
On the Unification of Process Semantics: Observational
Semantics�

David de Frutos Escrig, Carlos Gregorio Rodrı́guez, and Miguel Palomino

Departamento de Sistemas Informáticos y Computación, UCM

Abstract. The complexity of parallel systems has produced a large collection
of semantics for processes. Van Glabbeek’s linear time-branching time spectrum
provides a classification of most of these semantics; however, no suitable uni-
fied definitions were available. We have discovered how to unify them, both in
an observational framework and in an equational framework. In this first part
of our study we present the observational semantics, that stresses the differences
between the simulation (branching) semantics and the extentional (linear) seman-
tics. As a result we rediscover the classification in van Glabbeek’s spectrum and
shed light on it, obtaining a framework where we can consider all the semantics
in the spectrum at the same time. Also, we have discovered some “lost links”
that correspond to semantics, possibly not too interesting (at the moment), that
provide a clearer picture of the spectrum.

1 Introduction

The complexity of parallel systems has given rise to a large collection of semantics
for processes, whose diversity is mainly due to the way in which non-determinism
is treated. Most of these semantics have been compiled into van Glabbeek’s linear-
time branching-time (ltbt) spectrum [6], where they are first presented along the lines
of their original definitions and are then characterized in three frameworks: obser-
vational/testing, logical, and by means of finite axiomatizations whenever possible.
However, even when presented in a common framework these definitions are hard to
compare with each other because the testing scenarios vary widely or the different sets
of axioms appear completely unrelated.

After several years studying process semantics searching for homogeneous presen-
tations we have discovered a way to unify them, both within an observational and an
equational framework. Here we focus on the observational semantics, according to
which we have classified the process semantics in four classes:

– bisimulation semantics, which is the only one that cannot be defined by means of a
non-trivial preorder;

– the simulation semantics (simulation, complete simulation, ready simulation, nested
simulation, . . .) characterized by means of branching observations, that is, labeled
trees;

� Research supported by the Spanish projects DESAFIOS TIN2006-15660-C02-02, WEST
TIN2006-15578-C02, and the Comunidad de Madrid project PROMESAS-CAM S-0505/
TIC/0407.

M. Nielsen et al. (Eds.): SOFSEM 2009, LNCS 5404, pp. 279–290, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

– the linear semantics (traces, failures, readiness, . . .), characterized by linear obser-
vations, a degenerated case of branching observations;

– the deterministic branching semantics corresponding to an intermediate class be-
tween branching and linear, where observations are deterministic trees. Possible
worlds semantics is the only semantics in the spectrum in this class.

Besides their linear or branching nature, semantics are characterized by a local ob-
servation function that generates the local observations of the states. For the linear case
there is also the possibility of observing this local information in a partial way and this
is how for each local observer, in principle, up to four different semantics can be ob-
tained. In particular, this gives rise to the classic diamond below the ready simulation
semantics formed by the failures, failure-traces, readiness, and ready-traces semantics.

Our uniform presentation of the process semantics will clarify the relations and hier-
archies among them; moreover, it will make generic proofs of their properties possible.
In particular, we have obtained a uniform presentation of their axiomatizations that we
study in detail in a second part to this paper [3]. The proofs of all results presented in
this paper, together with some additional material, can be found in the extended version
available at http://maude.sip.ucm.es/∼miguelpt/.

We are aware of the fact that there exists a very extensive literature on the field of se-
mantics for concurrency and, in particular, on the ltbt spectrum but, due to lack of space
we can only cite here some representative papers. Without any doubt [6], as commented
above, is the key work on the subject, and in fact our guiding motivation is to complete
it, providing a more uniform description of the ltbt spectrum; that work contains ref-
erences to all the original presentations of the semantics in the spectrum. There have
also been several efforts aimed at developing generic frameworks in which all those se-
mantics could be uniformly presented. Since we are specially interested in the relation
between the simulation (branching time) semantics and those based on decorated traces
(linear time), we recall here the recent work by Jacobs [5] where he develops trace
semantics in a coalgebraic framework, and that by Boreale and Gaducci [1], giving a
coinductive presentation of failures semantics.

2 Preliminaries

Although the main results in this paper are valid for infinite processes, to simplify the
presentation we will mainly consider finite processes generated by the basic process
algebra BCCSP.

