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Abstract. A new characterization of the Dunford-Pettis property in terms of
the extensions of multilinear operators to the biduals is obtained. For the first
time, multilinear characterizations of the reciprocal Dunford-Pettis property and
Pe lczyński’s property (V) are also found. Polynomial and holomorphic versions of
these properties are given as well.

1. Introduction

Given a k-linear operator T : E1×· · ·×Ek → X between Banach spaces, Aron and
Berner [3] introduced a procedure to extend it to an operator T : E∗∗1 × · · ·×E∗∗k →
X∗∗ between the biduals. In the linear case T : E → X, this extension is unique
and coincides with the bitranspose T ∗∗ : E∗∗ → X∗∗ of T .

Many Banach space properties may be defined in terms of linear operators. Vari-
ous authors have tried to express these properties in terms of multilinear operators
and polynomials. This has been achieved, e.g., for the Dunford-Pettis property [30]
and the noncontainment of `1 [5, 17]. However, the properties given by the fact
that the linear operators of certain class have to be weakly compact do not have
an equivalent multilinear version: this is the case of the reciprocal Dunford-Pettis
property and Pe lczyński’s property (V) [21]. This is why it has been said that the
weak compactness of a multilinear operator or a polynomial should be redefined so
that the linear and multilinear properties may be equivalent.

In this paper we show that this can be done by replacing weak compactness of a
multilinear operator T by the fact that the Aron-Berner extension of T be X-valued.
In the linear case, by Gantmacher’s theorem [25, §2.18], the bitranspose of T is X-
valued if and only if T is weakly compact. For k > 1, the Aron-Berner extension
of a weakly compact k-linear operator is X-valued; there are, however, many non
weakly compact k-linear operators with X-valued Aron-Berner extension.
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2 J. M. GUTIÉRREZ AND I. VILLANUEVA

In this way, we obtain a new multilinear characterization of the Dunford-Pettis
property, and give, for the first time, multilinear, polynomial and holomorphic char-
acterizations of the reciprocal Dunford-Pettis property and Pe lczyński’s property
(V). The starting point of this research were the second named author’s results in
[34] for multilinear operators on C(K) spaces. Some of our proofs refine in different
ways an idea of Ryan’s [30]. The fact of having an X-valued Aron-Berner extension
was already used, instead of weak compactness, in [22] in order to give a polynomial
characterization of the Grothendieck property.

Throughout, E, E1, . . . , Ek and X denote Banach spaces, E∗ is the dual of E,
BE is the closed unit ball of E, and ω∗ represents the weak-star topology on a dual
Banach space. For a subset A ⊂ E, Γ(A) stands for the absolutely convex closed
hull of A. All the operators and polynomials are supposed to be continuous. The
notation Lk(E1, . . . , Ek;X) will be used for the space of all k-linear operators from
E1 × · · · × Ek into X; Lk

s(E,X) denotes the space of symmetric k-linear operators
from Ek into X, and P(kE,X) stands for the k-homogeneous polynomials from E
into X. Whenever the range space X is omitted, it is understood to be the scalar
field. The space of linear operators from E into X is denoted by L(E,X), and
its subspace of weakly compact operators is represented by Lwco(E,X). All these
spaces are endowed with the usual operator norm.

To each P ∈ P(kE,X) we can associate a unique T ∈ Lk
s(E,X) so that P (x) =

T (x, . . . , x) for each x ∈ E. For the general theory of multilinear operators, polyno-
mials and holomorphic mappings, we refer to [15, 27].

The paper is organized as follows. In Section 2 we introduce the definition and
main properties of the Aron-Berner extensions; Section 3 is devoted to the prop-
erties related to the completely continuous operators, namely, the Dunford-Pettis
and the reciprocal Dunford-Pettis property; Section 4 deals with the unconditionally
converging operators and hereby with property (V); Section 5 extends the results
to the holomorphic setting; Section 6 raises the question of characterizing the mul-
tilinear operators whose extensions are X-valued. At the beginning of each section,
the necessary definitions are recalled.

2. Aron-Berner extensions

We start by introducing the Aron-Berner extension of an arbitrary multilinear
operator, since the original extension considered in [3] was meant only for symmetric
operators.

We first consider scalar-valued operators. Let 1 ≤ m ≤ k. For fixed 1 ≤ i1 <
· · · < im ≤ k and z ∈ E∗∗im , using the notation of [36], we define the linear operator

(1) z : Lm(Ei1 , . . . , Eim) −→ Lm−1(Ei1 , . . . , Eim−1)

by
z(S)(xi1 , . . . , xim−1) = 〈z, Sxi1

,...,xim−1
〉,
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where xij ∈ Eij (1 ≤ j ≤ m − 1), S ∈ Lm(Ei1 , . . . , Eim), and Sxi1
,...,xim−1

∈ E∗im is
given by

〈Sxi1
,...,xim−1

, x〉 = S(xi1 , . . . , xim−1 , x) (x ∈ Eim).

Then to each T ∈ Lk(E1, . . . , Ek) we associate T ∈ Lk(E∗∗1 , . . . , E
∗∗
k ) given by

(2) T (z1, . . . , zk) = z1 ◦ · · · ◦ zk(T ) for all zi ∈ E∗∗i (1 ≤ i ≤ k),

where we have identified L0(E) with the scalar field. Clearly, T is an extension of
T , and ‖T‖ = ‖T‖. We could also have defined

(3) T (z1, . . . , zk) = zi1 ◦ · · · ◦ zik(T )

where {i1, . . . , ik} is a permutation of the indices {1, . . . , k}. Therefore it is possible
to have k! extensions of T which may be different. For simplicity, we shall use the
same notation T for any of these Aron-Berner extensions of T . If E1 = · · · = Ek

and T is symmetric, then T (z1, . . . , zk) will exactly mean the right hand side of (2)
while we shall denote by T (zi1 , . . . , zik) the right hand side of (3) since T need not
be symmetric. We shall refer to (2), i.e., to the extension carried out from the last
variable to the first, as the Davie-Gamelin extension of T [11].

