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a dynamic programming approach

Maria Luisa Calvo

Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid, Spain

Vasudevan Lakshminarayanan

School of Optometry and Department of Physics and Astronomy, University of Missouri–St. Louis,
8001 Natural Bridge Road, St. Louis, Missouri 63121-4499

Received February 22, 1996; revised manuscript received October 23, 1996; accepted November 19, 1996

We apply techniques of optimal-control theory, namely, the methods of dynamic programming, to the problem
of light propagation in optical waveguides. This formulation is equivalent to the resolution of an eikonal
equation. We illustrate this optimization technique for the case of an ideal parabolic refractive-index-profile
distribution. We discuss the possibility of extending this procedure to other types of optical waveguides and
optical media. © 1997 Optical Society of America [S0740-3232(97)00105-1]
1. INTRODUCTION
The use of optimization techniques to describe light
propagation phenomena through optical media with dif-
ferent optical properties and geometry is at present a
relatively new area of investigation. This methodology
concerns optimized design of arbitrary optical media for
which an a priori characterization of significant param-
eters would be required. The problem of characterizing
the output of a system from partial input data is defined
as a control theoretical problem. To the best of our
knowledge, this approach has not been used to study light
propagation. (Other relevant applications include opti-
cal system design, laser cavities, laser beam modification,
minimizing of geometrical aberrations, etc.)
Currently, optimization techniques applied to wave-

guide design are based on variational analysis related to
the Sturm–Liouville theory and the Rayleigh–Ritz
method.1 Recently, for example, Sharma and Bindal ap-
plied such a technique to optimize diffuse planar and
channel waveguides.2 Another approach that consider-
ably simplifies this analysis is the well-known ray-tracing
technique.3 Ray trajectories are solutions from the eiko-
nal approach to the partial differential equation for the
electromagnetic field propagating inside an optical me-
dium. This technique has the restrictions inherent in
the integration conditions of the ray-path integral and in
the required initial ray conditions. Also, an inverse pro-
cedure is not always applicable, for obvious reasons. One
of the main problems in optimizing the ray-trajectory so-
lution is the application of optimal interpolant proce-
dures. This usually requires the implementation of com-
putational methods, such as the Runge–Kutta, with the
cost of the time and design of complex computational
techniques.4,5 The search for new simplified techniques
requires a comparison between light propagation phe-
nomena in inhomogeneous media and mechanical models.
In this type of treatment the dynamic properties of refrac-
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tive phenomena are given in terms of two Hamiltonian
equations. The solutions give both the vector position
and the tangent to the trajectory.6 It should be noted
that equivalent Lagrangian formulations for studying ray
paths in cylindrically symmetric media have been pro-
posed and have been applied to obtain exact ray paths in
bent slabs as well as in bent fibers with separable
profiles.7

Ghatak and Sauter8,9 have discussed the harmonic-
oscillator problem in the domains of classical and quan-
tum mechanics and the parabolic-index optical-waveguide
problem in the domains of ray and wave optics, using a
Lagrangian formulation. They showed that the time evo-
lution of a coherent state has a close relationship to the
propagation of a Gaussian beam in a parabolic-index
waveguide. With the aim of finding simple alternative
models, we have applied the method of dynamic program-
ming to light propagation in inhomogeneous media.
There is a former contribution to this idea in the earlier
paper of Kalaba,10 where it was demonstrated that the ei-
konal equation may be derived directly from Fermat’s
principle of least time by using Bellman’s principle of
optimality.11,12 In the present paper we analyze the pro-
cedure and extend it to inhomogeneous media with arbi-
trary refractive-index distribution.
The paper is organized as follows: Section 2 presents

background with the fundamentals of the adaptive-
control process. In Section 3 we revisit the dynamic-
programming approach to optical systems and demon-
strate that the eikonal solution is a Hamilton–Jacobi-type
equation. Specific solutions derive from the Euler–
Lagrange formulation, which is obtained from initial con-
ditions imposed on the system. Section 4 is dedicated to
application of these results to homogeneous optical media
and Section 5 to general cases of gradient-index optical
waveguides. In Section 6 we analyze the case of a para-
bolic profile and present some numerical results. We
1997 Optical Society of America
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compare the results for the ray transit time with those
predicted by the geometrical optics approximation. Fi-
nally, Section 7 consists of discussion and conclusions re-
sulting from the various methods.

