onto the integrated FF in the operator product expan-
sion sense.
At one-loop order the procedure is presented, e.g., in

Ref. [5]. The complete expression for TMDFF reads

~D½1�
q→q ¼ ~Δ½1�

q→q −
~S½1�

2
− Z½1�

2 þ Z½1�
D ; ð7Þ

where Z2 is the quark wave-function renormalization
constant, and ZD is the TMDFF operator renormalization
constant. Note that in this expression, as well as in
Eq. (10), zero-bin subtractions are explicitly taken into
account (the SF is subtracted instead of added).
Throughout the paper we use superscripts in square
brackets to denote the order in the perturbative expansion,

e.g., S ¼ P
na

n
sS½n�, where as ¼ g2

ð4πÞ2 and also the short-

hand z̄ ¼ 1 − z.
The rapidity divergences appear in both Δ½1� and S½1�,

but cancel in Eq. (7). The ultraviolet divergences are
renormalized by Z2 and the suitably chosen ZD.

Therefore ~D½1�
q→q is a function of z, Lμ, lζ, and ϵ, which

regularizes the IR collinear divergences. The collinear
divergences are part of the integrated FF, while the
matching coefficient C is given by

~C½1�
i→j ¼ ~D½1�

i→j −
d½1�i→j

z2−2ε
: ð8Þ

At one-loop order we obtain the well-known result [3,5]

~C½1�
q→q ¼ CFas

z2

�
−2Lμ=zPq→qðzÞ þ 2z̄

þ δðz̄Þ
�
−L2

μ þ 2Lμlζ þ 3Lμ −
π2

6

��
; ð9Þ

and the trivial result ~C½1�
q→q̄¼0. Here,Pq→qðzÞ¼ðð1þz2Þ=z̄Þþ

is thequark splitting function. The plus distribution is defined
as ðfðzÞÞþ ¼ fðzÞ − δðz̄Þ R 1

0 dyfðyÞ.

4For renormalization we use a MS-scheme with the rescaling
factor ð4πeγEÞϵ.

5We should mention that the presented regulator has some
inconveniences typical of such regularizations. One of them is the
potential violation of gauge invariance. However, artificial gauge
violating terms can be easily traced and discarded. Another
inconvenience is that the δ parameter regularizes not only rapidity
divergences but also some other soft divergences. In general, this
is not a problem, since all soft divergences cancel in the final
result. Nonetheless, we made a complete analytical calculation,
where different soft divergences have different signature, and
checked the cancellation individually for every sector. The details
will be presented in Ref. [27].
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At two-loop level the TMDFF is

~D½2�
i→j ¼ ~Δ½2�

i→j −
~S½1� ~Δ½1�

i→j

2
−

~S½2�δij
2

þ 3~S½1� ~S½1�

8
δij

þ ðZ½1�
D − Z½1�

2 Þ
�
~Δ½1�
i→j −

~S½1�þ δij
2

�

þ ðZ½2�
D − Z½2�

2 − Z½1�
2 Z½1�

D þ Z½1�
2 Z½1�

2 Þδij: ð10Þ
The two-loop rapidity divergences appear only in the first
line of Eq. (10). Notice that in contrast to NLO, where all
rapidity divergences arise with the δðz̄Þ prefactor and cancel
trivially between SF and Δ, at NNLO the rapidity diver-
gences arise with an involved z-dependent structure. At
two-loop level the rapidity divergences of Δ½2� and S½2� mix
up with UV divergences, and the mixture cancels in the
combination in Eq. (10). In general, Eq. (10) possesses a
complex system of cancellations of various divergences
[27]. The realization of all this cancellation represents an
important check of our calculation.
The matching coefficient at the two-loop level is given

by the combination

~C½2�
i→f ¼ ~D½2�

i→f − ~C½1�
i→k ⊗

d½1�k→f

z2−2ϵ
−
d½2�i→f

z2−2ε
; ð11Þ

where the symbol ⊗ denotes the Mellin convolution in the
Bjorken variable z, while k is a flavor index. Clearly, each
addend of this sum is free of rapidity divergences.