We now consider vector-valued multilinear mappings. Let T ∈ Lk(E1, . . . , Ek;X)
be given. An operator T ∈ Lk(E∗∗1 , . . . , E

∗∗
k ;X∗∗) will be said to be an Aron-Berner

extension of T if it satisfies

〈T (z1, . . . , zk), ψ〉 = ψ ◦ T (z1, . . . , zk) (ψ ∈ X∗)

where ψ ◦ T is a fixed Aron-Berner extension of ψ ◦ T .
If the chosen extension is exactly ψ ◦ T (z1, . . . , zk) = zi1 ◦ · · · ◦ zik(ψ ◦ T ), then

we have the equality T (z1, . . . , zk) = zi1 ◦ · · · ◦ zik(T ) where, for each m ∈ {1, . . . , k}
and zim ∈ E∗∗im , the operator

(4) zim : Lm(Ei1 , . . . , Eim ;X∗∗) −→ Lm−1(Ei1 , . . . , Eim−1 ;X
∗∗)

is given by

〈zim(S)(xi1 , . . . , xim−1), ψ〉 = zim(ψ ◦ S)(xi1 , . . . , xim−1)

for each S ∈ Lm(Ei1 , . . . , Eim ;X∗∗). We use the same notation for the operator in
(1) and in (4) since no confusion seems possible.

As in the scalar-valued case, we can get k! extensions of T which may be different.
Again the Davie-Gamelin extension of T will be the one obtained when we proceed
from the last variable to the first.

The following lemma will be frequently used in the sequel.

Lemma 2.1. Let T ∈ Lk(E1, . . . , Ek;X). Then:
(a) Given i, j ∈ {1, . . . , k} (i 6= j), zj ∈ E∗∗j and xi ∈ Ei, we have

xi ◦ zj(T ) = zj ◦ xi(T ).

(b) Given 1 ≤ m ≤ k, 1 ≤ i1 < · · · < im ≤ k, xij ∈ Eij (1 ≤ j ≤ m), we have

xi1 ◦ · · · ◦ xim(T ) = Txi1
,...,xim

.
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(c) Fixed i ∈ {1, . . . , k}, x1 ∈ E1, . . . , xi−1 ∈ Ei−1, zi+1 ∈ E∗∗i+1, . . . , zk ∈ E∗∗k , if T
denotes the Davie-Gamelin extension of T , then the linear operator

zi ∈ E∗∗i 7−→ T (x1, . . . , xi−1, zi, . . . , zk) ∈ X∗∗

is ω∗-ω∗ continuous. The same is true, with obvious modifications in the choice
and order of the variables, for any other Aron-Berner extension of T . As a conse-
quence, every Aron-Berner extension T of T is ω∗-ω∗ continuous in the last extended
variable.

(d) For zi ∈ E∗∗i (2 ≤ i ≤ k) fixed, suppose that z2 ◦ · · · ◦ zk(T ) is X-valued, and
define S ∈ L(E1, X) by

S(x1) = x1 ◦ z2 ◦ · · · ◦ zk(T ) = T (x1, z2, . . . , zk).

Then
S∗∗(z1) = z1 ◦ · · · ◦ zk(T ) = T (z1, . . . , zk) for all z1 ∈ E∗∗1 .

Proof. Parts (a) and (b) follow the steps of [35, Proposition 2], (c) is essentially
contained in [18, Corollary 5.2], and (d) is immediate using the end of (c). �

If P ∈ P(kE,X) and T is the associated symmetric operator, the Aron-Berner
extension of P is the polynomial P ∈ P(kE∗∗, X∗∗) defined by

P (z) = T (z, . . . , z) (z ∈ E∗∗).
Note that the Aron-Berner extension of a polynomial is unique, since all the Aron-
Berner extensions of T coincide on the diagonal.

There is a particular case when all the Aron-Berner extensions of a multilinear
operator coincide. The following result is mentioned in [4, §8] in the scalar-valued
case:

Proposition 2.2. Let T ∈ Lk(E1, . . . , Ek;X). If T has a separately ω∗-ω∗ contin-

uous extension T̃ ∈ Lk(E∗∗1 , . . . , E
∗∗
k ;X∗∗), then every Aron-Berner extension of T

coincides with T̃ .

3. Completely continuous operators

In this Section, we consider the Banach space properties that relate weakly com-
pact and completely continuous linear operators, namely, the Dunford-Pettis and
the reciprocal Dunford-Pettis property, obtaining multilinear characterizations of
both.

We say that T ∈ Lk(E1, . . . , Ek;X) is completely continuous, and we write T ∈
Lk

cc(E1, . . . , Ek;X), if, given weak Cauchy sequences (xn
i )n∈N ⊂ Ei (1 ≤ i ≤ k), the

sequence (T (xn
1 , . . . , x

n
k))n is norm convergent in X. This definition may be adapted

to polynomials in an obvious way. The space of completely continuous polynomi-
als is denoted by Pcc(

kE,X). By the polarization formula [27, Theorem 1.10], a
polynomial is completely continuous if and only if so is its associated symmetric
multilinear operator.

Recall that E has the Dunford-Pettis property (DPP, for short) if, for every X,
Lwco(E,X) ⊆ Lcc(E,X). Examples of spaces with the DPP are C(K) and L1(µ)
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spaces. E has the reciprocal Dunford-Pettis property (RDPP, for short) if, for every
X, Lcc(E,X) ⊆ Lwco(E,X). The spaces containing no copy of `1, and C(K) spaces
have the RDPP. Both properties were introduced in [24].