Definition 1. Given a set of actions Act, the set BCCSP(Act) of processes is defined by
the following BNF-grammar:

p ::= 0 | ap | p + q

where a ∈ Act; 0 represents the process that performs no action; for every action in Act,
there is a prefix operator; and + is a choice operator.

The operational semantics for BCCSP terms is defined by

ap
a−→ p p

a−→ p′

p + q
a−→ p′

q
a−→ q′

p + q
a−→ q′

As usual, we write p
a−→ if there exists a process q such that p

a−→ q.

http://maude.sip.ucm.es/~miguelpt/

On the Unification of Process Semantics: Observational Semantics 281

Many different semantics for these non-deterministic processes have been defined
in the literature. The most important and popular semantics appear in van Glabbeek’s
spectrum [6]. One indirect way to capture any semantics is by means of the equivalence
relation induced by it: given a formal semantics [[·]]X , we say that processes p and q are
equivalent iff they have the same semantics, that is, p ≡X q ⇔ [[p]]X = [[q]]X . Also, these
semantics can be defined by means of adequate observational scenarios, or by logical
characterisations that introduce natural preorders �X whose kernels are the semantic
equivalences. For instance, we will write �RS for ready simulation, �F for failures, and
so on. We refer to [6] for the original definition and usual notation for all the semantics
in the ltbt spectrum that will be discussed throughout the paper.

Bisimilarity (denoted with ≡), the strongest of the semantics in the spectrum, can be
axiomatized by means of the four simple axioms

(B1) x + y 	 y + x (B3) x + x 	 x
(B2) (x + y)+ z 	 x +(y + z) (B4) x + 0 	 x

These axioms state that the choice operator is commutative, associative and idempotent,
having the empty process as identity element. These axioms also justify the use of
the notation ∑a ∑i api

a for processes, where the commutativity and associativity of the
choice operator is used to group together the summands whose initial action is a.

The initial offer of a process is the set I(p) = {a | a ∈ Act and p
a−→}. This is a

simple, but quite important observation function that plays a central role in the definition
of the most popular semantics in the linear time-branching time spectrum. We will also
denote by I the relation expressing the fact that two processes have the same initial
offer: pIq ⇔ I(p) = I(q).

Some of the semantics in the spectrum are constrained simulation semantics that can
be defined in a parameterized way.

Definition 2. Given a relation N over BCCSP processes, an N-constrained simulation
is a relation SN such that pSNq implies:

– For every a, if p
a−→ p′ there exists q′, q

a−→ q′ and p′SNq′, and
– pNq.

We say that process p is N-simulated by process q, or that q N-simulates p, written
p �NS q, whenever there exists an N-constrained simulation SN such that p SN q.

We have already studied the constrained simulation semantics in detail in [2], stressing
their general properties. In particular, the following constraints are considered: the uni-
versal relation U relating all processes, which gives rise to the simulation semantics;
the relation C, which holds for processes p and q when both, or none, are isomorphic
to 0, and that gives rise to the complete simulation semantics; I, which corresponds
to ready simulation; T , that relates processes with the same traces and corresponds to
trace simulation; S, the inverse of the simulation relation, whose associated constrained
simulation is the 2-nested simulation.

Besides the semantics in the spectrum, we are interested in a general study covering
any reasonable semantics coarser than bisimilarity. Since we will use preorders to char-
acterise these semantics we introduce the following definitions that state the desired
properties of those reasonable preorders.

282 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

Definition 3. A preorder relation � over processes is a behavior preorder if

– it is weaker than bisimilarity, i.e. p ≡B q ⇒ p � q, and
– it is a precongruence with respect to the prefix and choice operators, i.e. if p � q

then ap � aq and p + r � q + r.

If � is actually an equivalence, it is called behavior equivalence.

3 Branching General Observations

In order to characterize the simulation semantics in an extensional way we need local
and branching general observations.

Definition 4. The sets LN of local observations corresponding to each of the N-con-
strained simulations in the spectrum, and LN(p) of observations associated to a process
p, are defined as follows:

– Plain simulation: LU = {·}, LU(p) = ·.
– Ready simulation: LI = P(Act), LI(p) = I(p).
– Complete simulation: LC = Bool, LC(p) is true if p ≡ 0 and false otherwise.
– Trace simulation: LT = P(Act∗), LT (p) is T (p), the set of traces of p.
– 2-nested simulation: LS = {[[p]]S | p ∈ BCCSP}, LS(p) = [[p]]S.
– n-nested simulation: LS = {[[p]](n−1)S | p ∈ BCCSP}, LS(p) = [[p]](n−1)S, where

[[p]]kS denotes the k-nested simulation equivalence class of p.

