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Abstract. We present a mathematically exact formulation of the initial field striking 
the aperture of an absorbing optical waveguide, via an integral equation 
description. An analysis of the residual scattering by the waveguide is presented. 
Because of the presence of the non-negligible absorption coefficient, the solution 
for the fraction of the confined power is obtained by performing non-trivial 
integrations of Bessel and Hankel functions with complex arguments. In order to 
carry out a numerical analysis a specific computational method is applied by using 
an approximated polynomial expansion whose validity is also discussed. 

1. Introduction 

In studying  the  propagation of the confined  energy 
along  absorbing  optical  waveguides,  one  deals with 
some specific mathematical  properties  of  the  modal 
field.  In particular,  the  introduction of an  absorption 
coefficient (or  extinction coefficient  since the imaginary 
part of the  refractive  index is then  different  from  zero), 
together with the  standard  transmission  properties, 
implies new formulations  for  the initial field in terms of 
Bessel and  Hankel  functions with complex  arguments 
(Calvo and  Lakshminarayanan 1987). To derive 
explicit expressions  for  the  fraction of the confined 
energy,  non-trivial  integrations of such  functions are 
required.  Even  though  there is considerable  literature 
on  absorbing  waveguides  such  as  optical  photo- 
receptors  (Enoch  and  Tobey  19Sl),  irradiated dielectric 
waveguides (Mattern et al 1974) or  photochromic  guid- 
ing materials  (Crow et af 1975) (all  having in common 
the  presence of absorbing  properties in their  structure) 
no  extensive  theory  has  been  developed  to  deal with 
such cases.  In  particular,  the  derivation of an  exact 
analytical  expression of the initial field and  studies of 
its mathematical  properties  have  not  been  published. 

We  present in this paper  an  exact  mathematical 
description of the initial field striking  the  aperture pupil 
of an  absorbing  cylindrical  waveguide.  Section 2 
includes a  background  description  and  some  comments 
on  the  integral  representation. An approximation  for 
the  exact initial field is introduced by extending  an 
earlier  work  due  to Pask and  Barrel (1981). In  the 
same  section, we also  include  the  procedure  for  restrict- 
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ing the  total  scattered field to  the  forward  direction. 
The  uniqueness of the  decomposition of the  total field 
is discussed,  illustrating  the difficulties in obtaining 
approximate  solutions by iterative  procedures, since 
the  convergence of the  solution is not  assured.  The 
approximate  solution  provides  a basis for justifying the 
existence of propagation  modes in an  actual  waveguide. 
Section 3 includes  a  calculation of the  fraction of the 
confined  power within the  waveguide.  An  application 
to  the  monomode  case,  wherein  the waveguide  sup- 
ports  the  set of the  fundamental  modes, is discussed. 

Section 4 includes  the  method of integration of the 
integrals  for  the  propagated  (transmitted)  and 
absorbed  energy.  There  are  some difficulties due  to  the 
presence of complex  arguments  (arising  from  the  non- 
negligible absorption coefficient) in the Bessel and 
Hankel  functions of zero  order.  The  numerical  eval- 
uation of the explicit  expressions is obtained  after  per- 
forming the  convenient  integrations, by applying 
polynomial  expansions for  both  the  real  and imaginary 
parts of the Bessel  functions of zero  and first order with 
complex arguments.  These  integrations  are necessary 
because the  integral of the  modulus  squared of these 
functions  represents  the  energy  contributions inside 
and  outside  the  waveguide  core.  The  correctness of 
these  approximations is discussed through  the use of 
numerical  analysis  presented in § 5. Section 6 contains 
a  summary  and conclusions of the analysis. 