A subset A ⊂ E is a Dunford-Pettis set (DP set, for short) if, for every weakly
null sequence (φn) ⊂ E∗, we have

lim
n

sup
x∈A

|φn(x)| = 0.

We say that a sequence (xn) ⊂ E is a DP sequence if the set {xn : n ∈ N} is a
DP set. We say that (xn) ⊂ E is a weak Cauchy DP sequence if it is both a weak
Cauchy sequence and a DP sequence. It is easy to show that E has the DPP if and
only if every weak Cauchy sequence in E is a DP sequence [1, §I].

We first state a well-known, useful result, whose proof is contained in [5, Theo-
rem 2.3 and Lemma 2.4].

Lemma 3.1. Let T ∈ Lk(E1, . . . , Ek;X). Then T is completely continuous if and
only if, for all weak Cauchy sequences (xn

j )n∈N ⊂ Ej (1 ≤ j ≤ k), at least one of
which converges weakly to zero, we have

lim
n→∞

‖T (xn
1 , . . . , x

n
k)‖ = 0.

The following technical lemma will be crucial to prove our first main result.

Lemma 3.2. Let T ∈ Lk(E1, . . . , Ek;X). Then T is completely continuous if and
only if, for all weak Cauchy sequences (xn

j )n∈N ⊂ Ej (1 ≤ j ≤ k), at least one of
which, say (xn

i )n, converges weakly to zero, we have

lim
m→∞

sup
n∈N

∥∥T (xn
1 , . . . , x

n
i−1, x

m
i , x

n
i+1, . . . , x

n
k

)∥∥ = 0.

Proof. Let T be completely continuous. If the conclusion does not follow, we can
find ε > 0, weak Cauchy sequences (xn

j )n ⊂ Ej (1 ≤ j ≤ k), and i ∈ {1, . . . , k}
so that (xn

i )n is weakly convergent to zero, and two increasing sequences of indices
(m(p))p∈N, (n(p))p∈N, in such a way that∥∥∥T (xn(p)

1 , . . . , x
n(p)
i−1 , x

m(p)
i , x

n(p)
i+1 , . . . , x

n(p)
k

)∥∥∥ > ε (p ∈ N),

which contradicts Lemma 3.1. The converse is clear. �

If X is a Banach space, c(X) is defined as the closed subspace of `∞(X) formed
by the convergent sequences of elements of X. The following lemma is proved
analogously to [30, Lemma 1.2].

Lemma 3.3. Let S ∈ L(E, c(X)), with S(x) = (Sn(x))n. Then S is weakly compact
if and only if

(a) for every n ∈ N, Sn ∈ L(E,X) is weakly compact, and
(b) for every z ∈ E∗∗, the sequence (S∗∗n (z))n converges.

Theorem 3.4. The following statements are equivalent:
(a) The spaces E1, . . . , Ek have the RDPP;
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(b) for all X and T ∈ Lk
cc(E1, . . . , Ek;X), every Aron-Berner extension of T is

X-valued;
(c) for all X, every T ∈ Lk

cc(E1, . . . , Ek;X) has an X-valued Aron-Berner exten-
sion.

Proof. (a) ⇒ (b): We proceed by induction on k. If k = 1, the result is clear.
Suppose it is true for all (k − 1)-linear operators and take T as in the state-
ment. Fix an Aron-Berner extension T of T . Suppose, without loss of general-
ity, that T is the Davie-Gamelin extension. For each zk ∈ E∗∗k , consider zk(T ) ∈
Lk−1(E1, . . . , Ek−1;X). To see that zk(T ) is indeed X-valued, observe that, if we
fix (x1, . . . , xk−1) ∈ E1 × · · · × Ek−1, then Tx1,...,xk−1

∈ Lcc(Ek, X) ⊆ Lwco(Ek, X).

Therefore
(
Tx1,...,xk−1

)∗∗ ∈ L(E∗∗k , X) and, according to Lemma 2.1,

zk(T )(x1, . . . , xk−1) = zk ◦ x1 ◦ · · · ◦ xk−1(T ) =
(
Tx1,...,xk−1

)∗∗
(zk) ∈ X.

In order to show that zk(T ) is completely continuous, take weak Cauchy sequences
(xn

i )n ⊂ Ei (1 ≤ i ≤ k − 1). We can define the operator S ∈ L(Ek; c(X)) by

S(x) = (Sn(x))n where Sn(x) = T
(
xn

1 , . . . , x
n
k−1, x

)
(x ∈ Ek).

By Lemma 3.2, S is completely continuous, hence weakly compact. By Lemma 3.3,
for every zk ∈ E∗∗k , the sequence(

zk(T )
(
xn

1 , . . . , x
n
k−1

))
n

= (S∗∗n (zk))n

is convergent in X. Therefore zk(T ) is completely continuous. By the induction
hypothesis, all of its Aron-Berner extensions are X-valued, and we conclude that T
is X-valued.

(b) ⇒ (c) is clear.
(c) ⇒ (a): Suppose one of the spaces, say E1 for simplicity, does not have the

RDPP. Then there exist X and a non weakly compact operator U ∈ Lcc(E1, X).
For 2 ≤ i ≤ k choose a nonzero form φi ∈ E∗i . We can define T ∈ Lk(E1, . . . , Ek;X)
by

T (x1, . . . , xk) =
k∏

i=2

φi(xi)U(x1).

