BASIC CLASSES FOR FOUR-MANIFOLDS NOT OF SIMPLE TYPE

VICENTE MUÑOZ

November, 1998

Abstract

We extend the notion of basic classes (for the Donaldson invariants) to 4 -manifolds with $b^{+}>1$ which are (potentially) not of simple type or satisfy $b_{1}>0$. We also give a structure theorem for the Donaldson invariants of 4-manifolds with $b^{+}>1, b_{1}>0$ and of strong simple type.

1. Introduction

The primary purpose of this paper is to extend the notion of basic classes (as defined by Kronheimer and Mrowka [3] for the Donaldson invariants) to all 4-manifolds satisfying $b^{+}>1$. So we drop the conditions $b_{1}=0$ and being of simple type imposed in [3]. We give a (somewhat partial) structure theorem for the Donaldson invariants of any 4-manifold with $b^{+}>1$ (compare [4]).

Donaldson invariants for a (smooth, compact, oriented) 4-manifold X with $b^{+}>1$ (and with a homology orientation) are defined as linear functionals [3]

$$
D_{X}^{w}: \mathbb{A}(X)=\operatorname{Sym}^{*}\left(H_{0}(X) \oplus H_{2}(X)\right) \otimes \Lambda^{*} H_{1}(X) \rightarrow \mathbb{C}
$$

where $w \in H^{2}(X ; \mathbb{Z})$. As for the grading of $\mathbb{A}(X)$, we give degree $4-i$ to the elements in $H_{i}(X)$. If $x \in H_{0}(X)$ denotes the class of a point, we say that X is of w-simple type when $D_{X}^{w}\left(\left(x^{2}-4\right) z\right)=0$, for any $z \in \mathbb{A}(X)$. When X has $b_{1}=0$ and it is of w-simple type for some $w \in H^{2}(X ; \mathbb{Z})$, then it is of w^{\prime}-simple type for any other $w^{\prime} \in H^{2}(X ; \mathbb{Z})$, and it is said to be of simple type for brevity [1]. For 4-manifolds of simple type (with $b^{+}>1$), it is customary to define [3] the formal power series (in a variable t) given by

$$
\mathbb{D}_{X}^{w}(t D)=D_{X}^{w}\left(\left(1+\frac{x}{2}\right) e^{t D}\right)
$$

*Partially supported by DGES through Spanish Research Project PB97-1095.
Key words: 4-manifolds, Donaldson invariants, Fukaya-Floer homology.
Mathematics Subject Classification. Primary: 58D27. Secondary: 57R57.
for any $D \in H_{2}(X)$. We introduce the following notions as in [5]
Definition 1. Let $w \in H^{2}(X ; \mathbb{Z})$. We say that X is of w-finite type when there is some $n \geq 0$ such that $D_{X}^{w}\left(\left(x^{2}-4\right)^{n} z\right)=0$, for any $z \in \mathbb{A}(X)$. The order (of w-finite type) is the minimum of such $n . X$ is of finite type if it is of w-finite type for any $w \in H^{2}(X ; \mathbb{Z})$ and the order (of finite type) is the supremum of all the orders of w-finite type of X, with $w \in H^{2}(X ; \mathbb{Z})$.
Also X is of w-strong simple type, for $w \in H^{2}(X ; \mathbb{Z})$, when $D_{X}^{w}\left(\left(x^{2}-4\right) z\right)=0$, for any $z \in \mathbb{A}(X)$ and $D_{X}^{w}(\delta z)=0$, for any $\delta \in H_{1}(X)$ and any $z \in \mathbb{A}(X) . X$ is of strong simple type if it is of w-strong simple type for any $w \in H^{2}(X ; \mathbb{Z})$.

Clearly strong simple type implies simple type, and the two conditions are equivalent when $b_{1}=0$. Also finite type of order 1 means simple type and order 0 means that the Donaldson invariants are identically zero. Note that by [5, theorem 7.3], all 4-manifolds with $b^{+}>1$ are of finite type. Since $D_{X}^{w+2 \alpha}=(-1)^{\alpha^{2}} D_{X}^{w}$, for any $\alpha \in H^{2}(X ; \mathbb{Z})$, the order of w-finite type only depends on w modulo $2 H^{2}(X ; \mathbb{Z})$, and hence the order of finite type is finite. We shall see later (theorem 5) that the order of w-finite type does not depend on $w \in H^{2}(X ; \mathbb{Z})$ and hence the order of finite type is finite and equal to any order of w-finite type.