2. HISTORICAL BACKGROUND:
FUNDAMENTALS OF THE MATHEMATICAL
THEORY OF THE ADAPTIVE-CONTROL
PROCESS
The mathematical theory of the adaptive-control process
was first introduced by Bellman in 1957.11 Later, Bell-
man and Kalaba13 and Dreyfus,14 as well as Bellman and
Vasudevan15 and others,16 extended the applications to a
wide variety of problems in physics, chemistry, and biol-
ogy as well as in engineering, economics, and manage-
ment science. In brief, control theory determines the be-
havior of arbitrary systems through optimized output
responses, Fout . Consider an arbitrary system repre-
sented by the action of an operator S (linear or nonlin-
ear); then Fout 5 S@F in#, where F in is any arbitrary input.
More-sophisticated representations are also feasible by
introduction of a higher number of inputs interacting
with diverse categories of systems and networks (a mul-
tistage control process).
In general, the mathematical framework used to solve

a control process deals with the minimization of a qua-
dratic functional17 of the form

J~u, v ! 5 ET

dt@u2~t ! 1 v2~t !#, (1)

where u(t) and v(t) have a ligature and T is an arbitrary
time interval. In this case u(t) and v(t) might, for ex-
ample, be related by a linear differential equation of the
form

du
dt

5 au 1 v, (2)

with the initial condition u(0) 5 C (C arbitrary
constant).
This class of quadratic nonlinear functional is charac-

teristic of equations derived by invariant imbedding
techniques.17 Let us assume a system S having a certain
state at any time t. The description of this state is a first
global constraint, u 5 u(t), whose solution is determined
by an initial condition. u(t) is a scalar function whose
physical meaning is a displacement. Its first derivative,
u8 5 du/dt, has dimensions of velocity. In this way, one
can determine other global constraints such as the accel-
eration or maybe other higher-order derivatives, by for-
mulating a nonlinear differential equation (at least of the
second degree):

u9 1 u8 1 u 5 g~u, u8!. (3)

In Eq. (3) the initial conditions are u(0) 5 c1 and u8(0)
5 c2; c1 ,c2 constants.
One may search for an explicit solution for g(u, u8) by

minimizing the quadratic functional:
J~u, u8! 5 ET

~u2 1 u82!dt. (4)

In the simplest case, the description of the system is with
one single-state variable, the displacement u(t), and the
specific problem will be the minimization of the functional
together with the initial condition u(0) 5 c1. The solu-
tion is not always a trivial one. The most common and
well-known methods are those based on linear partial dif-
ferential equations and the calculus of variations.18,19

For example, a formal method would be through the Eu-
ler equation, and the uniqueness of the solution as a de-
sired minimum has to be proven. A different approach to
solving the functional is based on the theory of dynamic
programming, defined as an extension of the feedback-
control process.10 The formalism of dynamic program-
ming requires the definition of a minimum pathway. Di-
rect application of Fermat’s principle leads to the classical
problem of solving an eikonal equation. Figure 1 dis-
plays the interrelationships schematically.
We now introduce the idea of ‘‘bang-bang’’ control. In

bang-bang control theory the initial condition assigns
bounded values to the origin of the trajectory (they are
discrete and can be either positive or negative). Minimi-
zation of time is ensured by performing first an accelera-
tion from the initial point up to an intermediate one and
then a deceleration from this intermediate point up to the
last position. For light propagation phenomena this pro-
cedure has no specific physical meaning, and one assumes
only that it ensures a defined behavior for the slope, e.g.,
linear concerning the trajectory. We refer the readers to
the many excellent texts on dynamic programming and
adaptive-control process listed in the references for fur-
ther details.

Fig. 1. Schematic diagram showing the connection between dy-
namic programming and optimized trajectory (time minimiza-
tion) for light propagating in an arbitrary optical medium.
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3. DYNAMIC PROGRAMMING
REVISITED: GENERAL DESCRIPTION
AND FORMULATION OF THE PROBLEM
IN OPTICAL SYSTEMS
Let us consider Fig. 2(a). The graph z 5 z(x) represents
an arbitrary path for light propagating from point P(x, y)
to point P0(x0 , y0). We have to search for an optimal
path minimizing the time associated with the trajectory
PP0. The bang-bang control process needs a control
strategy; one has to search for specific values of the slope
of the trajectory dz/dx and look for the most efficient pro-
cedure. In this fashion the half-trajectory PQ is recov-
ered with constant time h, whereas path QP0 has associ-
ated with it a variable time t and therefore an arbitrary
speed. We shall formulate the problem in one dimension
for simplicity. The optical medium has refractive-index
distribution n 5 n(x). The speed of light associated
with any point P(x, z) inside the medium is

v@x~z !# 5
c

n@x~z !#
, (5)

where c is the speed of light in vacuum.
We define the minimum time required to optimize the

trajectory PQP0. The first policy is to establish an initial
decision on the value of the slope trajectory, tan u.
Following Kalaba’s formulation,10–12 for the first policy

to hold the half-trajectory, QP0 may have an associated
minimum time t (optimized):

t~x, z ! 5 u
min$h 1 t@x 1 e~x, z !cos u, z 1 e~x, z !