V. RENORMALIZATION GROUP AND
MATCHING

The renormalization group equations of the TMDFF and
the integrated FF provide also important checks for our
calculation. We have that

μ2
d
dμ2

~Di→h ¼
1

2
γiD ~Di→h

γD ¼ Γi
cusplζ − γiV; ð12Þ

where Γcusp is the cusp anomalous dimension, e.g., Ref. [4].
The result for γqV is extracted from the calculation of the
nonsinglet part of the quark form factor [33]. Then we have

ζ
d
dζ

~Di→h ¼ −Di ~Di→h; 2μ2
d
dμ2

Di ¼ Γi
cusp; ð13Þ

which allows the resummation of the rapidity logarithms.
Putting together Eqs. (5), (12), and (13), one finds

ζ
d
dζ

~Ci→j ¼ −Di ~Ci→j

μ2
d
dμ2

~Ci→j ¼ ~Ci→k ⊗ Ki
k→j; ð14Þ

where the convolution is understood in the Bjorken variable
z and

Ki
k→jðzÞ ¼

δkj
2
ðΓi

cusplζ − γiVÞδðz̄Þ −
Pk→jðzÞ

z2
: ð15Þ

The function Pi→jðzÞ is the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) kernel for the integrated FF at
NNLO (see, e.g., Refs. [34–36]).
The evolution equations allow one to write the Wilson

coefficient in a more compact form:

~Ci→j ¼ exp½−DiL ffiffi
ζ

p � ~Ci→j: ð16Þ

The most general structure of ~Cij of the nth perturbative
order is

~C½n�ij ¼
X2n
k¼0

~Cðn;kÞij Lk
μ: ð17Þ

The coefficients ~Cðn;kÞ are related by the recursive relation

ðkþ 1Þ ~Cðn;kþ1Þ
i→j ¼

Xn
r¼1

Γ½r�
cusp

2
~Cðn−r;k−1Þi→j

−
γi½r�V − 2ðn − rÞβ½r�

2
~Cðn−r;kÞi→j

− ~Cðn−r;kÞi→k ⊗
P½r�

k→j

z2
: ð18Þ

Thus, given the expressions for the anomalous dimensions
one needs only the boundary coefficients ~Cðn;0Þ in order to
reproduce the complete expression for the matching coef-
ficient. In our calculation we evaluate the complete loga-
rithmical structure of the TMDFF and explicitly confirm
the relations in Eqs. (16) and (18), thus providing a strong
check for the whole calculation.

VI. RESULTS

For completeness we present LO and NLO expressions
for boundary conditions. They are

~Cð0;0Þq→q ¼ δðz̄Þ;
~Cð1;0Þq→q ¼ CF

z2

�
ð4pðzÞ ln zþ 2z̄Þþ þ δðz̄Þ

�
6 −

3

2
π2
��

;

ð19Þ

where pðzÞ ¼ 1þz2
1−z . The corresponding quark-antiquark

coefficients are zero.
The NNLO coefficient can be decomposed as

~Cð2;0Þq→qðzÞ ¼ C2
FQFðzÞ þ CFCAQAðzÞ þ CFTRNfQNðzÞ;

~Cð2;0Þq→q̄ðzÞ ¼ CF

�
CF −

CA

2

�
Qqq̄ðzÞ: ð20Þ

Then the functions Qi are
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QFðzÞ ¼
1

z2

	
pðzÞ

�
104Li3ðzÞ − 4Li3ðz̄Þ þ 4 ln z̄Li2ðz̄Þ þ 48 ln zLi2ðz̄Þ − 2ln2z̄ ln zþ 82 ln z̄ln2z − 24ln3z