Easily, T is completely continuous. The only Aron-Berner extension of T is given
by T (z1, . . . , zk) =

∏k
i=2〈zi, φi〉U∗∗(z1) and is clearly not X-valued. �

Corollary 3.5. The following assertions are equivalent:
(a) The space E has the RDPP;
(b) for all X and k ∈ N, the Aron-Berner extension of every P ∈ Pcc(

kE,X) is
X-valued;

(c) there is k ∈ N such that, for all X, the Aron-Berner extension of every
P ∈ Pcc(

kE,X) is X-valued.

Proof. (a) ⇒ (b): Suppose E has the RDPP, and let P ∈ Pcc(
kE,X). The associated

T ∈ Lk
s(E,X) is also completely continuous. Therefore, it is enough to apply

Theorem 3.4.
(b) ⇒ (c) is obvious.
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(c) ⇒ (a): If E does not have the RDPP, we can find X and an operator S ∈
Lcc(E,X) which is not weakly compact. Take z ∈ E∗∗ such that S∗∗(z) ∈ X∗∗\X,

and φ ∈ E∗ with 〈z, φ〉 = 1. Define P ∈ P(kE,X) by P (x) = (φ(x))k−1 S(x). Then
P is completely continuous, and P (z) = S∗∗(z) ∈ X∗∗\X. �

As a kind of reciprocal to the results above, we will now show that every multi-
linear operator T ∈ Lk(E1, . . . , Ek;X) with an X-valued Aron-Berner extension is
continuous for some “weak” topology. This will easily give a multilinear version of
the Dunford-Pettis property and, as shown in Section 4, that such an operator T is
unconditionally converging.

We say that an operator T ∈ Lk(E1, . . . , Ek;X) is weakly continuous on DP
sets (see [19]) if, given weak Cauchy DP sequences (xn

i )n ⊂ Ei (1 ≤ i ≤ k), the
sequence (T (xn

1 , . . . , x
n
k))n is norm convergent in X. This definition may be adapted

to polynomials in an obvious way.

Proposition 3.6. Suppose that T ∈ Lk(E1, . . . , Ek;X) has an X-valued Aron-
Berner extension. Then T is weakly continuous on DP sets.

Proof. For k = 1, T is a weakly compact linear operator, and it is easy to show
that every weakly compact linear operator is weakly continuous on DP sets [19,
Proposition 3.1]. Assume the result is true for all (k − 1)-linear operators, and let
T be as in the statement. To simplify the notation, we suppose that the Davie-
Gamelin extension T of T is X-valued, slight modifications being needed otherwise.
Take z ∈ E∗∗k and consider the (k−1)-linear operator z(T ) ∈ Lk−1(E1, . . . , Ek−1;X).
Clearly, the Davie-Gamelin extension of z(T ) to E∗∗1 × · · · × E∗∗k−1 is X-valued. By
the induction hypothesis, z(T ) is weakly continuous on DP sets.

Let (xn
i )n ⊂ Ei (1 ≤ i ≤ k) be weak Cauchy DP sequences. Define Sn ∈ L(Ek, X)

by
Sn(x) = T

(
xn

1 , . . . , x
n
k−1, x

)
= x(T )

(
xn

1 , . . . , x
n
k−1

)
(x ∈ Ek).

For each x ∈ Ek, the weak continuity of x(T ) on DP sets assures the existence of
limn Sn(x). Now, we define the linear operator

S : Ek −→ c(X)

x 7−→ (Sn(x))n .

Applying Lemma 2.1, we have

S∗∗n (z) =
(
xn

1 ◦ · · · ◦ xn
k−1(T )

)∗∗
(z) = z(T )

(
xn

1 , · · · , xn
k−1

)
∈ X (z ∈ E∗∗k ) .

Since z(T ) is weakly continuous on DP sets, the sequence (S∗∗n (z))n converges. By
Lemma 3.3, S is weakly compact and hence weakly continuous on DP sets. Thus,
(S (xn

k))n converges to some w = (wm)m ∈ c(X) and we have

lim
n
‖Sn (xn

k)− wn‖ ≤ lim
n

sup
m
‖Sm (xn

k)− wm‖ = lim
n
‖S (xn

k)− w‖ = 0 .

Since the sequence (wn) is convergent in X, so is the sequence

(T (xn
1 , . . . , x

n
k))n = (Sn (xn

k))n .

�
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We say that an operator T ∈ Lk(E1, . . . , Ek;X) is weakly compact if the set
K = T (BE1 × · · · ×BEk

) is relatively weakly compact in X. If T is weakly compact,
then all its Aron-Berner extensions are X-valued. Indeed, for xi ∈ Ei (1 ≤ i ≤ k−1),
given zk ∈ BE∗∗

k
, choose a net (xα

k )α ⊂ BEk
weak-star converging to zk. Then

T (x1, . . . , xk−1, zk) = weak-star-lim
α
T (x1, . . . , xk−1, x

α
k )

= weak-lim
α
T (x1, . . . , xk−1, x

α
k )

∈ K
w
,

where K
w

is the weak closure of K. Analogously, we get T (x1, . . . , xk−2, zk−1, zk) ∈
K

w
. Reiterating the process, we obtain

T (z1, . . . , zk) ∈ Kw
for zj ∈ BE∗∗

j
(1 ≤ j ≤ k).

This fact was proved in [9, Proposition 1.4] for weakly compact polynomials. From
it, we get:

Theorem 3.7. The following assertions are equivalent:
(a) The spaces E1, . . . , Ek have the DPP;
(b) for every X, if T ∈ Lk(E1, . . . , Ek;X) has an X-valued Aron-Berner exten-

sion, then T is completely continuous;
(c) for every X, every weakly compact T ∈ Lk(E1, . . . , Ek;X) is completely con-

tinuous;
(d) same statement as (c) with X = c0.