2. Background: an integral equation description of 
the electromagnetic field incident on the waveguide 

An incoming  linearly  polarised  scalar  optical  wave, 
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Figure 1. A schematic representation for the geometry of 
the problem and location of the initial field distribution at 
the aperture plane of the waveguide. 

propagating  from the  remote  past,  interacts with the 
entrance pupil (plane Z = 0) of an  absorbing cylindrical 
optical  waveguide. The effect of the  interaction  pro- 
duces  an  additional field inside  the  waveguide.  The 
mathematical  form  and  properties of this field are 
related  to  certain  restrictions involving  critical  con- 
finement  conditions.  We  shall  denote by ?+!Jin(X) the 
initial field entering  into  the  waveguide.  It  propagates 
from  plane Z = 0 to  plane 2 = Zo (representing  the 
finite length of the waveguide),  and  since  the  imaginary 
part of the  complex  dielectric  permittivity of the wave- 
guide is not  negligible, &’ > 0 (the  real  part &‘ > O), 
absorption of the  penetrating field takes  place  together 
with the  natural  propagation  (transmission)  along  the 
axial direction  (Z-axis).  Here,  and in what follows, 
superscripts  r  and i will denote  real  and imaginary parts, 
respectively  (see  figure 1). 

Our aim is to  formulate  the  total  scattered field ?+!J(X) 
following the  standard  three-dimensional  scattering 
integral  equation  (Alvarez-Estrada  and Calvo  1984): 

~ ( 2 )  = qin(f) - J d2x’  
R 

x lozo dZ’K(x,  X’, Z - Z’)q(X’)  (1) 

where S2 is the waveguide  cross section.  Equation (1) is 
satisfied by the  total  wavefunction of the  electro- 
magnetic  optical field for  any X = (x, Z )  (also X’ = 
(X’, 2)) ;  x  and  x’  being  two-dimensional  vectors,  x = 
(x, y )  and  x’ = (X’, y ’ ) .  

The nucleus K of the integral  equation in equation 
(1) is defined as  the  product of the  propagator (in the 
form of a  standard  three-dimensional  Green  function 
G)  and  a  complex  function involving the  optical  prop- 
erties of the  waveguide: 

K(x, X’, 2 - 2’) = G(x - X’, 2 - Z’)k2(&(x)- E,) 

(2) 
with 

G(x - X’, Z - Z’)  = ( l / 2 ~ ~ ) ~  1 d l   d l ,  

exp{i[Z(x - X’) + l, (2 - Z ’ ) ] }  
l* + - ( P  + iq) 

X (3) 

where i is a  vector  for  integration (i= (1, lz)), k is the 
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wavenumber  associated with the incoming  optical  field, 
E is the  complex  dielectric  permittivity of the waveguide 
core  and E, is the  real  dielectric  permittivity of the 
surrounding  space  or  cladding  region. q is an infini- 
tesimal  quantity  such  that q > 0 and r ]  + 0’ after  the 
integration.  Note  that 

&(x) - E ,  = 0 for  any  x  outside 52. (4) 
A vector  extension of the  scalar  equation  (3), using a 
fully transverse  tensor  Green  function which can be 
applied in the  formulation of the  scattering of elec- 
tromagnetic  fields,  has  been given elsewhere  (Calvo  and 
Duran 1975). 

Equation (1) is equivalent  to  the  scalar wave dif- 
ferential  equation.  together with the  boundary  con- 
ditions  determined by yi,(x).  

We  are  interested in finding the most  general  form 
for  the initial field qin(.f) so that  the  total field +(x) 
reduces  to  a  discrete  superposition of generalised  propa- 
gation modes  for  the finite  length: 0 < Z < Zo. Then 

 XI = 2 C.B exp(ipz>q,(x) o z < 2”.  ( 5 )  

In  equation ( 5 ) ,  CY = 0, 1 ,2 ,  . . . ; B extends  over  a finite 
number of complex  propagation  constants inside the 
waveguide; c , ~  are  independent  constants. 