Definition 5. 1. A branching general observation (bgo for short) of a process is a
finite, non-empty tree whose arcs are labeled with actions in Act and whose nodes
are labeled with local observations from LN, for N a constraint; the corresponding
set BGON is recursively defined as:

– 〈l, /0〉 ∈ BGON for l ∈ LN.
– 〈l,{(ai,bgoi) | i ∈ 1..n}〉 ∈ BGON for every n ∈ IN, ai ∈ Act and bgoi ∈ BGON.

2. The set BGON(p) of branching general observations of p corresponding to the
constraint N is

BGON(p) = {〈LN(p),S〉 | S ⊆ {(a,bgo) | bgo ∈ BGON(p′), p
a−→ p′}} .

3. We write p ≤b
N q if BGON(p) ⊆ BGON(q).

In Figure 1 some simple examples of bgo’s for N = I are shown. We have repre-
sented bgo1 as 〈{a},{(a,〈{b},{(b,〈{c}, /0〉)}〉),(a,〈{b},{(b,〈{d}, /0〉)}〉)}〉 and bgo2
as 〈{a},{(a,〈{b},{(b,〈{c}, /0〉),(b,〈{d}, /0〉)}〉)}〉. We use braces for the set of chil-
dren of a node, parentheses to represent a branch of the tree as a pair (initial arc, subtree
below), and angle brackets to represent each tree as a pair 〈root,children〉.
Example 1. For N = I, if x = b(c + d) and y = bc + bd, then for p = a(x + y) we have
bgok ∈ BGOI(p) for k ∈ {1,2,3}, where the bgo’s are depicted in Figure 2. It is easy to
check that all of them are also branching observations of q = a(x+ y)+ax. As a matter
of fact, we have BGOI(p) = BGOI(q). Note that in order to have bgo3 ∈ BGOI(p) we

On the Unification of Process Semantics: Observational Semantics 283

bgo1 bgo2

{a}
a
����

� a
����

�

{b}
b ��

{b}
b��

{c} {d}

{a}
a��

{b}
b
����

� b
����

�

{c} {d}

Fig. 1. Two branching observations

bgo1 bgo2 bgo3

{a} {a}
a��

{b}
b��

{c,d}
d

�����
�c

�����
�

/0 /0

{a}
a
����

� a
�����

�

{b}
b ��

{b}
b��

{c}
c ��

{c,d}
d��

/0 /0

Fig. 2. Three branching observations

need to consider two different observations of the process x + y, which is the only p′

such that a(x + y) a−→ p′.
By contrast, for p = a(bc + bd) and q = abc + abd, BGOI(q) �⊆ BGOI(p), since

for the branching observation bgo1 in Figure 1 we have bgo1 ∈ BGOI(q) and bgo1 �∈
BGOI(p). And also, we have BGOI(p) �⊆BGOI(q) since for bgo2 as in Figure 1 we have
bgo2 ∈ BGOI(p) but bgo2 /∈ BGOI(q). The key idea is that, following our definition of
bgo, we can include in a single bgo two separated computations but we cannot mix
two different ones, even if the labels both in their initial transitions and in the local
observations of the reached nodes were the same.

Let us also comment on the fact that in all five cases that we have considered in Def-
inition 4, the local observation functions LN define a representation of the equivalence
relation N used to define the constrained simulation relations. This means that we have
LN(p) = LN(q) ⇐⇒ p N q.

The fact that the observational semantics BGON(p) can be defined in a compositional
way will simplify the proofs of many of their properties.

Theorem 1. Let L be a function used as local observation function such that there exist
semantical functions +L : LN ×LN → LN and aL : LN → LN satisfying L(ap) = aLL(p)
and L(p + q) = L(p)+L L(q). Then:

– BGON(ap) = {〈aLL(p),{(a,bgo) | bgo ∈ B}〉 | B ⊆ BGON(p)}.
– BGON(p + q) = {〈L(p)+L L(q),S1 ∪S2〉 | 〈L(p),S1〉 ∈ BGON(p),

〈L(p),S2〉 ∈ BGON(q)}.

In particular, BGON(p) is compositional for our fundamental constraints.