3 sin u#% 1 O~h2!. (6)

In Eq. (6) the trajectory e(x, z) 5 v(x, z)h represents the
variable path associated with QP0 and may be a mini-
mum. O(h2) is the contribution of powers of h @ 1.
The term between curly brackets is the minimum time re-
quired for the trajectory PP0 to be an optimal process.
Applying Taylor’s formula in Eq. (6) and after simplifi-

cation, we obtain

u
min$h 1 e~x, z !@tx cos u 1 tz sin u#% 1 O~h2! 5 0,

(7)

where tx 5 ]t/]x, tz 5 ]t/]z. As a first approximation,
the second derivatives ]2t/]x2, ]2t/]z2 in Eq. (7) are ne-
glected if the time of the trajectory has a linear depen-
dence on the ray trajectory.
Dividing in Eq. (7) by h and taking the limit as

h → 0, we get

u
min$tx cos u 1 tz sin u% 5 2

1
v~x, z !

. (8)

Equation (8) represents an eikonal equation. It is re-
lated to the general formulation of Maxwell’s theorem for
absolute instruments.20 The solution t(x, z) associates a
general path with an integral. The kernel is a function
that depends on the vector position of a point (x, z) on the
ray trajectory and its first derivatives, dx/ds and dz/ds,
with respect to s. Here s is the distance along the ray
path. This statement implies that Eq. (8) has a unique
solution that is a true minimum as shown by Caratheodo-
ry’s theorem.21
Differentiating in Eq. (8) with respect to u gives

tan u 5
~]t/]x !

~]t/]z !
. (9)

Equation (9) represents the slope minimizing the path-
way PP0. For time t a constant in the z direction, the
pathway is orthogonal to the ray trajectory coinciding
with the wave front generating at P0 ; and for time t a
constant in the x direction, the pathway follows the ray
trajectory.
The condition for the slope to be a minimum is that u

also be a minimum. Rearranging Eq. (9) and according
to Eq. (8), we obtain

S ]t

]x D
2

1 S ]t

]z D
2

5
n2~x, z !

c2
5

1

v2~x, z !
, (10)

with v(x, z) the speed of light propagating in a medium
with refractive index n(x, z) (Ref. 22).
Equation (10) is the key equation that relates the tran-

sit time t to the index distribution n(x, z). It is a
Hamilton–Jacobi equation in two (or more) variables. In
general, it has no explicit known rigorous solution. The
solution depends on the optical properties of the medium
under study. Solutions of the form t 5 t(x, z) are
known as geometrical time surfaces or geometrical time

Fig. 2. (a) Introduction to the problem: choosing an arbitrary
trajectory z 5 z(x) (z axis, longitudinal direction; x axis, trans-
verse direction) as an arbitrary path for light propagating from
an initial point P(x, z) (initial time t 5 0) to a final point
P0(x0 , z0). The slope tan u is determined. (b) Contour S8 de-
fines an external region with surface S2 , where there is propaga-
tion of light and n2(x) . 0. Contour S defines an internal re-
gion with surface S1 , where also n

2(x) . 0. ū is a unit vector
normal to S. For the line contour S8, n2(x) 5 0; outside this re-
gion, n2(x) , 0 and Eq. (10) loses the meaning of a real transit-
time equation.
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trajectories. Their counterparts are the geometrical
wave fronts from the eikonal equation.23

The following additional condition also holds:

F S ]e
]x D

2

1 S ]e
]z D

2G 1 F e~x, z !

v~x, z !G
2F S ]v

]x D
2

1 S ]v
]z D

2G
2 2F e~x, z !

v~x, z !GF S ]e
]x D S ]v

]x D 1 S ]e
]z D S ]v

]z D G 5 1. (11)

It is easy to check that Eq. (11) is analogous to Eq. (10),
expressing the eikonal equation in terms of the spatial
variables e and v. After some convenient operations (see
Appendix A) it also reads

F ]

]x S ln e

e0

v0

v D G2 1 F ]