The discrete  sums in equation ( 5 )  extend  to all values 
of CY, such that  k2 = - X’, > 0; p a  is a  complex 
function  with b i  > 0, > 0; and f w  is the complex 
modal  parameter  for  the  &-mode.  It has  positive  values 
for  both  the  real  and  imaginary  parts: 2; > 0, 2; > 0. 

In  turn, q. fulfils the following  homogeneous  inte- 
gral equation  (Calvo  and  Lakshminarayanan 1987): 

q,,(x) = (1/4i) 1 d 2x’Ht)   ( i fw  /x  - x’l) 
P 

X k2 (C(X’) - E ~ ) ~ , ( x ’ )  (6) 

and 

with H:) being Hankel’s  outgoing  function of zero  order 
and first kind.  It is exponentially  damped  for large 
lxi(lxl b lx‘l)  as  x’  varies in R (Morse  and  Feshbach 
1953). 

Notice  that  (4i)-’ H;) is a  free-space  Green  function 
for A, - .fi where Ax = d2/dx2 + d2/ay2.  

In  equation  (7), q is a  generic  wavevector in two 
dimensions: q = ( q x ,  qv), so that this equation  represents 
the  plane wave  integrals of the  two-dimensional  Green 
function H!) in terms of its  Fourier  transform, 

We  shall  restrict equation (1) to  the finite  interval 
0 < Z < Zo. By performing  some  manipulations,  taking 
into  account  equations ( 2 )  and  (3) together with 
equations (5)-(7) and  the  standard  three-dimensional 
Fourier  representation  for  G(x - X’, 2 - Z’) (Morse 
and  Feshbach  1953), we can  obtain  the following 

l/(q2 + 2:). 
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expression  for yin(-S) for  the  general case of an  absorbing 
optical  waveguide: 

I,, d * X ’ k * ( ~ ( x ) - & , ) ~ , ( X ’ )  

where l = ( l x ,  l y ) ,  with 

1 
A,j(Z, f) = - 

2 0  

and 
0 = (k2 - 1 2  1!2 1 ‘  (10) 

Notice that  the  second  term in equation (9) reminds  one 
that  the  waveguide  has  finite  length 2,. In  some  sense, 
it could be  associated with reflection at  the exit  pupil 
(see  figure 1 plane Z = Z,), in order  that  equation 
(8) be  a  correct  solution of the  free wave equation. 
Equations (8)-(10) yield qin(x) not  only for 0 < Z < Zo 
but also throughout all space.  It is not difficult to  see 
that  for  a given 2. vi,, is square-integrable in the whole 
transverse  plane: Jn, d2x lq in (x ,  Z)I2 < + x .  

2.1. Approximate solution for the initial field 

Let us suppose  that in equation (9), ( U  + p)Zo 9 1 for 
all 1. so that  the  second  term  vanishes exactly or is 
negligible. Thus,  the  information which  remains in the 
formulation of qin is that  contained  at  the  entrance pupil 
of the  waveguide.  We shall outline  an  approximate 
expression for qin similar to  the  decomposition given 
by Pask and Barrel1 (1981). 

The main contribution  to  the  integral  over  x’  on  the 
right-hand  side of equation (8) is obtained  for values of 
l such  that (11 is less than  or of the  same  order  as tm (but 
not  much  larger than  it).  Let  us now  assume  that  k2 = 
( w / c ) ’ ,  with xi 4 k2 ,  implying  a  weakly  absorbing 
waveguide  with W the  angular  frequency  and c the  speed 
of light.  Then 

(1/2a) exp(iaZ) = {[l/@ + a)] exp(ipz)}. 

With  this approximation,  equation (8) becomes 

vin(X) = - (1/4i) c c,p exp(ibZ) 
4 

x ~ ~ d 2 x ’ ~ 2 ( E ( x ’ ) - , , ) p . ( x ~ ) ~ ~ ’ ( i ~ , ~ x - x ‘ ~ ) .  