284 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

Proposition 1. For all N ∈ {U, I,C,T,S}, LN can be defined in a compositional way
over the terms in BCCSP.

Now we show that bgo’s characterize N-simulation semantics in all cases.

Theorem 2. For all N ∈ {U, I,C,T,S} and any two processes p and q, p �NS q iff
p ≤b

N q.

In principle, any behavior preorder could be used as such a constraint N. For instance,
the predicate I⊆ defined by I⊆(p,q) iff I(q) ⊆ I(p). But from I(q) ⊆ I(p) we cannot
conclude that LN(p) = LN(q) and, hence, either a more complicated characterization of
�NS in terms of bgo’s or an additional argument to show that p�I⊆ q implies I(p)⊆ I(q)
would be needed: this is why it is always advisable to consider equivalence behaviors
as constraints.

Corollary 1. For any constraint N that is a behavior equivalence, whenever we have
as local observation function LN the quotient function LN(p) = [[p]]N or any con-
crete representation of it satisfying LN(p) = LN(q) ⇐⇒ N(p,q), then p �NS q iff
BGON(p) ⊆ BGON(q).

The results above bring forward the fact that despite the similarity between the bgo’s
of a process and its computation tree, the possibility of mixing several computations in
a single branching observation makes it possible to identify non-bisimilar processes by
their sets of branching observations.

4 Linear Observations and Linear Time Semantics

We introduce the linear observations of a process as a particular (degenerate) case of
branching observations: those with a linear structure.

Definition 6. 1. The set LGON of linear general observations (lgo for short) for a
local observer LN is the subset of BGON defined as:

– 〈l, /0〉 ∈ LGON for each l ∈ LN.
– 〈l,{(a, lgo)}〉, whenever a ∈ A and lgo ∈ LGON.

2. The set of linear general observations of a process p with respect to the local ob-
server LN is LGON(p) = BGON(p)∩LGON.

Since lgo’s are linear they can be presented as traces, avoiding the sets of descendants in
the general bgo’s. Therefore, we will consider them as elements of the set LN × (Act×
LN)∗.

It is also clear that the set of linear observations can be defined recursively without
resorting to branching observations.

Proposition 2. The set LGON(p) of linear general observations of a process p is re-
cursively defined by

LGON(p) ::= {〈LN(p)〉}∪{〈LN(p),a〉 ◦ lgo | p
a−→ p′, lgo ∈ LGON(p′)}

We can also compute LGON(p) in a compositional way.

On the Unification of Process Semantics: Observational Semantics 285

Proposition 3. Let L be a local observation function such that there exist semantical
functions +L : LN ×LN → LN and aL : LN → LN satisfying L(ap) = aLL(p) and L(p +
q) = L(p)+L L(q). Then:

– LGON(ap) = {〈aLL(p)〉}∪{〈aLL(p),a〉 ◦LGON(p)}.
– LGON(p + q) = {〈L(p)+L L(q)〉 ◦ t | 〈L(p)〉 ◦ t ∈ LGON(p) or

〈L(p)〉 ◦ t ∈ LGON(q)}.

Obviously, LGOU is isomorphic to Act∗ for N = U and, thus, LGOU(p) = Traces(p).
By contrast, for N = I, LGOI(p) is the set of ready traces of p, ReadyTraces(p).

Set inclusion of the sets of linear observations with respect to a local observer LN

gives us the preorder defining the corresponding semantics.

Definition 7. A process p is less than or equal to q with respect to the linear obser-
vations generated by LN, denoted p ≤l

N q if LGON(p) ⊆ LGON(q). We will denote the
corresponding equivalence by =l

N .

Proposition 4. (1) ≤l
U = �T ; (2) ≤l

I = �RT ; (3) ≤l
C = �CT .

Proposition 5. For all N ∈ {U,C, I,T,S}, if p �NS q then p ≤l
N q, but the converse may

not hold.

Therefore, by means of linear observations and set inclusion, we can characterize the
orders that define some of the semantics in the spectrum which are not simulation se-
mantics. However, there are still some other semantics for which a different way of
treating the linear observations is needed.

Definition 8. For T ,T ′ ⊆ LGOI we define the orders ≤l⊇
I , ≤l f

I , and ≤l f⊇
I by:

– T ≤l⊇
I T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ ∀i ∈ 0..n Xi ⊇ Yi.

– T ≤l f
I T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ Xn = Yn.