Proof. (a) ⇒ (b): Since, for each 1 ≤ i ≤ k, Ei has the DPP, every weak Cauchy
sequence in Ei is a DP sequence. Then it is enough to apply Proposition 3.6.

(b) ⇒ (c) is clear by the comment preceding this Theorem.
(c) ⇒ (d) is obvious.
(d)⇒ (a): Suppose one of the spaces, say E1 for simplicity, does not have the DPP.

Then we can find an operator S ∈ Lwco(E1, c0) which is not completely continuous.

Choose φi ∈ E∗i (2 ≤ i ≤ k) with ‖φi‖ = 1. Define T (x1, . . . , xk) =
∏k

i=2 φi(xi)S(x1)
for xi ∈ Ei (1 ≤ i ≤ k). Clearly, T is weakly compact. Choose a weakly null
sequence (xn

1 )n ⊂ E1 so that ‖S (xn
1 )‖ ≥ δ > 0, and fix xi ∈ Ei with φi(xi) = 1

(2 ≤ i ≤ k). Then
‖T (xn

1 , x2, . . . , xk)‖ = ‖S (xn
1 )‖ ≥ δ ,

so T is not completely continuous. �

Given the spaces E1, . . . , Ek, suppose that, for i 6= j, every linear operator from
Ei into E∗j is weakly compact. Then, it is known (see [4] for symmetric operators,

and [6] for the general case) that, for all X, every operator T ∈ Lk(E1, . . . , Ek;X)
has a separately ω∗-ω∗ continuous extension T to the product of the biduals. By
Proposition 2.2, all the Aron-Berner extensions of T coincide with T .

We now consider the polynomial version of the last two results. Unfortunately,
we have been unable to obtain them in full generality.
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Proposition 3.8. Suppose L(E,E∗) = Lwco(E,E
∗), and let P ∈ P(kE,X) be a

polynomial whose Aron-Berner extension is X-valued. Then P is weakly continuous
on DP sets.

Proof. Suppose the result is true for all (k − 1)-homogeneous polynomials, and let
P be as in the statement, with associated T ∈ Lk

s(E,X). By the comment above,
the extension T of T is unique, and therefore symmetric.

For z ∈ E∗∗, consider the polynomial z(T ) ∈ P(k−1E,X) given by

z(T )(y) = T
(
y, (k−1). . . , y, z

)
(y ∈ E).

The polarization formula implies that z(T )(y) ∈ X. The Aron-Berner extension of
z(T ) is clearly

z(T )(w) = T
(
w, (k−1). . . , w, z

)
(w ∈ E∗∗).

The polarization formula implies again that z(T ) is X-valued. By the induction
hypothesis, z(T ) is weakly continuous on DP sets.

The rest of the proof is easily adapted from that of Proposition 3.6. �

Corollary 3.9. Suppose L(E,E∗) = Lwco(E,E
∗). Then, the following assertions

are equivalent:
(a) The space E has the DPP;
(b) for all X and k ∈ N, if the Aron-Berner extension of a polynomial P ∈

P(kE,X) is X-valued, then P is completely continuous;
(c) for all X and k ∈ N, every weakly compact P ∈ P(kE,X) is completely

continuous;
(d) there is k ∈ N such that every weakly compact P ∈ P(kE, c0) is completely

continuous.

We do not know the answer to the following:

Question 3.10. Given a polynomial P ∈ P(kE,X), let T ∈ Lk
s(E,X) be its asso-

ciated symmetric k-linear operator. Assume that the Aron-Berner extension of P is
X-valued. Does T have at least one X-valued Aron-Berner extension?

Recall that, if E∗ has the DPP, then so does E [24, p. 136]. We shall now extend
to the multilinear case the following result characterizing the DPP of a dual Banach
space:

Proposition 3.11. [10, Proposition 10] A dual Banach space E∗ has the DPP if and
only if, for all X and T ∈ Lwco(E,X), the bitranspose T ∗∗ is completely continuous.

Proposition 3.12. Let E1, . . . , Ek be Banach spaces such that, for every i 6= j,
L(Ei, E

∗
j ) = Lwco(Ei, E

∗
j ). The following assertions are equivalent:

(a) E∗1 , . . . , E
∗
k have the DPP;

(b) given X, let T ∈ Lk(E1, . . . , Ek;X) be an operator; if the Aron-Berner exten-
sion T of T is X-valued, then T is completely continuous;

(c) for all X, and every weakly compact operator T ∈ Lk(E1, . . . , Ek;X), the
Aron-Berner extension T of T is completely continuous.
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Proof. (a) ⇒ (b): Suppose E∗1 , . . . , E
∗
k have the DPP and let X be a Banach

space. We proceed by induction on k. If k = 1, the result follows from Propo-
sition 3.11. Suppose it is true for all (k−1)-linear operators and choose an operator
T ∈ Lk(E1, . . . , Ek;X). Let T be the unique Aron-Berner extension of T . For each
zk ∈ E∗∗k , consider the mapping (T )zk

∈ Lk−1(E∗∗1 , . . . , E
∗∗
k−1;X) defined by

(T )zk
(z1, . . . , zk−1) = T (z1, . . . , zk) (zi ∈ E∗∗i , 1 ≤ i ≤ k − 1) .

Clearly, (T )zk
is the Aron-Berner extension of the (k− 1)-linear operator zk(T ) and

it is X-valued, since T is X-valued. By the induction hypothesis, (T )zk
is completely

continuous. For every 1 ≤ i ≤ k let now (zn
i )n ⊂ E∗∗i be a weak Cauchy sequence.

We can define the mapping S ∈ L(Ek; c(X)) by

S(xk) =
(
T
(
zn
1 , . . . , z

n
k−1, xk

))
n

= (Sn(xk))n (xk ∈ Ek).