(11) 

v i n  E C , ~ Q ) ~ ( X >  exp(ibz). (12) 

Then finally according to  equation (6) 

ai( 

The initial field is then  a  discrete  superposition of modal 
fields, pn(x), associated  with  a  finite  number of 

bound  propagation  modes,  affected by a  phase  term, 
exp(i/?Z),  which represents  the  propagation  factor in 
the  Z-direction.  This  formulation is consistent with the 
decomposition  relation  given by Pask  and Barrel1 
(1981). 

For given Z, = + x and 2, two  incoming  waves, 
and v::), given by equations (8) and (9), cor- 

responding  respectively to c, = 0 for (Y # a( l ) ,  c“’ # 
0 and c, = 0 for (Y # 4 2 ) ,  c:’ # 0, with (~(1)  # 4 2 ) ,  
are not  exactly orthogonal in x: 

However,  they are  orthogonal  when  each of them is 
approximated in the  sense of equation (12). Notice  that 
for given k2,  the  set of all initial fields W,, constitutes  a 
finite-dimensional subspace,  as  the finite  set of constant 
amplitudes cmj varies. 

2.2. Restriction to  the forward scattered field (trans- 
mitted) 

Assume Z > Z,,, Zo < + x in equation (5). The second 
term  on  the  right-hand side of equation (1) yields the 
forward-scattered field ytr generated by the  interaction 
of v,,, with the  waveguide.  After  additional  residue 
integrations, it turns  out  to  be given by the  right-hand 
side  of equation (8) provided  that Am; be now  replaced 
by 

A@j(L Z),, = - 
exp(iaZ) 

2(0  - 8) {l  - exp[i Z,(fl - a)]}. (14) 

The explicit  expression  for  the  total  wavefunction  for 
Z > Zo is 

V = VJm + Ytr. (15) 
qtr (the  transmitted field)  can be  obtained immediately 
from  the  above  results. 

2.3. The incoming and total scattered waves and a unique 
decomposition 

Let Xin be the  space  formed by all the  optical 
wavefunctions vi,,, given by equations (8)-(lo), for  any 
cap. Let v. = qu(x) be  an arbitrary incoming  optical 
wavefunction: ( A  - k i ) q o  = 0 for  any X. The  equation 
holds for  example  for q0 = exp(ikx). Then,  one has the 
unique  decomposition 

with qin E Xi,, v;,, E Zi,,and v:, is orthogonal  to all 
wavefunctions  inside Xi,, along with 

( A  - k;)q:,, = 0 VX. 

Consequently,  the  total wavefunction qtOt generated by 
the  interaction of y o  with the  waveguide, which is a 
solution of equation (1) when v ,  vi,, are replaced by 
ytot, qo, can  be  decomposed  uniquely  as 

vtot = v + v ‘  (17) 
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where is a  superposition of generalised  propagation For 2 > 0, Ph represents  the flux of energy associ- 
modes given by equation ( 5 )  for 0 < Z < 20 and ated with a  generalised  propagation  mode ( q  = 
generated by vi,, as  described  above. exp(ibZ)gj,(x)) or a  superposition  thereof, as above, 

with yin and 11, replaced by v;,, and vi,, respectively. It 
describes  only the field scattered by the waveguide  but P!$ = Re IQ. dQ[v"*(  -id/az)y"] (20) 
not the  generalised  propagation  modes  along  the  latter. 

On  the  other  hand, v' is a  solution of equation (1) and 

For  instance,  a  plane wave  such  as qo = exp<ikx), gives 
rise uniquely to  a  superposition of propagation  modes 
inside the  waveguide: vin # 0, I) # 0, plus  a pure scat- 
tering contribution: I);,, # 0, v' - v:,, # 0. This  one 
gives rise to  an infinite number of radiation or  unbound 
modes.  In  our  approximate  treatment we consider W' --. 
0, so that  the  total  scattered field is solely  equivalent  to 
the  bound  modes. 