– T ≤l f⊇
I T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ Xn ⊇ Yn.

Then, we write p ≤lX
I q if LGOI(p) ≤lX

I LGOI(q).

Since the definition of ≤l f
I ignores all the intermediate ready sets Xi with i < n and

requires the final ready sets to coincide, it defines the readiness preorder. Let us now
prove that the two semantics based on failures are also characterized by our preorders
≤l f⊇

I and ≤l⊇
I .

Proposition 6. The preorder ≤l f⊇
I generates the failures preorder and ≤l⊇

I generates
the failures trace preorder.

As a matter of fact, the characterization of failures by means of the reverse inclusion of
offerings is not a great discovery at all, and the same idea can be found in the definition
of acceptance trees [4]. However, it is by means of our sets of linear observations that a
quite nice characterization is obtained so that we can forget about the notion of failures
and consider instead reverse inclusion of offerings. But the most important property of
our characterizations in terms of different orders on the set LGOI is that they can be
generalized to other local observation functions.

286 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

Definition 9. For T ,T ′ ⊆ LGON we define the orders ≤l⊇
N , ≤l f

N , and ≤l f⊇
N by:

– T ≤l⊇
N T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ ∀i ∈ 0..n Xi ⊇ Yi.

– T ≤l f
N T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ Xn = Yn.

– T ≤l f⊇
N T ′ ⇐⇒ ∀X0a1X1 . . .Xn ∈ T ∃Y0a1Y1 . . .Yn ∈ T ′ Xn ⊇ Yn.

Then, we write p ≤lX
N q if LGON(p) ≤lX

N LGON(q).

By abuse of notation, we have used the superset inclusion symbol ⊇ in the definitions
above for all N. That is the right interpretation for the cases N = I,T ; for N = U,C
the superset inclusions degenerate to equalities. For N = S, it should be interpreted
as [[p]]S ≥S [[q]]S. Then, it is easy to see that we could have used such an inequality
[[p]]N ≥N [[q]]N in all cases.

For an observational semantics one expects that the order between processes is gov-
erned by set inclusion as is the case, for instance, for the classic definition of failures
semantics. Fortunately, it is easy to obtain such a characterization for the three seman-
tics considered above by means of suitable closure operators.

Definition 10. For T ⊆ LGON, the following three closures are defined:

– T
⊇ = {X0a1X1 . . .anXn | ∃Y0a1Y1 . . .anYn ∈ T ∀i ∈ 0..n Xi ⊇ Yi}.

– T
f
= {X0a1X1 . . .anXn | ∃Y0a1Y1 . . .anXn ∈ T }.

– T
f⊇

= {X0a1X1 . . .anXn | ∃Y0a1Y1 . . .anYn ∈ T Xn ⊇ Yn}.

Then, if X ∈ {⊇, f , f⊇}, for p ∈ BCCSP and N a constraint, we define LGOX
N(p) =

LGON(p)
X

.

Proposition 7. All the operations in Definition 10 are indeed closures: if X∈{⊇, f , f⊇}
and T ,T ′ ⊆ LGON, then T ⊆ T

X
and T

X X
= T

X
; also, if T ⊆ T ′ then T

X ⊆
T ′X .

Proposition 8. For all X ∈ {⊇, f , f⊇}, T ≤lX
N T ′ iff T

X⊆ T ′X .

Let us see which of the semantics in the spectrum are characterized by the orders ≤lX
N

above.

Proposition 9. For N = U we have ≤l
U =≤l⊇

U =≤l f
U =≤l f⊇

U =�T . As a consequence,
the only semantics coarser than plain simulation that can be characterized by means of
linear observations using LU is the trace semantics.

Proposition 10. For N = C we have ≤l
C = ≤l⊇

C = ≤l f
C = ≤l f⊇

C = �CT . As a conse-
quence, the only semantics coarser than complete simulation that can be characterized
by means of linear observations using LC is the complete trace semantics.

Proposition 11. For N = I, ≤l f⊇
I characterizes the failures semantics, ≤l f

I the readi-
ness semantics, ≤l⊇

I the failure traces semantics, and ≤l
I the ready trace semantics.

Therefore, the possible worlds semantics is the only semantics in the ltbt spectrum
coarser than ready simulation that cannot be characterized using lgoI’s.