]z S ln e

e0

v0

v D G2 5
1

e2
, (12)

where e0 is a constant initial path having a constant ini-
tial velocity v0 for certain given initial coordinates, x
5 xi , z 5 zi . Equation (12) is a nonlinear partial dif-
ferential equation whose solutions are not trivial, because
to be trivial it would require additional conditions for
(e/v). For example, assuming (e/v) independent of one
of the two variables, say, (]/]z)(ln e/v) ' 0 or (e/v) de-
pending only on Ax2 1 z2, which is the case of a medium
with spherical symmetry, Eq. (12) simplifies to the one-
dimensional case that has analytical solutions. Notice
that there is an equivalent equation in quantum mechan-
ics with approximate solutions obtained by applying per-
turbative methods. This is the case of a classical Hamil-
tonian in two dimensions, the so-called Toda’s potential or
Toda lattice,24–25 for which the equivalent of Eq. (12) has
an explicit solution. The latter is expressed as a sum of
exponential functions with exponents having linear de-
pendence on x and z variables. At present there is no
evidence, nor available data in the literature, of optical
media having such a similar refractive-index distribution.
Nevertheless, establishing the correspondence between
quantic potential V and electromagnetic dielectric perme-
ability e, interesting similarities appear between Toda’s
potential and Luneburg’s lens,26 in which the source is
placed at the surface of the unit sphere and the focus at
infinity. This lens is well known in microwave optics ap-
plications as a generator of parallel rays from a virtual
point source.27 It should be noted that Luneburg’s lens is
a generalization of Maxwell’s ‘‘fish-eye’’ absolute instru-
ment. Summarizing the above calculations, it seems
more suitable, at least in the present study, to formulate
the solution of the trajectory for the time variable t(x, z)
as given in Eq. (10), since application of Liouville’s theo-
rem ensures integrability of the equation.28

Let us assume that the optical medium has a defined
geometry and is finite (at least in one of the two dimen-
sions, 2x0 < x < 1 x0) and that the refractive index has
bounded values, ncl < n(x) < n0. For Eq. (10) to have a
complete solution, we have to introduce the boundary con-
ditions. Equation (10) has a physical meaning only if
n2(x) . 0. Nevertheless, if the medium has a defined
geometry and is finite, as in the case of an optical wave-
guide, there can be a contour S8 limiting the region where
light propagates for which n2(x) 5 0. In the classical ex-
ample that we are giving, this is the condition for the
presence of an evanescent wave. Outside this region,
n2(x) , 0, and Eq. (10) loses the physical meaning of real
transit-time solutions for geometrical ray trajectories.
Figure 2(b) describes two physically interesting types of
boundary S and S8. By assumption, S corresponds to the
possibility that n2 has a finite discontinuity across it, so
that we have two regions, S1 and S2, on both sides of
S: in both S1 and S2, n

2 . 0. For points on line S8,
n2(x) 5 0; outside S8, n2(x) , 0.
Let us discuss the boundary conditions for contour S.

At the surface of discontinuity one has to consider inci-
dent and reflected waves, to be matched by the refracted
wave (the law of reflection and Snell’s law have to hold).
In terms of the ray transit time, we have on S

t in 5 tref 5 ttrans , (13a)

where t in is the ray transit time associated with the inci-
dent ray and tref and ttrans are the transit times for the
reflected and the transmitted rays, respectively. One
should interpret that the physical meaning of the condi-
tion in Eq. (13a) is the conservation of the eikonal phase
at the surface of discontinuity.
The boundary condition for contour S8 can be deduced

by applying Eq. (10) to this discontinuity surface so that

S ]t
]x D

2

1 S ]t
]z D

2

5 0. (13b)

One possible solution to Eq. (13b) is that (]t/]x)2

5 (]t/]z)2 5 0, with t 5 0, so that at the external sur-
face of discontinuity the transit time becomes zero. No-
tice that there is another solution, (]t/]x)2 1 (]t/]z)2

5 0, for which the ray transit time becomes imaginary.
At this point one has to recall that there is a ray-optical
formalism for which the eikonal solution can be complex.
This is called Felsen’s general complex solution and in-
cludes the evanescent wave in the general solution.29

This leads to a general eikonal equation,

F S ]t ~r !

]x
D2 1 S ]t ~r !

]z
D2G 2 F S ]t ~i !

]x
D2 1 S ]t ~i !