By Lemma 2.1, we know that

S∗∗n (zk) = (T )zk
(zn

1 , . . . , z
n
k−1).

Since (T )zk
is completely continuous, for every zk ∈ E∗∗k , the sequence (S∗∗n (zk))n

is convergent. Therefore, S is weakly compact (Lemma 3.3) and, by the DPP of
E∗k , S∗∗ is completely continuous. Thus, the sequence (S∗∗ (zn

k ))n converges to some
w = (wm)m ∈ c(X) and, proceeding as at the end of Proposition 3.6, we obtain that
the sequence

(
T (zn

1 , . . . , z
n
k )
)

n
is convergent.

(b) ⇒ (c) is clear.
(c) ⇒ (a): Suppose one of the dual spaces, say E∗1 , does not have the DPP. By

Proposition 3.11, there exist X and an operator U ∈ Lwco(E1, X) such that U∗∗ is
not completely continuous. For each i ∈ {2, . . . , k}, choose a nonzero form φi ∈ E∗i ,
and define the operator T ∈ Lk(E1, . . . , Ek;X) by

T (x1, . . . , xk) =
k∏

i=2

φi(xi)U(x1) (xi ∈ Ei, 1 ≤ i ≤ k).

Clearly, T is weakly compact, and its extension is not completely continuous. �

Corollary 3.13. Let E be a Banach space such that L(E,E∗) = Lwco(E,E
∗). Then

the following assertions are equivalent:
(a) E∗ has the DPP;
(b) for all X and k ∈ N, if the Aron-Berner extension P of a polynomial P ∈

P(kE,X) is X-valued, then P is completely continuous;
(c) there exists k ∈ N such that, for all X, the extension P of every weakly compact

polynomial P ∈ P(kE,X) is completely continuous.

4. Unconditionally converging operators

In this Section, we obtain a multilinear version of Pe lczyński’s property (V) and
show that, as an easy consequence of the results in Section 3, every multilinear
operator with an X-valued Aron-Berner extension is unconditionally converging.

A formal series
∑
xn in a Banach space E is weakly unconditionally Cauchy

(w.u.C., for short) if there is C > 0 such that, for any finite subset ∆ of N and
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any signs ±, we have ‖
∑

n∈∆±xn‖ ≤ C. For other equivalent definitions, see [13,
Theorem V.6]. The series

∑
xn is unconditionally convergent if every subseries is

norm convergent. Other equivalent definitions may be seen in [14, Theorem 1.9].
A linear operator between Banach spaces is unconditionally converging if it takes

w.u.C. series into unconditionally convergent series. A Banach space E is said to
have Pe lczyński’s property (V) if every unconditionally converging linear operator
on E is weakly compact. This property was introduced in [29], where it is shown
that C(K) spaces have property (V), and that the dual of a space with property
(V) is weakly sequentially complete.

Following [16], we say that T ∈ Lk(E1, . . . , Ek;X) is unconditionally converging
if, given w.u.C. series

∑
n∈N x

n
i in Ei (1 ≤ i ≤ k), the sequence

(T (sm
1 , . . . , s

m
k ))m

is norm convergent in X, where sm
i =

∑m
n=1 x

n
i . This definition may be adapted to

polynomials in an obvious way. Since a linear operator fails to be unconditionally
converging if and only if it preserves a copy of c0 [13, Exercise V.8], it is clear that
the definition of unconditionally converging k-linear operators agrees for k = 1 with
that of unconditionally converging linear operators.

By the polarization formula, a polynomial is unconditionally converging if and
only if so is its associated symmetric multilinear operator.

A different notion of unconditionally converging multilinear operators and poly-
nomials, giving rise to a strictly wider class, was used in [21] and [20]. It is not
possible, however, for this wider class, to establish a multilinear equivalent version
of property (V), and this is why we adopt here the definition of [16], which is in
some respects quite natural.

Now we can prove a result parallel to Lemma 3.2:

Lemma 4.1. Let T ∈ Lk(E1, . . . , Ek;X). Then T is unconditionally converging
if and only if, for all w.u.C. series

∑
n∈N x

n
j in Ej (1 ≤ j ≤ k), and for all i ∈

{1, . . . , k}, the sequences(
T
(
sn
1 , . . . , s

n
i−1, s

m
i , s

n
i+1, . . . , s

n
k

))
m

converge uniformly on n, in the sense that

lim
p,q→∞

sup
n∈N

∥∥T (sn
1 , . . . , s

n
i−1, s

p
i − sq

i , s
n
i+1, . . . , s

n
k

)∥∥ = 0.

Proof. For simplicity, let us denote

Tn (sp
i − sq

i ) = T
(
sn
1 , . . . , s

n
i−1, s

p
i − sq

i , s
n
i+1, . . . , s

n
k

)
.

Suppose T is unconditionally converging and the result fails. Then we can find
w.u.C. series

∑
xn

j in Ej (1 ≤ j ≤ k), i ∈ {1, . . . , k}, indices 0 = n(0) < n(1) <
n(2) < · · · , and 0 = p(0) < q(1) < p(1) < q(2) < p(2) < · · · , and ε > 0, such that∥∥∥Tn(r)

(
s

p(r)
i − s

q(r)
i

)∥∥∥ > ε (r ∈ N).
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Now, for j 6= i, we define

yl
j =


n((l+1)/2)∑

m=n((l−1)/2)+1

xm
j , if l is odd

0 , if l is even

and

yl
i =



q((l+1)/2)∑
m=p((l−1)/2)+1

xm
i , if l is odd

p(l/2)∑
m=q(l/2)+1

xm
i , if l is even.