On the Unification of Process Semantics: Observational Semantics 287

As we will see in Section 5, the possible world semantics is the only determinis-
tic branching semantics in the spectrum and will require the use of the deterministic
branching observations introduced there to be characterized in an observational way.

Proposition 12. 1. ≤l f
T is the possible futures preorder;

2. ≤l f⊇
T is the impossible futures preorder.

As a matter of fact, the possible futures semantics is just below the 2-nested simula-
tion semantics in the spectrum, only because the trace simulation semantics is missing
there. The impossible futures semantics has been introduced quite recently [7] and is
not yet well-known. And it is at this point where we have discovered our first two “lost
creatures”, defined as follows.

Definition 11. The possible futures trace semantics is defined by lgoT ’s related by ≤l
T

and the impossible futures trace semantics is defined by ≤l⊇
T .

5 Deterministic Branching Observations

Definition 12. 1. We say that a bgo is deterministic if for every node in it, its set of
children {(ai,bgoi)} satisfies ai �= a j whenever i �= j. We denote with dBGON the
set of deterministic observations in BGON.

2. The set of deteministic branching observations (dbgo for short) of a process p is
dBGON(p) = BGON(p)∩dBGON.

3. We write p ≤db
N q if dBGON(p) ⊆ dBGON(q).

Like the linear observations, the set dBGON(p) can be defined recursively and the cor-
responding semantics, compositionally.

Example 2. For the two processes p = a(bc+bd) and q = abc+abd we have that both
deterministic observations 〈{a},{(a,〈{b},{(b,〈{c}, /0〉)}〉)}〉 and 〈{a},{(a,〈{b},{(b,
〈{d}, /0〉)}〉)}〉 belong to dBGOI(p) and dBGOI(q). Indeed, that must be the case since
it is easy to check that dBGOI(p) = dBGOI(q).

In order to prove that dbgo’s for the constraint I characterize the possible world seman-
tics we first recall the definition of that semantics in [6].

Definition 13. A deterministic process p is a possible world of a process q if p �RS q.
The set of possible worlds of p is denoted by PW (p). We define the order p �PW q iff
PW (p) ⊆ PW (q).

When defining the possible worlds of a process we have to solve all the non-deterministic
choices in it, each choice leading to one of its possible worlds. The same idea supports
the selection of dbgo’s to characterize this semantics: the non-deterministic branching
observations in BGON(p) are not present in dBGON(p), where we have instead all the
possible deterministic subtrees of every branching observation.

We call complete those observations that, for every node labeled by an offering A,
have a branch labeled by each of the actions in A.

288 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

Definition 14. The set of complete deterministic branching observations for the local
observation function LI is the set cdBGOI ⊆ dBGOI recursively defined as:

– 〈 /0, /0〉 ∈ cdBGOI.
– 〈A,{(a,cdbgoa) | a ∈ A}〉 ∈ cdBGOI for every a ∈ A and cdbgoa ∈ cdBGOI.

For each p ∈ BCCSP we define its set of complete deterministic branching observations
cdBGOI(p) = dBGOI(p)∩ cdBGOI.

We also associate to a deterministic process q its universal (complete deterministic)
branching observation.

Definition 15. For a deterministic process p, its universal deterministic branching ob-
servation cdbgo(p) is:

– cdbgo(0) = 〈 /0, /0〉.
– cdbgo(∑a∈A apa) = 〈A,{(a,cdbgo(pa)) | a ∈ A}〉.

The following result is then immediate.

Proposition 13. For every p ∈ BCCSP, cdbgo(p) ∈ cdBGOI(p).

Lemma 1. For every q ∈ PW (p), cdbgo(q) ∈ cdBGOI(p).

Lemma 2. For every process q such that cdbgo(q) ∈ cdBGOI(p) we have q �RS p and
therefore q ∈ PW(p).

Theorem 3. For all processes p1, p2 ∈ BCCSP, p1 �PW p2 iff p1 ≤db
I p2.

Let us briefly consider the remaining new semantics definable by means of deterministic
branching observations. It is clear that the corresponding orders verify≤b

N ⊆≤db
N ⊆≤l

N ,
so that the associated semantics will be situated between the corresponding semantics
defined by branching observations in BGON and linear observations in LGON , as is the
case for the possible worlds semantics, located between the ready simulation semantics
and the ready trace semantics.