We  must  stress the difficulties  involved  in  obtaining 
I# (equation ( 5 ) )  by performing  directly  successive  iter- 
ations of equation (1) when vi,, is given initially through 
equations  (8)-(lo), unless important  cancellations  are 
made.  The  convergence of the series of iterations would 
be  rather difficult to  control.  However,  the  analogue of 
equation (1)  for v' and  enables  one  to  determine 
W '  by convergent  successive iterations  under  the  con- 
dition  that k2 (& - E,) be small. 

Hence,  the  uniqueness in the  decomposition of the 
incoming  and total fields implies that  the  total  scattered 
field will be always  expressed by equations (1)-(6). The 
approximate  solution  in  equation (12) will be  introduced 
in mathematical  expressions  below for a  direct cal- 
culation of an explicit  expression of the  fraction of the 
confined  power  within the  waveguide. 

3. Fraction of the confined power 

The  energy confined  in an  optical waveguide is not 
uniformly  distributed  across  any  transverse  plane  per- 
pendicular  to  the  waveguide axis. In  general, this  energy 
exhibits  radial dependence,  and  the  total  incident field 
is distributed  as  a  linear  superposition of partial  con- 
tributions in the  form of confined modal fields or bound 
modes. The radial  distribution  depends  on  the  geometry 
of the  optical  waveguide,  as well as  on  the  conditions 
of incidence of the  incoming  optical field interacting 
with the  guide  (Marcuse 1972).  It is well established 
from  electromagnetic  theory  that  the  fraction of modal 
power  confined  within an  optical waveguide is defined 
as  the  ratio  between  the  fraction of power  confined in 
the  finite  cross  section of the waveguide and  the  total 
power  confined  within an  area  (Snyder 1969): 

q / m  = P/"/ /m 
F p t o t  (18) 

with 

Ph = Re IQ dQ[~"'(-ia/cyz)v"].  (19) 

The  integral in equation (19) extends  over  a finite 
domain L2 in the  x-plane,  orthogonal  to  the waveguide 
axis Z and coincides  with the cross  section  of  the wave- 
guide. 

is an  integral  extending  over  the infinite domain Q, 
which coincides with the whole x-plane.  In  both 
equations (19) and  (20), l and m are  integers ( I ,  m = 
0, 1 ,2 ,  . . .) representing  the  modal  order  and  the  set of 
confined mode  order,  respectively, following standard 
nomenclature  (Marcuse  1972,  Snyder  1969). 

3.1. Monomode behaviour 

Let cy = 0 in equation (12) and m = 0 in equations (18)- 
(20). Then,  the initial field is 

vuPn - COQ)O(X) e x p ( i b 0 ~ )  (21) 
to  be substituted in equations (18)-(20). 

As discussed by Snyder  and  Love (1983), in a weakly 
absorbing  waveguide with constant  complex  dielectric 
permittivity  inside the  core  and circular  cross  section, 
the  solution  or  the  modal field  can be  expressed,  to  a 
good approximation, in the  same way as in the case of 
a  circular  dielectric  waveguide  with  constant  and  real 
dielectric  permittivity or a  step profile for  the  core. 
Then,  for  an IMI-order mode  (where M is an  integer), 
in general: 

(22) 
where  R is the  radius of the waveguide  cross  section, 
lMI = 0 , 1 , 2 ,  . . . is an integer  number  denoting  the 
order  for  the  set of the confined modes,  and 0 is the 
phase  constant  term. i ;  and 2, are complex  modal 
parameters such  that 

f ; 2  + 2; = (@/C)(& - E , )  (23) 

for  constant  angular  frequency W .  11.~1 and (1) are 
standard Bessel and  outgoing  Hankel  functions of order 
IMI. c< and c, are  constant coefficients related  through 
the  boundary  conditions  at 1x1 = R: 

C<J8 ' , , / ( f3)  = c>Hl,w1(i2,R) 

C<(dJ,MI/d IXl)!,l=R = C>(dHI'Wl/d lX l ) ,x l=R.  
(24) 

2; is a  complex  number with 2: and 2: real  and positive 
numbers. 