Clearly,
∑

l∈N y
l
j is w.u.C. for all j ∈ {1, . . . , k}. Letting

σr
j =

r∑
l=1

yl
j ,

it is easy to check that, whenever r is odd, we have∥∥T (σr+1
1 , . . . σr+1

k

)
− T (σr

1, . . . , σ
r
k)
∥∥ =

∥∥∥Tn((r+1)/2)

(
s

p((r+1)/2)
i − s

q((r+1)/2)
i

)∥∥∥ > ε,

so the sequence (T (σr
1, . . . , σ

r
k))r is not Cauchy, a contradiction.

For the converse, suppose T is not unconditionally converging. Then there exist
ε > 0, w.u.C. series as in the statement, and two increasing sequences of indices
(p(r))r and (q(r))r, with p(0) = q(0) = 0, such that

(5)
∥∥∥T (sp(r)

1 , . . . , s
p(r)
k

)
− T

(
s

q(r)
1 , . . . , s

q(r)
k

)∥∥∥ > ε.

On the other hand, we can write∥∥∥T (sp(r)
1 , . . . , s

p(r)
k

)
− T

(
s

q(r)
1 , . . . , s

q(r)
k

)∥∥∥ ≤∥∥∥T (sp(r)
1 − s

q(r)
1 , s

p(r)
2 , . . . , s

p(r)
k

)∥∥∥+
∥∥∥T (sq(r)

1 , s
p(r)
2 − s

q(r)
2 , s

p(r)
3 , . . . , s

p(r)
k

)∥∥∥
+ · · ·+

∥∥∥T (sq(r)
1 , . . . , s

q(r)
k−1, s

p(r)
k − s

q(r)
k

)∥∥∥ .
We claim that each term of the right hand side can be made as small as we wish,
for r large enough. This is in contradiction with (5). As an example, we prove the
claim for the second term. Define

yn
1 =

q(n)∑
m=q(n−1)+1

xm
1 ,

yn
2 = xn

2 ,
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yn
j =

p(n)∑
m=p(n−1)+1

xm
j , if j ≥ 3 .

Clearly, the series
∑

n y
n
j is w.u.C. for each j. Therefore, by our hypothesis,

lim
r→∞

∥∥∥T (sq(r)
1 , s

p(r)
2 − s

q(r)
2 , s

p(r)
3 , . . . , s

p(r)
k

)∥∥∥ =

lim
r→∞

∥∥∥∥∥∥T
 r∑

n=1

yn
1 ,

p(r)∑
n=1

yn
2 −

q(r)∑
n=1

yn
2 ,

r∑
n=1

yn
3 , . . . ,

r∑
n=1

yn
k

∥∥∥∥∥∥ = 0 ,

which finishes the proof. �

Now, using Lemma 4.1, property (V), and partial sums of w.u.C. series, instead
of Lemma 3.2, the RDPP, and weak Cauchy sequences, the following analogs of
Theorem 3.4 and Corollary 3.5 can be obtained with similar proofs.

Theorem 4.2. The following assertions are equivalent:
(a) The spaces E1, . . . , Ek have property (V);
(b) for all X and each unconditionally converging T ∈ Lk(E1, . . . , Ek;X), every

Aron-Berner extension of T is X-valued;
(c) for all X, every unconditionally converging T ∈ Lk(E1, . . . , Ek;X) has an

X-valued Aron-Berner extension.

Note that, since the dual of a space with property (V) is weakly sequentially
complete, we have L(Ei, E

∗
j ) = Lwco(Ei, E

∗
j ) for all i, j, under any of the equivalent

assertions of the above Theorem, so each multilinear operator has a unique Aron-
Berner extension.

Corollary 4.3. The following assertions are equivalent:
(a) The space E has property (V);
(b) for all X and k ∈ N, the Aron-Berner extension of every unconditionally

converging P ∈ P(kE,X) is X-valued;
(c) there is k ∈ N such that, for all X, the Aron-Berner extension of every

unconditionally converging P ∈ P(kE,X) is X-valued.

We now show that a multilinear operator which is weakly continuous on DP sets
is also unconditionally converging. Easily, the result is true for polynomials as well.

Proposition 4.4. If T ∈ Lk(E1, . . . , Ek;X) is weakly continuous on DP sets, then
T is unconditionally converging.

Proof. Take w.u.C. series
∑

n x
n
i in Ei (1 ≤ i ≤ k). We can define linear operators

Si : c0 → Ei by Si(en) = xn
i , where (en) is the unit vector basis of c0. Since the unit

ball of c0 is a DP set, the sequence
(∑n

j=1 ej

)
n

is a weak Cauchy DP sequence, and

so is the sequence (
n∑

j=1

xj
i

)
n

=

(
Si

(
n∑

j=1

ej

))
n
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for each 1 ≤ i ≤ k. Hence, the sequence(
T

(
n∑

j=1

xj
1, . . . ,

n∑
j=1

xj
k

))
n

converges in X. �

Proposition 4.5. If T ∈ Lk(E1, . . . , Ek;X) has an X-valued Aron-Berner ex-
tension, then T is unconditionally converging. If the Aron-Berner extension of
P ∈ P(kE,X) is X-valued, then P is unconditionally converging.

Proof. For the multilinear case, use Propositions 3.6 and 4.4. Let P ∈ P(kE,X)
so that P is X-valued. Take a w.u.C. series

∑
xn in E. Define S : c0 → E by

S(en) = xn. Then P ◦S ∈ P(kc0, X) and its extension P ◦ S = P ◦S∗∗ is X-valued.
By Corollary 3.9, P ◦ S is completely continuous. Therefore, the sequence(

P ◦ S

(
n∑

j=1

ej

))
n

=

(
P

(
n∑

j=1

xj

))
n

is norm convergent in X. �

Arguing as in the case of completely continuous operators, it is easy to prove the
following results parallel to Proposition 3.12 and Corollary 3.13.