þ 39

2
ln2z −

�
8þ 44π2

3

�
ln z − 104ζ3

�
þ z̄

�
−24Li2ðz̄Þ þ 4 ln z ln z̄þ 42 −

π2

3

�
þ 9ð1þ zÞln3z

þ 25

2
ð−3þ zÞln2zþ ð−22þ 62zÞ ln zþ 2 ln z̄



þ
þ δðz̄Þ

�
−
13

8
−
55π2

3
− 12ζ3 þ

1037π4

360

�
; ð21Þ

QAðzÞ ¼
1

z2

	
pðzÞ

�
12Li3ðzÞ þ 4Li3ðz̄Þ − 4 ln

�
z̄
z2

�
Li2ðz̄Þ þ 3ln3zþ 4 ln z̄ln2z

−
11

6
ln2zþ 10ð7 − π2Þ

3
ln zþ 2ζ3 −

404

27

�
þ z̄

�
4Li2ðz̄Þ −

π2

3
þ 44

3

�

þ ð8þ 2zÞln2z − 2 ln z̄þ
�
116

3
−
74z
3

�
ln z



þ
þ δðz̄Þ

�
6353

81
−
443π2

36
−
278

9
ζ3 þ

91π4

90

�
; ð22Þ

QNðzÞ ¼
1

z2

��
2

3
ln2z −

20

3
ln zþ 112

27

�
pðzÞ − 16

3
z̄ ln z −

4

3
z̄

�
þ
þ δðz̄Þ

�
−
2717

162
þ 25π2

9
þ 52

9
ζ3

�
; ð23Þ

Qqq̄ðzÞ ¼
1

z2

	
pð−zÞ

�
8Li3ð−zÞ þ 16Li3ðzÞ − 16Li3

�
1

1þ z

�
þ 8 ln zðLi2ð−zÞ − Li2ðzÞÞ − 6ln3zþ 8

3
ln3ð1þ zÞ

þ 12ln2z lnð1þ zÞ − 4π2

3
lnð1þ zÞ þ 4ζ3

�
− 8z̄Li2ðz̄Þ þ 8ð1þ zÞ

�
Li2ð−zÞ þ ln z lnð1þ zÞ þ π2

12

�

− 8ð2þ zÞln2zþ ð−38þ 10zÞ ln z − 30z̄



þ
þ δðz̄Þ

�
187

4
− 6π2 − 30ζ3 þ

31π4

45

�
: ð24Þ

For the two-loop singlet part we obtain

~Cð2;0Þqi→qj ¼ CFTRNf

�
8Li2ðz̄Þ
3z3

ð2ð1 − z3Þ − 3zz̄Þ þ 22ð1þ zÞln3z
3z2

þ
�
32

3
− 8z3 − 11zð1þ zÞ

�
ln2z
z3

þ 4 ln z
9z3

ð12 − 174z − 51z2 − 32z3Þ þ 2

27z3
ð−148 − 711zþ 423z2 þ 436z3Þ

�
: ð25Þ

These expressions represent the main result of this article.

VII. CONCLUSIONS

TMDs are defined as the product in coordinate space of the
collinear matrix element and the square root of the soft
function. In this paper we provide the explicit check of this
statement for the first time at NNLO, for the quark TMDFF.
The calculation (performed within standard QCD and in
Feynman gauge) includes the independent computation of
the soft function and the collinear matrix element, and their
subsequent recombination into a well-defined TMD. We
have reformulated the IR and rapidity regularization of
Ref. [5] in order to extend the definition of an individual
TMD to multiloop level. We obtain the complete analytical
expression for the TMDFF, and comprehensively investigate
the structure of soft/rapidity singularities and their cancella-
tion. The cancellation of singularities provides a strong check
of the final result. As a further check we find a complete
agreement between the logarithmical part of the final result
and theknownpredictions of renormalizationgroup.The soft

factor that has been evaluated in this work is universal and
spin independent, and thus can be used for the calculation of
all TMDs at NNLO. Finally, the calculation of the TMDFF
performed in this work allows us to extract the relevant
perturbative matching coefficient at NNLO, necessary to
perform the resummation of large logarithms at next-to-next-
to-next-to-leading-logarithmic, pushing the phenomenology
a step forward. The applied method can be readily used to
obtain other relevant perturbative ingredients. The detailed
report, including the other flavor parton contributions, the
explicit expressions, as well as the description of the
calculation, will be given in a separate publication [27].
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