By using equation  (24),  one  gets  the dispersion 
relation  for  the  propagation  modes, which,  combined 
with equation (23) determines  the  modal  parameters 
2; and 2,. 

The cut-off  conditions  are  obtained  through  the 
values of R  for which propagation  modes with M # 0 
are  allowed.  Then,  for  a given M # 0 and  a fixed value 
of R ,  one  has  the necessary  condition ie = 0. 
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(2; = 0 , f ;  = 0) for  the  propagation of the  (Mlth-order 
mode. 

A specific feature in the  solution of equation (22) is 
that  the  argument of both  the Bessel  and Hankel func- 
tions is a  complex  variable. At this point, we recall that 
for  pure  dielectric  optical  waveguides  the  solutions  for 
the  modal fields are given in terms of real  modal  par- 
ameters.  The  present  formulation implies that  a new 
type of integration  needs  to  be  performed to calculate 
the  fraction of the confined  power r ]  defined by equation 

According to  equations (18)-(22), the fraction of 
(18). 

power  confined within the  monomode waveguide is 

P[ = 2JclC(,0)12  eXp( -2bbz) Re(bo1J) (25) 

with 

= loR drlJO(fhr)12  r = 1x1 (26) 

and f o  = f b  + i tb is the complex parameter  for  the 
propagation of the  set of confirmed  modes of zero  order 
or  the  fundamental  modes. 

The  total  fraction of confined  power is now 

Phot =2nexp(  -2&2) Re[bo(lc(,O)lzZJ + Ic$?)(~Z,)] 
(27) 

with 

ZH = lRx r d r lHr ) ( i~o r )12  (28) 

and ZJ as given in equation  (26).  Both integrals in 
equations (26) and  (28)  must  be  solved to obtain  an 
explicit expression  for  the  fraction of the confined  power 
within the  monomode  absorbing waveguide. It should 
be  noted  that  the  absolute  magnitudes of c$“ and c$” 
are  not  particularly  necessary in evaluating r]. Only the 
ratio c!$)/cY) is relevant. 

4. The integration of IJ and I,,: methods of cal- 
culation 

4.1. General definitions 

We shall make use of the indefinite  integrals of  products 
of cylindrical functions  (equation  11.3.29 of Abra- 
mowitz and  Stegun (1972),  Bateman  Manuscript 
(1954)). In this  case we shall interpret  the  general  inte- 
gration  as  follows: 

iz C,(kt)D,(lt)tdt = ( z / k 2  - l Z )  

x [C,+,(kz)D,( lz)  -q l (kz )D,+ , ( l z ) l+A (29) 

where A is a  constant of integration. 
We will also  consider  the following specifications in 

equation  (29): p = v = 0, t = r ,  k = f h ,  l = gh*,  z = R 
(and  the  same  for to and 2; ). The superscript * denotes 
the  complex conjugate. 

Let C, D = J o  in equation (29) (for  the Z, case).  For 
z = R + O  

as  both J and J o  are finite for z = R+ 0. Then A = 0. 

The  bar  denotes  the complex conjugate. 

Property 2. 

IHt’( i tor) /2  = H t ) ( i t O r ) H r ) (  - i t $  r). (32) 

H;) and Hr’ are  Hankel  functions of zero  order  and 
first and  second  kind, respectively. 

By virtue of property 1 and  the  above calculation ZJ 
can be explicitly expressed  as 

ZJ = (R/fh2 -fh*’)[f~J1(fhR)JO(gh*R) 

- fb*JO(23)J ,  (Rh* R)] .  (33) 
Also, by virtue of property  2, we can  obtain  the explicit 
expression  for the  integral 

and AH # 0, due  to  the  particular  behaviour of the 
function at  the limit, so that  no cancellations  occur  (see 
below). 