]z
D2G 5

n2~x, z !

c2
,

(13c)

where t (r) and t (i) are the real and the imaginary parts of
the ray transit time, respectively. Equation (13c) can be
interpreted in the sense of the so-called homogeneous
waves, where equiphase surfaces and equiphase contours
can be defined.30

Also, if x 5 x0, dx/dz 5 0, as x 5 x(z) would be a con-
stant. This represents a constraint or function of the po-
sition. Then

]t
]x U

x 5 x0

5
n~x0!

c
. (13d)

Note that a more general constraint could be r 5 r(z),
with r 5 Ax2 1 y2, which should require the formulation
of the boundary conditions in cylindrical coordinates. In
the next section we shall prove that n(x0) coincides with
the ray-invariant parameter, with x0 the turning point
defined in ray trajectories in a gradient-index optical
waveguide.
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4. HOMOGENEOUS MEDIA
Consider the simplest case of a homogeneous planar opti-
cal waveguide with refractive index n0 defined in the x re-
gion, transverse to the longitudinal axis of the waveguide
z. Then Eq. (10) simplifies to

S ]t

]x D
2

1 S ]t

]z D
2

5
1

v2
, (14)

with v 5 c/n0 a constant value, n0 the constant refractive
index of the medium, and c the speed of light.
The solution of Eq. (14) is the simplest one for a partial

differential equation of hyperbolic type.31 Since in the x
direction the time is a constant, ]t/]x 5 0, then in Eq.
(14) the characteristics are straight lines:

t 2 ~z/v ! 5 j, (15a)

t 1 ~z/v ! 5 h, (15b)

with j and h constants. Equations (15a) and (15b)
amount to global constraints for the system (defining a
family of lines or linear trajectories).
We emphasize this idea with the notation

t → t 6 ~z/v !. (16)

Also, we note that Eqs. (15a) and (15b) represent Fer-
mat’s principle:

tmin 5 6E
zmin

~1/v !dz, (17)

with the initial condition t(z, 0) 5 0.
Let us recall here the transit time for the ray trajectory

in a homogeneous planar, or slab, waveguide, as predicted
by the geometrical optics approximation32:

t 5 S n0

c D S 1
cos uz

D E
zmin

dz, (18)

with 0 < uz(z) < uC , and uC the complementary of the
critical angle. An initial condition over the slope is u(z)
5 u(z0), z0 constant. The initial strategy in this case re-
duces to selection of the critical angle. Two main param-
eters are introduced in the process of searching for a
minimum pathway: (1) angle u between the trajectory
and the axial direction and (2) longitudinal variable z.
The slope of the trajectory as defined in Eq. (9) is also a
constant. The initial global constraint is x 5 z0 tan u.

5. GRADIENT-INDEX OPTICAL
WAVEGUIDES
Consider an arbitrary gradient-profile planar waveguide
with refractive-index distribution following a p law:

n2~x ! 5 n0
2@1 2 2D~x/r!p#, (19)

with p > 1, D the height of the profile, r the half-width of
the waveguide, and n0 the refractive index of the core.
In this case Eq. (10) reads

S ]t

]x D
2

1 S ]t

]z D
2

5
n2~x !

c2
5

1

v2~x !
, (20)

with n(x) following the law defined in Eq. (19).
Equation (20) is the equation of the characteristics for
the optimized time of the trajectory. It depends on the
variable x (cross section) and the z longitudinal direction
of the waveguide. The type of solution depends on the
value of p.
Operating on Eq. (20) and taking into account the con-

straints on the system, we arrive at

dt

dx
5 6S 1c D n~x !

@1 1 z82#1/2
z8, (21)

with z8 5 dz/dx the slope of the trajectory, z 5 z(x).
This global constraint represents a one-dimensional
policy since we are defining z with a single variable. One
has to evaluate z 5 z(x) for each particular trajectory,
say, for each particular medium. Intuitively, function z
5 z(x) defines the ray trajectory as defined by the geo-
metrical optics approximation. The correct formulation
provides identical results.
Let us analyze Eq. (21). The Euler–Lagrange equa-

tion becomes, in this case,

d2t

dx2
5 S 1c D d

dx F n~x !

~1 1 z82!1/2
z8G 5 0, (22)

which implies that

n~x !