Our first result is an extension of the structure theorem for the Donaldson invariants as given in [3] [1] to 4 -manifolds of strong simple type, in the form that was stated in [5, proposition 7.6] (recall that Q stands for the intersection form).

Theorem 2. Let X be a manifold with $b^{+}>1$ and of w-strong simple type for some $w \in H^{2}(X ; \mathbb{Z})$. Then X is of strong simple type and $\mathbb{D}_{X}^{w}=e^{Q / 2} \sum(-1)^{\frac{K_{i} \cdot w+w^{2}}{2}} a_{i} e^{K_{i}}$, for finitely many $K_{i} \in H^{2}(X ; \mathbb{Z})$ and rational numbers a_{i} (the collection is empty when the invariants all vanish). These classes are lifts to integral cohomology of $w_{2}(X)$. Moreover, for any embedded surface $S \hookrightarrow X$ of genus g, representing a non-torsion homology class and with $S^{2} \geq 0$, one has $2 g-2 \geq S^{2}+\left|K_{i} \cdot S\right|$, for all K_{i}.

When we put $b_{1}=0$ we recover the structure theorem of Kronheimer and Mrowka given in [3] for the Donaldson invariants of 4-manifolds of simple type with $b_{1}=0$ and $b^{+}>1$ (see also [1] for the case of simply connected 4 -manifolds). It is possible that the proof provided in [3] can be adapted to prove theorem 2, but there are difficulties as one of the starting conditions for the analysis in [3] is that of admissibility in [3, definition 2.23], which can not be removed in general. A. Stipsicz informed the author that he encountered this same problem in the computation of the Donaldson invariants of the 4 -torus [6]. We have decided to include a self-contained proof of theorem 2 as it is used by the author in the
determination of the Donaldson invariants of the product of two compact surfaces of genus bigger than one in [5, subsection 7.3]. It will also serve to clarify the ideas behind the proof of our more general structure theorem for the Donaldson invariants of arbitrary 4-manifolds with $b^{+}>1$ (theorem 6).

Definition 3. If X is a 4 -manifold with $b^{+}>1$ and of strong simple type, then the basic classes of X will be the cohomology classes K_{i} of theorem 2 such that $a_{i} \neq 0$.

Remark 4. There are many 4-manifolds with $b_{1}>0$ and $b^{+}>1$ which are of strong simple type. For instance, $X=\Sigma_{g} \times \Sigma_{h}$, where Σ_{r} is a compact surface of genus r and $g, h \geq 1$, are of strong simple type, as it is proved in [5, theorem 7.11]. On the other hand, there are also 4 -manifolds with $b^{+}>1$ not of strong simple type. If X is any 4 -manifold with $b^{+}>1$ and non-vanishing Donaldson invariants, then $X^{\prime}=X \# \mathbb{S}^{1} \times \mathbb{S}^{3}$ is not of strong simple type, as follows from [5, lemma 5.8]. Nonetheless for X of strong simple type and $X^{\prime}=X \# \mathbb{S}^{1} \times \mathbb{S}^{3}$, let δ be the image in $H_{1}\left(X^{\prime}\right)$ of the generator of $\pi_{1}\left(\mathbb{S}^{1} \times \mathbb{S}^{3}\right)$. We have

$$
D_{X^{\prime}}^{w}\left(\delta\left(1+\frac{x}{2}\right) e^{t D}\right)=D_{X}^{w}\left(\left(1+\frac{x}{2}\right) e^{t D}\right)=\mathbb{D}_{X}^{w}(t D),
$$

which has the same shape as that provided by theorem 2 .
For general 4-manifolds with $b^{+}>1$ it is not licit to suppose that $\left(x^{2}-4\right)$ and all $\delta \in H_{1}(X)$ kill the Donaldson invariants. In principle, there might be 4 -manifolds with $b_{1}=0, b^{+}>1$ not of simple type [4] (although they have not been found so far) and, in any case, remark 4 tells us that there are examples where the 1 -homology classes act non-trivially. We have the following two main results:

Theorem 5. Let X be a 4-manifold with $b^{+}>1$. Let $w, w^{\prime} \in H^{2}(X ; \mathbb{Z})$. Then the order of w-finite type and the order of w^{\prime}-finite type of X are equal. This number is thus the order of finite type of X.