Admittedly, most of these semantics are rather strange and this is probably the rea-
son why, as far as we know, they have not been previously considered. However, the
simplest of them all, that corresponding to N = U , has properties similar to the possible
worlds semantics and, in fact, can be defined by simply removing from its definition
the “R” in the condition q �RS p. Hence, we can regard as possible worlds those deter-
ministic implementations where we offer just a part of the action offered by the given
process.

Definition 16. The partial possible worlds of a process p are those deterministic
processes that verify q �S p. We denote with PWU(p) the set of partial possible worlds
of a process p and define p �UPW q if PWU(p) ⊆ PWU(q).

Proposition 14. For all processes p1, p2 ∈ BCCSP, p1 �UPW p2 iff p1 ≤db
U p2.

Analogously, for any other constraint N we could define the N-possible worlds using
�NS, which in turn would be characterized using the observations in dBGON .

The extended spectrum, including also the diamond of linear semantics coarser than
2-nested simulation, can now be depicted as in Figures 3 and 4.

On the Unification of Process Semantics: Observational Semantics 289

B
New

2S New New New
New

PF
TS New New New

New
FT

RS PW RT F
R

CS New CT

S New T

Fig. 3. The new linear time-branching time spectrum

≤l⊇
N

≤b
N ≤db

N ≤l
N ≤l f⊇

N

≤l f
N

Fig. 4. Basic slice in the linear time-branching time spectrum

6 Conclusion

In this paper we have presented the first part of our unification work on the semantics
for concurrency. We have seen that the branching-linear character of a semantics is the
main fact to take into account in order to classify it properly. Indeed, this is not very
surprising since the spectrum of semantics of concurrency was already called the linear
time-branching time spectrum. The important result of our work is that all the branch-
ing semantics can be observationally characterized in a uniform way, so that the only
difference between them is the local observation function LN used to watch the states
of the processes. We have also uncovered the common structure of the diamonds under
each simulation semantics, that corresponds to different orders on the sets of linear ob-
servations and are defined in the same way for all the constraints N. Finally, we found
a single semantics in the spectrum defined by deterministic branching observations.

We think that this unification work sheds light on the structure of the spectrum. Be-
sides, and more importantly, with the uniform descriptions of the semantics it will be
much easier to prove general properties satisfied by all of them by means of parame-
terized proofs for generic constraints N, and also by considering the four orders defin-
ing the linear semantics corresponding to each constraint in a homogeneous way. In
fact, as it was already mentioned in the introduction, we have found a common frame-
work in which the axiomatizations of every semantics are particular cases of a couple
of parametrized axioms; by using the uniform characterizations as definitions of the
semantics we have already proved the soundness and completeness of the new axioma-
tizations for the semantics without having to resort to cumbersome proofs by cases.

290 D. de Frutos Escrig, C. Gregorio Rodrı́guez, and M. Palomino

References

1. Boreale, M., Gadducci, F.: Processes as formal power series: A coinductive approach to deno-
tational semantics. Theoretical Computer Science 360(1-3), 440–458 (2006)

2. de Frutos-Escrig, D., Gregorio-Rodrı́guez, C.: Universal coinductive characterizations of pro-
cess semantics. In: 5th IFIP International Conference on Theoretical Computer Science.
Springer Science and Business Media, vol. 273, pp. 397–412. Springer, Heidelberg (2008)

3. de Frutos-Escrig, D., Gregorio-Rodrı́guez, C., Palomino, M.: On the unification of process se-
mantics: axiomatic semantics (submitted, 2008), http://maude.sip.ucm.es/∼miguept/

4. Hennessy, M.: Acceptance trees. Journal of the ACM 32(4), 896–928 (1985)
5. Jacobs, B.: Trace semantics for coalgebras. In: Adámek, J., Milius, S. (eds.) Proceedings of the

Seventh Workshop on Coalgebraic Methods in Computer Science (CMCS 2004). Electronic
Notes in Theoretical Computer Science, vol. 106. Elsevier, Amsterdam (2004)

6. van Glabbeek, R.J.: The linear time-branching time spectrum I: The semantics of concrete,
sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of process
algebra, pp. 3–99. North-Holland, Amsterdam (2001)

7. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Information Processing Let-
ters 80(1), 51–58 (2001)

http://maude.sip.ucm.es/~miguept/

	On the Unification of Process Semantics: Observational Semantics
	Introduction
	Preliminaries
	Branching General Observations
	Linear Observations and Linear Time Semantics
	Deterministic Branching Observations
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