~1 1 z82!1/2
z8 5 c1 , (23)

with c1 a constant. Then Eq. (23) is

z~x ! 5 c1E 1

@n2~x ! 2 c1
2#1/2

dx. (24)

Equation (24) coincides with the ray-path parameter
characterizing ray propagation in graded-profile
waveguides with the condition

c1 5 b̄. (25)

In Eq. (25), b̄ is the ray-invariant or ray-constant
parameter.33 Equation (24) defines the slope of the tra-
jectory z8. Defining the first strategy as z 5 z(x) (and
z8), we can reasonably start from Eq. (22) to obtain ana-
lytical and numerical solutions for the minimization of
the quadratic functional. The Euler equation [Eq. (22)]
together with the boundary condition [Eq. (25)] assigns a
unique solution that gives the absolute minimum of the
quadratic functional. The procedure is a variational
technique, e.g., the Rayleigh–Ritz method.34

The time minimizing the longitudinal trajectory for the
light inside the waveguide is

t~z ! 5 t8~zp! 1
1

c
E n~z !

~1 1 z82!1/2
dz. (26)

Notice that in Eq. (26) we are integrating over the vari-
able trajectory x 5 x(z) and that the constant of integra-
tion t8(zp) is an initial condition (e.g., the value for
dt/dz is zero) and holds for z 5 zp . For example, for
symmetrical profiles, zp represents the half-period (longi-
tudinal section) of the trajectory between two turning
points. This is not a restrictive condition, since for asym-
metrical profiles one could apply the appropriate initial
condition for an entire period. The first property to be
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checked for the integrability of Eq. (26) is that the conver-
gence of the solution be ensured. This will depend on the
form of n(z) and the behavior of z8. Similarly, for the x
direction,

t~x ! 5
1
c E x

L~x, u !dx, (27)

with

L~x, u ! 5
n~x !

@1 1 u2~x !#1/2
, (28)

where u(x) 5 1/z8. u(x) has to be a continuous function
with continuous first derivative u8(x). We notice that
L(u, x) is a nonlinear differential operator. It has the
physical meaning of a differential pathway. Also, the
condition u(xtp) 5 0 holds (it is not necessarily a bound-
ary condition). The point xtp is similar to the turning
point in the x 5 x(z) trajectory. Explicit integration of
Eq. (27) depends on a law-clad profile. For example, for
p . 2, Eq. (27) could diverge, and one would need to ad-
just the physical parameters of the waveguide.
Equation (27) is one of the forms of the so-called prob-

lem of Mayer35 commonly found in terminal control prob-
lems. In the present study, t(x) is, moreover, a solution
with fixed end points (defining the dimensions of the
waveguide); it has approximate analytical or numerical
solutions.

6. PARABOLIC PROFILE AND NUMERICAL
RESULTS
Assume that p 5 2 in Eq. (19). Then Eq. (24) has an im-
mediate analytical solution:

z~x ! 5 S b̄r

n0A2D
D arcsinS x

xtp
D , (29)

with slope

z8~x ! 5
A2b̄r

2n0xtpAD@1 2 ~x/xtp!2#
. (30)

Similarly, Eq. (29) determines x 5 x(z) and u 5 u(x).
Figure 3 shows the refractive-index-profile distribution

in the X–Z plane representing n@x, x(z)# 5 n(x)n@x(z)#
for the following physical parameters: r 5 3 mm, D
5 0.00783, n0 5 1.527. To assign a numerical value to
b̄, one should take into account Eq. (25). Since b̄ repre-
sents the ray-invariant parameter, as defined in the geo-
metrical optics approximation, it has to obey 1.50 < b̄
< 1.527, where 1.50 is the refractive index of the clad-
ding and 1.527 the refractive index of the core. We have
considered b̄ 5 n(xtp) 5 1.515 in the present study.36

For these values, xtp 5 3 mm and zp 5 74.73 mm. Fig-
ure 4 displays a three-dimensional plot of the trajectories
z 5 z(x) and x 5 x(z) as given in Eqs. (24) and (25). By
representing both functions simultaneously, one appreci-
ates a complete description of the spatial ray geometry.
Similarly, Fig. 5 gives the shape of the slope of the trajec-
tory, z8 5 z8(x, z) [see Eq. (30)], showing the constant be-
havior in the z direction as expected.
Considering z 5 z(x) as the initial policy and z8 as the
global constraint, one can determine numerically the op-
timized time t(z) and t(x).
The results for the time t(z) with the above physical

parameters are shown in Fig. 6(a). This function fits a

Fig. 3. Refractive-index distribution n@x,x(z)# 5 n(x)n@x(z)#
in the X–Z plane for a planar optical waveguide with p 5 2 [see
Eq. (19)]. Physical parameters are n0 5 1.527, D 5 0.0078, r
5 3 mm. The refractive-index distribution is shown along both
the transverse and the longitudinal trajectories according to Eq.
(29). The sinusoidal dependence in the z direction can be seen.

