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Waves in nonlinear discrete systems
Luis L. Bonilla

(joint work with Ana Carpio, Holger Grahn, Guido Dell’Acqua, Ignacio Arana)

The damped Frenkel-Kontorova model of dislocations [1, 2], the spatially discrete
FitzHugh-Nagumo (FHN) model of nerve conduction in myelinated neurons [3]
or the discrete drift-diffusion model of electron transport in doped semiconductor
superlattices (SL) [4] are examples of nonlinear discrete systems. These models
are described by systems of coupled autonomous differential-difference equations
having nonlinear N-shaped source terms and their dynamical behavior can be
understood in terms of fronts, pulses or wave trains.

Wave fronts have monotone profiles joining two different constant solutions as
the discrete index i goes to −∞ or +∞. These fronts are either traveling wave
solutions moving at a constant velocity or stationary solutions (in whose case
we say that the fronts are pinned by the lattice). Typically stationary fronts
exist when a control parameter (the load in the FK model or the current J in
the superlattice model) takes values on an open interval. The transition between
moving and pinned fronts (pinning-depinning transition) depends on the dynamics
of the system. For the overdamped FK model or the SL model, it is a global saddle-
node bifurcation such that the front velocity vanishes as c(J) ∝ |J − Jc|1/2 as J
goes to one of the extremes of the pinning interval [4, 5]. To be precise, consider
the SL case:
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in which the pinning interval is (Jc1, Jc2). Ei(t) are electric field values at the
SL quantum wells, v(E) and D(E) are the electron drift velocity and diffusivity,
respectively [4]. The critical currents Jc1 and Jc2 depend on another parameter,
the dimensionless doping density ν. For J > Jc2, the wave fronts move towards
the left, with negative velocity, whereas they move to the right if J < Jc1. As
J → Jc1− or J → Jc2+, the front profile develops steps (and it loses smoothness
at the critical currents). For large values of ν there is one prominent step in
the front profile: most Ei(t) = E(i − ct) are either E(1)(J) or E(3)(J), with
v(E(n)(J)) = J , except for a single active point E0(t) which is in between these
two values. The evolution of E0(t) is given approximately by (1) with Ei =
E(1)(J) for i < 0 and Ei = E(3)(J) for i > 0. The front profile E(z) can be
reconstructed from the motion of the active point by using E(z) = E0(−z/c)
[1, 4, 5]. For J in the pinning interval, the equation for E0 has one unstable
and two stable stationary solutions. The unstable and one of the stable solutions
merge in a saddle-node bifurcation as J → Jcn, n = 1, 2. As J → Jc1− or
J → Jc2+, the corresponding normal form dϕ/dt = α(J − Jcn) + β2ϕ2, has the
solution ϕ = (−1)n

√
α(J − Jcn)/β tan[

√
αβ(J − Jcn) (t − t0)], which blows up
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at (t − t0) = ±1/(2c), with c =
√
αβ(J − Jcn)/π. c is the approximate front

velocity. At the blow-up times, E0(t) solves (1) with J = Jcn, Ei = E(1)(J) for
i < 0 and Ei = E(3)(J) for i > 0, and the matching conditions E0 → E(3)(Jcn)
as (t − t0) → +∞ for (t − t0) = 1/(2c) (resp. E0 → E(1)(Jcn) as (t − t0) → −∞
for (t − t0) = −1/(2c)). As ν decreases, there are more active points between
E(1)(J) and E(3)(J) and finitely many equations need to be kept to approximate
(1). See Ref. [5] for a detailed description and results. In the continuum limit,
ν → 0, the pinning interval disappears and (1) may be approximated by a first-
order hyperbolic equation together with shock and entropy conditions that yield
approximate wave front velocities [4].