On  the  other  hand Jt d r  rlH;) l 2  can  be interpreted 
as an  improper  integral,  as  the limit 

The validity of e  uation (36) can be roven  as follows. 
We  substitute H $ ,  H?) ,  Hi2) and H I  R, in equation (35) 
by their  asymptotic  expansion  for  large  arguments 
(equations  9.2.3  and  9.2.4 of Abramowitz  and  Stegun 
(1972)). For  the  Hankel  functions of the first kind we 
obtain 

and 

607 



M L Calvo and V Lakshminarayanan 

and  for  the  Hankel  functions of second  kind 
H(2)  (-if; R )  - ( - 2 / n i f $  R )  li2 

X exp(ifbR)  exp( - f b R )  exp(  -n/4) (39) 

and 
H?’( -if$ R )  - (-2/nif$ R )  

xexp(  -if/$) exp( -26~) exp(-3n/4). (40) 

Then, according  to  equations (34) and ( 3 9 ,  equation 
(36) reads 

( drrlHy)12 = A H .  (41) 

In  fact,  let  R = 0, H!) and H!) behave  as c In(cr) (c is 
a  constant).  Then 

joR rdrHt’Hf’-c   rdr[ ln(cr) l2-0 as R-0 

and  hence ZH = 0, R = 0, since r vanishes  more rapidly 
than (In r)’ .  

On  the right-hand  side of equation (35) we study  the 
limiting  behaviour by applying the  approximation  for 
Hankel  functions of first and  second kind with small 
argument: 

[R/(ifo)*  -(-ifo*)’]{if,Hi’)H~*’  -(-i)io*Ho (1) HI (2’ } 

loR 

+[-I/(if0)’ - (-if$)’]r(1)(2/n)’ 

x In[-(to* / f O > l .  (42) 

Here r(1) represents  the  gamma  function of unit  argu- 
ment (r(1) = 1). 

To obtain  on  the  right-hand side of equation  (35), 
an  expression  consistent with the  behaviour of 1, at 
R = 0, the  constant  of  integration AH is such that it 
establishes the  cancellation of the  constant  term in 
equation  (42),  then 

AH = [-l/(x’o -f$’)1r(1>(2/n>2 ln[ - ( fo*  /io)]. 
(43) 

By substituting  into  equation  (41),  one  obtains  the 
explicit expression  for ZH (see  equation  (28)).  Numeri- 
cally, ZH can  be easily  calculated  since A H  and 1;) are 
known. 

5. Polynomial expansion and computational 
method 

To evaluate  equations (25) and (26)  numerically,  use of 
the  polynomial  expansion  for J o  and J1 has  been  made 
(section  9.4 of Abramowitz  and  Stegun  (1972)), with 
the specification that  the  variable is now a complex one. 
We  notice  that use of standard  tables of Bessel  functions 
Jo(z)  and Jl(z) for  complex  argument  (Watson 1942. 
National  Bureau of Standards  1943),  cannot  be used 
here  due  to  the  particular values of the  argument of the 

complex  variable  appearing  for  a  standard  absorbing 
optical  waveguide,  as in general  arg f i R  cannot be 
expressed in terms of an  entire  number of radians 
(Lakshminarayanan  and  Calvo  1987).  In this  special 
case the  condition  for  the  applied polynomial  expansion 
holds  as: 

- 3 < I R l < + 3  

with 

We  recall that 2; gives information on the transmission 
properties of the waveguide while i(,I is related  to  the 
absorption  ones.  For  standard  optical waveguides with 
weak absorption, such as  optical  photoreceptors,  the 
extinction  coefficient is about K - lo-” in the visible 
spectrum  (Harosi 1981).  In this case, we usually deal 
with values for 121 - 3R (R being the  radius of the  core). 
If the waveguide propagates light under  a  monomode 
regime,  or  quasi-monomode  (supporting  a low number 
of bound  modes),  then R - 1 .O um  and we can keep up 
to  a  second  order of approximation in the polynomial 
expansion. The numerical  equations  read 

And in a similar way we obtain  for 1,: 

Ji (X) =fb’R{O.5 - 0.0625R2[3(fhr)’ - (f&)2]} 

The  consequences of using this  approximation will be 
discussed later. 