Fig. 4. A three-dimensional plot of the two trajectories z(x) and
x(z) as given from Eqs. (24) and (25), giving a complete descrip-
tion of the spatial ray geometry. The vertical axis is in arbitrary
units. z ranges from 2 to 300 mm, and 22 < x < 12 (mm).
b̄ 5 1.151 is the ray-invariant parameter. See text for details.

Fig. 5. Slope of the trajectory displayed in Fig. 4, z8 5 dz/dx
showing, a gradient in the x direction and constant values in the
z direction.
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linear variation for points of the sinusoidal trajectory x
5 x(z). This result is comparable to the ray transit time
as predicted by the geometrical optics approximation,32

whose distribution is shown in Fig. 6(b). The correspond-
ing slope @]t(x, z)#/]z associated with t(z) is given in Fig.
7(a) for the actual trajectory x 5 x(z). The figure shows
the gradual change of the slope for different points of the
trajectory, exhibiting a skewlike variation. For the sake
of comparison, Fig. 7(b) displays the corresponding slope
associated with the ray transit time. The shape of these
two functions depends dramatically on the physical pa-
rameters of the waveguide, with special influence on zp
(the value for which the trajectory has zero slope). The
linear time distribution t(z) obtained through dynamic
programming appears to have a smaller slope than the
one corresponding to the transit time.

Fig. 6. (a) Linear dependence of the time of the trajectory t
5 t(z) as given by the application of dynamic programming [see
Eq. (26)] with x 5 x(z). For simplicity we consider c 5 1. (b)
Ray transit time as predicted by the geometrical optics approxi-
mation. The inverse of the local speed n(x)/c (c, free-space
speed of light) is integrated along the curved ray path x 5 x(z)
(c 5 1).
Similarly, Fig. 8 gives the variation of the t(x) function.
This exhibits linear dependence, as it does for t 5 t(z).
Here the slope @]t(x, z)#/]x coincides with the operator
L(x, u) as defined in Eq. (28). These results are pre-
sented in Fig. 9. The figure shows how the time compen-
sates across the transverse section of the waveguide. It
is equivalent to the optimum profile given by Snyder and
Love37 for the transit time or equalization. We notice
that the minimum value Lmin 5 L(0, u 5 const.) equals
the ray-invariant parameter b̄, as expected for an opti-
mized profile. It is remarkable that the interval
Lmax–Lmin 5 0.01181 (for b̄ 5 1.515) is small but suffi-
cient for estimating the pulse width: tmax 2 tmin 5 Dt.
The variation of the time compensation concerning b̄ for
the boundary points of the waveguide is negligible but be-
comes much more appreciable for points on the axis,
where the highest value is obtained for b̄ 5 1.50 (coincid-
ing with the refractive-index distribution of the cladding).

Fig. 7. (a) Slope associated with time t 5 t(z) as given by dy-
namic programming [see Fig. 6(a)]. (b) Slope of the ray transit
time as displayed in Fig. 6(b).
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Thus the maximum spreading of the pulse corresponds to
b̄ 5 ncl and the minimum to b̄ 5 n0. Nonetheless, the
differences are not dramatic, because we are considering
an optimum profile (p 5 2). As the treatment holds for
arbitrary n(x) distribution, it could be generalized to any
optical media, provided that the convergence of the solu-

Fig. 8. Time distribution across the transverse trajectory (cross
section of the waveguide) according to dynamic programming
[see Eqs. (27) and (28)].

Fig. 9. Slope of the time variation represented in Fig. 8, coin-
ciding with Eq. (28), the differential operator L(x, u). This fig-
ure indicates how the time compensates across the transverse
section of the waveguide. It is equivalent to the optimum profile
given by Snyder and Love37 for the transit time or equalization.
Minimum equalization corresponds to the waveguide axis (mini-
mum local speed). Maximum equalization corresponds to the
boundary of the guide (maximum local speed). We represent
L(x, u) for four values of b̄: (1) solid curve, b̄ 5 1.500; (2) dot-
ted curve, b̄ 5 1.510; (3) dashed curve, b̄ 5 1.515; (4) dashed–
dotted curve, b̄ 5 1.527. See text for details.
tion is ensured. The extension to arbitrary profile n
5 n(x, y) (two-dimensional problem) is also possible
with the restrictions mentioned above. As a proof of con-
sistency, one may check that with use of the numerical re-
sult for ]t/]x and ]t/]z together with the n(x) profile, Eq.
(20) holds. Evaluating thus one finds values of the order
of 2.29–2.33 for both sides of Eq. (20). The discrepancies
are due to computational round-off errors.