Proposition 4.6. Let E1, . . . , Ek be Banach spaces such that, for every i 6= j,
we have L(Ei, E

∗
j ) = Lwco(Ei, E

∗
j ). Then, for all X, whenever the Aron-Berner

extension T of T ∈ Lk(E1, . . . , Ek;X) is X-valued, T is unconditionally converging.

Corollary 4.7. Let E be a Banach space such that L(E,E∗) = Lwco(E,E
∗). Then,

for all X and k ∈ N, whenever the Aron-Berner extension P of a polynomial P ∈
P(kE,X) is X-valued, P is unconditionally converging.

We do not know if the condition on weak compactness of the linear operators may
be dropped in Propositions 3.12 and 4.6, and their Corollaries.

We finish the section with the following result, which is also true for polynomials:

Corollary 4.8. Suppose the spaces E1, . . . , Ek have property (V) and the DPP. For
an operator T ∈ Lk(E1, . . . , Ek;X), the following assertions are equivalent:

(a) T is completely continuous;
(b) T is unconditionally converging;
(c) T is X-valued.
Assume moreover that E∗1 , . . . , E

∗
k have the DPP. Then the above assertions are

also equivalent to:
(d) T is completely continuous;
(e) T is unconditionally converging;

Proof. Note first that the Aron-Berner extension T of T is unique, since the spaces
have property (V). Clearly, (a) ⇒ (b), and (d) ⇒ (e) ⇒ (b). By Theorem 4.2, (b) ⇒
(c). By Theorem 3.7, (c) ⇒ (a). If the duals have the DPP, from Proposition 3.12,
we obtain (c) ⇒ (d). �
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Many spaces satisfy all the requirements of Corollary 4.8. For instance, every
C(K) space, every C∗-algebra whose dual has the DPP [28], the space H∞ [7, 8],
the disc algebra [12, 32], the space of analytic uniformly convergent Fourier series
on the unit circle [33].

5. Extension of holomorphic mappings

Suppose now that E and X are complex Banach spaces. We denote by Hb(E,X)
the space of holomorphic mappings of bounded type from E into X. Many authors
have studied this space. We refer to [26] for some basic properties. Let f ∈ Hb(E,X)
be given, with Taylor series expansion at the origin f =

∑∞
k=0 Pk, where Pk ∈

P(kE,X). Then f has an X-valued Aron-Berner extension f ∈ Hb(E
∗∗, X) if and

only if P k is X-valued for all k ∈ N [18, Theorem 3.3].
We can define in an obvious way the weakly compact (resp. completely continuous,

unconditionally converging, etc.) holomorphic mappings of bounded type.
The mapping f is weakly compact (resp. weakly continuous on DP sets, completely

continuous) if and only if so is Pk for each k ∈ N [31] (resp. [19, 2]).
It is easy to see that f is unconditionally converging if and only if so is Pk for

each k ∈ N. Indeed, for the “only if” part, take a w.u.C. series
∑
xi in E. Let

sn =
∑n

i=1 xi. Then (f(sn))n is convergent. Given ε > 0, since f is uniformly
continuous on bounded sets, we can find δ > 0 such that

‖f(λsn)− f(µsn)‖ < ε/3 (n ∈ N)

for all complex λ, µ with |λ| = |µ| = 1 and |λ − µ| < δ. Using compactness of the
unit circle in the complex plane, we get

‖f(λsn)− f(λsm)‖ < ε (|λ| = 1)

for n,m large enough. Fix k ∈ N. As in [2, p. 59], the Cauchy integral formula
yields

‖Pk(sn)− Pk(sm)‖ < ε

for large n,m. The converse is standard.
Therefore, we can immediately extend the results obtained in the previous sections

of this paper from polynomials to holomorphic mappings. For instance, the extension
of Corollary 4.3 will be as follows:

The space E has property (V) if and only if for every X and every unconditionally
converging f ∈ Hb(E,X), the Aron-Berner extension of f is X-valued.

6. An open problem

It would be very interesting to describe the multilinear operators with “X-valued”
extensions. For simplicity, we discuss the subject in the polynomial setting.

If P1 ∈ P(kE,X) is weakly compact, then there are a reflexive Banach space Y1,
a polynomial Q1 ∈ P(kE, Y1) and an operator S1 ∈ L(Y1, X) so that P1 = S1 ◦ Q1

[31] and, clearly, P1 is X-valued.
We say that a polynomial P2 ∈ P(kE,X) is regular if there are a reflexive Banach

space Y2, an operator S2 ∈ L(E, Y2) and a polynomial Q2 ∈ P(kY2, X) so that
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P2 = Q2 ◦ S2. Then P2 need not be weakly compact, but still P2 is X-valued.
Regular polynomials have been studied in [23]. There are many regular polynomials
which are not weakly compact. Indeed, it is shown in the proof of [21, Proposition 14]
that, whenever E has a quotient isomorphic to `2 (in particular, if E contains a copy
of `1) and X is non-reflexive, there are regular polynomials of every degree from E
into X which are not weakly compact.

Clearly, if a polynomial P may be written in the form P1 + P2, with P1 weakly
compact and P2 regular, then P is X-valued. We do not know if the converse is true,
in other words, if every polynomial P ∈ P(kE,X) whose Aron-Berner extension is
X-valued may be decomposed into a sum of a weakly compact polynomial and a
regular polynomial. In the affirmative, the fact of having an X-valued Aron-Berner
extension would be closely connected to factorizing in some way through a reflexive
Banach space and hence to weak compactness.

The authors are grateful to Ignacio Zalduendo for helpful discussions. The second
named author also thanks Fernando Bombal for help and advice.
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