Additional  polynomial  expansions  for 3 < 111 < + x 

can be  used for  both J o  and J1 by keeping  the  same 
order of approximation as well.  In equations (44)-(47). 
the  superscripts  ’r’  and ‘i’ denote  the real  and  imaginary 
parts  for J u  and J 1  respectively. 

The numerical  estimates  are displayed in figure 2. 
In  this  figure, the  radial  distribution  for Jt1. 11,. 1: and 
l‘, are  displayed,  together with the  cross-product 
JT,Ji + J[ , J ’ ; ,  which contributes  to  the  total fraction of 
the confined  power P i  through  equation (33). We 
observe  the  correct  behaviour  for J[ ,  and Ji thus vali- 
dating  the polynomial  expansion  previously  established. 
Also, we notice  the small  contribution  to Pi coming 
from J i ,  and J ;  , due  to  the weak  absorption  condition 
that  has  been  assumed. 

In figure 3 we show the  distribution of the complex 
Bessel functions  versus  the  dimensionless  parameter 
a = f[]‘R. This is  in fact the  real  parameter  to be used 
in the  comparison of the  distribution of the density of 
energy (Pi/unit  area), between  dielectric (absorp- 
tionless)  and  absorbing  waveguides. 
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Figure 2. Radial distribution of the real and imaginary parts 
of the complex functions J,, and J1 (full curves). The cross- 
products J;J; + JbJ; (broken curve) and - JbJ; 
(chain curve) are shown since both of these terms 
contribute to the fraction of the confined power P[ within 
the absorbing waveguide. The modal parameter ib is fixed 
as ,f; = 2.8 and 2: = 3 x then l,f$ 3.0. 
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Figure 3. Numerical behaviour of the complex functions Jo 
and J1 versus the dimensionless parameter a = f $ R  Note 
the small contribution of Jb (Ji values are not displayed 
since they are extremely small). For values of a > 3.0, the 
functions J; and J; coincide. Curves A and B show Jo and 
J,, curve C shows J;J; + JbJ', . 

6. Summary and conclusions 

We have  defined  the  exact  analytical  representation  for 
the  initial field striking  an  absorbing  waveguide. The 
uniqueness of the  decomposition is also  discussed. The 
mathematical  treatment  leads  to  the  exact  formulation 
for the  fraction of the confined power,  and,  because of 
the  absorption physical  conditions.  Bessel  and  Hankel 
functions with complex  arguments  are  involved.  The 
integration of these  types of functions is not  trivial,  and 
details on some  applicable  methods  are  presented.  For 
completeness,  some  comments  on  properties of Bessel 
and  Hankel  functions with  complex  argument  are 
included. 

b : : i  0 4  0 . 2  
~ 

0 1 2 3 4 5 6  
a 

Figure 4. Variation of the dimensionless parameter 
b = i ;  R against a = i ; R ,  showing the rapid decrease of 
the function. For a > 2.0 the parameter b is negligible. 

Also, a discussion on some useful  approximations 
for  computation of the  real  and imaginary parts of J o  
and J1 through  polynomial  expansions is given,  together 
with some  numerical  calculations showing the  cor- 
rectness in the  behaviour of both Jb  and Jf , as well as 
the small contribution coming  from J b  and Ji due  to  the 
previously established  weak  absorption  conditions. 
These results  lead to  a  complete  interpretation  from  an 
analytical  solution of the  fraction of the confined  power 
and  density of energy in a weak  absorbing  optical waveg- 
uide. 
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