7. DISCUSSION AND CONCLUSIONS
Dynamic programming is a powerful technique for solving
optimization problems in many fields of science. The op-
timal procedure consists of introducing an initial condi-
tion that determines the final state of the system. In the
optical problem of defining minimum or optimized path-
ways (time minimization), dynamic programming pro-
vides immediate solutions in the form of equal-time sur-
faces, t 5 t(x, z) > const. Its physical meaning is that
of wave fronts generated at the initial point and zero time
(zero instant). These basic ideas were first noted by
Kalaba,10 who demonstrated that the mathematical pro-
cedure optimizing pathways under an initial slope of the
trajectory is equivalent to solving an eikonal-type equa-
tion.
The main result of this paper is the development of the

transit-time equation based on a dynamic-programming
approach in the problem of light propagation in arbitrary
optical media.
We have proven the simplicity of this technique by

studying various cases of waveguides that have gradient-
index profiles. The partial differential equation in terms
of ]t/]x and ]t/]z for arbitrary refractive-index distribu-
tion is a Hamilton–Jacobi type and has Euler–Lagrange
implicit solutions. It automatically gives the initial
policy—z 5 z(x), trajectory, and z8 5 dz/dx, slope—as
global constraints that determine the final state of the
system. The integral form of z(x) equals the one from
the eikonal equation, with the additional condition that
the constant of integration be the ray-invariant b̄. The
solutions for t 5 t(z) have behavior equivalent to the ray
transit time predicted by the geometrical optics approxi-
mation. The numerical estimates carried out demon-
strate this statement clearly. Moreover, the slope of the
trajectory t 5 t(x) has meaning similar to the optimum
profile distribution under the geometrical optics approxi-
mation. The slope represents the transit-time variation
with the ray invariant b̄. The results indicate that the
value of the differential operator L(x, u) at the origin
(axial direction) coincides with b̄ 5 1.151 (as in the
present study). This curve displays the time equaliza-
tion for specific trajectories and may be useful for design-
ing specific optical media. It also provides numerical val-
ues for the pulse spread. The inverse problem might be
analyzed—for example, searching for optimized optical
media (fastest propagation of the luminous signal with
the lowest distortion). Possible restrictions come from
the analytical behavior of the integrals, and one needs to
check the convergence of the solution. For example, we
analyzed additional results for the law-clad profile p
5 4 (not discussed here for brevity), obtaining divergence
for some values of the physical parameters. The method
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is applicable only in the context in which Fermat’s prin-
ciple holds. It appears to have an equivalence in quan-
tum mechanics. In this context, solutions of the
Hamilton–Jacobi-type equations are assured as per Liou-
ville’s theorem. Exact solutions are valuable only for
specific potentials (having approximately an equivalence
with the squared refractive-index distribution). These
aspects are now under investigation and will be presented
in forthcoming papers.

APPENDIX A
We look for a compact form of Eq. (11):

F S ]e
]x D

2

1 S ]e
]z D

2G 1 F e~x, z !

v~x, z !G
2F S ]v

]x D
2

1 S ]v
]z D

2G
2 2F e~x, z !

v~x, z !GF S ]e
]x D S ]v

]x D 1 S ]e
]z D S ]v

]z D G 5 1. (A1)

Dividing both sides of Eq. (A1) by 1/e2, we get

F S ] ln e

]x D 2 1 S ] ln e

]z D 2G 1 F S ] ln v

]x D 2 1 S ] ln v

]z D 2G
2 2F] ln e

]x
] ln v

]x
1

] ln e
]z

] ln v
]z G 5

1

e2
. (A2)

Applying relations of vectorial analysis Eq. (A2) produces

Ue ¹̄S ln e
v D U

2

5 1. (A3)

One can object that in Eq. (A3) e/v is not a dimensionless
quantity (since it is not mathematically correct to repre-
sent a logarithm with dimensions). To avoid this incon-
sistency we introduce constant values of e and v—ei and
vi—for certain given initial coordinates x 5 xi , z 5 zi ,
e0 5 e(xi , zi), v0 5 vi(xi , zi). The introduction of these
two constants does not alter Eq. (A3). Then

Ue ¹̄ lnS ee0 v0v D U2 5 1, (A4)

or

F ]

]x
lnS ee0 v0v D G2 1 F ]

]z
lnS ee0 v0v D G2 5

1

e2
, (A5)

which is the same as Eq. (12).
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