The pinning-depinning transition of wave fronts is modified by disorder. For ex-
ample, fluctuations in the SL doping density result in adding a term γD(Ei)(ξi+1−
ξi)− γv(Ei)ξi to the right hand side of (1), where ξi is a random variable taking
values on (−1, 1) with equal probability and γ → 0. An extension of the active
point theory has been used to show that the effect of disorder is to shift the critical
currents and to change the critical exponent from 1/2 to 3/2 [6]. The effect of
inertia may be even more dramatic. In the underdampled FK model with a piece-
wise linear source, the pinning-depinning transition may become subcritical: the
stable branch of moving fronts is connected to the stationary solution by branches
having infinitely many turning points that accumulate at the static critical J [2].

Wave fronts are stable solutions of the differential-difference equations con-
sidered here. We can use their profiles and velocities to describe more complex
dynamical behaviors. Two examples. A voltage biased SL is described by (1)
for i = 1, . . . , N , the bias condition

∑N
i=0Ei = (N + 1)φ (for a given constant

voltage φ) and boundary conditions at i = 0 and N . The unknowns in this
problem are Ei(t) and J(t). Depending on the values of ν and φ, this prob-
lem has stable stationary or time-periodic solutions which can be visualized in
a bifurcation diagram of J versus φ (current-voltage diagram) [7]. For large ν,
the only stable solutions are stationary and there may be several stable solution
branches for a given value of φ. The field profile of each solution branch is a
stationary wave front pinned at a given SL period i. For lower doping densities,
there are intervals of φ for which the stable solutions are self-sustained oscilla-
tions having a periodic J(t). The corresponding field profiles are pulses moving
from i = 0 to i = N . These pulses are regions with Ei = E(3)(J) bounded
by monotonically increasing and monotonically decreasing wave fronts. Between
pulses or between pulses and contacts, Ei = E(1)(J). During a self-oscillation,
J(t) varies slowly whereas the field (either at wave fronts or at flat regions with
Ei = E(n)(J)) adapts rapidly to the instantaneous value of J . To find an equation
for J(t), we simply time-differentiate the voltage bias condition, use the known
functions c±(J) (velocities of a monotone increasing or decreasing wave front in
terms of J) and that v′(E(n)(J)) dE(n)/dt = dJ/dt. The result is an equation
dJ/dt = A(J) [n+c+(J)− n−c−(J)]/N , where n± is the number of increasing (+)
or decreasing (-) fronts and A(J, φ) > 0 is a known function. If we include stages
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of wave front formation and annihilation at contacts, this equation is the basis of
an asymptotic description of self-oscillations in the limit of large N (long SL) [7].

The other example of reducing pulse dynamics to wave front dynamics is pro-
vided by the FHN system consisting of an overdamped FK equation for the ex-
citatory unknown and a linear ODE for the recovery unknown (the load). Their
respective time scales are widely separated. In the fast time scale, the recovery
variable is frozen and there are monotone increasing and decreasing fronts bound-
ing a pulse of the excitatory variable. In the slow time scale, the excitatory variable
moves over the stable branches of the N-shaped source term for the overdamped
FK equation following the evolution of the recovery variable. It is possible to find
a reduced system of equations for the time lag between wave fronts, the length of
the region between fronts and the values of the recovery variable at the fronts [3].
The solution of this reduced system describe the evolution of the pulse.

Recently, we have considered a model for electron and hole transport in an
undoped SL. In addition to a discrete drift-diffusion equation similar to (1), this
system has an additional equation for the hole density plus bias and boundary
conditions. If the electron-hole recombination is calculated as a function of electric
field, the resulting system may have excitable or oscillatory dynamics with only
one stable constant stationary solution, a situation reminiscent of the FHN system
[8]. The voltage bias condition gives rise to a large variety of oscillations mediated
by wave fronts, pulses and wave trains. Different from the case of doped SL, a
pulse may be created inside the SL (not at the contact region), split into two, and
each resulting pulse then moves towards the closest contact. Repetition of this
process produces chaotic current oscillations.
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