Theorem 6. Let X be a 4-manifold with $b^{+}>1, w \in H^{2}(X ; \mathbb{Z})$ and $z \in \Lambda^{*} H_{1}(X) \subset \mathbb{A}(X)$ an homogeneous element. Then there are finitely many cohomology classes $K_{i} \in H^{2}(X ; \mathbb{Z})$ and non-zero polynomials $p_{i}, q_{i} \in \operatorname{Sym}^{*} H^{2}(X) \otimes \mathbb{Q}[\lambda]$ such that

$$
\begin{equation*}
D_{X}^{w}\left(z e^{t D+\lambda x}\right)=e^{Q(t D) / 2+2 \lambda} \sum p_{i}(t D, \lambda) e^{K_{i} \cdot t D}+e^{-Q(t D) / 2-2 \lambda} \sum q_{i}(t D, \lambda) e^{i K_{i} \cdot t D} \tag{1}
\end{equation*}
$$

for any $D \in H_{2}(X)$. The collection of classes K_{i} is independent of w and K_{i} are lifts to integral cohomology of $w_{2}(X)$.

Remark 7. Let $d_{0}=-w^{2}-\frac{3}{2}\left(1-b_{1}+b^{+}\right)$and $d=\operatorname{deg}(z) / 2$. Here $d_{0}-d \in \mathbb{Z}$. Then $D_{X}^{w}\left(z e^{i t D-\lambda x}\right)=i^{d_{0}-d} D_{X}^{w}\left(z e^{t D+\lambda x}\right), i=\sqrt{-1}$, so $q_{i}(t D, \lambda)=i^{d-d_{0}} p_{i}(i t D,-\lambda)$ for all i. Therefore the p_{i} determine the q_{i} and conversely. Also if $K_{j}=-K_{i}$ then $p_{j}(-t D, \lambda)=$ $(-1)^{d_{0}-d} p_{i}(t D, \lambda)$. So the classes K_{i} come actually in pairs $\pm K_{i}$.

We finally have the following definition, which agrees with definition 3 for strong simple type manifolds.

Definition 8. Let X be a 4 -manifold with $b^{+}>1$ and $z \in \Lambda^{*} H_{1}(X)$ an homogeneous element. The cohomology classes K_{i} of theorem 6 such that $p_{i} \neq 0$ are called basic classes for (X, z). The union of all the basic classes for (X, z) where z runs through any homogeneous basis of $\Lambda^{*} H_{1}(X)$ is the set of basic classes for X.

The proof of theorem 6 is based on two techniques. On the one hand, the Fukaya-Floer homology of the three-manifold $Y=\Sigma \times \mathbb{S}^{1}$, where Σ is a compact surface, as determined in [5], which we recall in section 2 for the convenience of the reader. On the other hand, partial use of the blow-up formula in [2] which relates the Donaldson invariants of a 4manifold X and those of its blow-up $\tilde{X}=X \# \overline{\mathbb{C P}}^{2}$. Section 3 is devoted to prove theorem 2 and in section 4 we study the Donaldson invariants of general 4-manifolds with $b^{+}>1$ in order to prove theorems 5 and 6 .

2. Fukaya-Floer homology revisited

Let Y be a 3-manifold with $b_{1}>0$ and $w \in H^{2}(Y ; \mathbb{Z} / 2 \mathbb{Z})$ non-zero. For any loop $\delta \subset Y$, we have defined the Fukaya-Floer homology [5]

$$
H F F_{*}(Y, \delta),
$$

which is a $\mathbb{C}[[t]]$-module, endowed with a $\mathbb{C}[[t]]$-bilinear pairing

$$
\left.\langle,\rangle: H F F_{*}(Y, \delta) \otimes H F F_{*}(-Y,-\delta) \rightarrow \mathbb{C}[t]\right],
$$

where $-Y$ is Y with reversed orientation. For every 4-manifold X_{1} with boundary $\partial X_{1}=Y$ and $w_{1} \in H^{2}(X ; \mathbb{Z})$ such that $\left.w_{1}\right|_{Y}=w \in H^{2}(Y ; \mathbb{Z} / 2 \mathbb{Z}), z \in \mathbb{A}\left(X_{1}\right)$ and $D_{1} \subset X_{1}$ a 2-cycle with $\partial D_{1}=\delta$, one has a relative invariant

$$
\phi^{w}\left(X_{1}, e^{t D_{1}}\right) \in H F F_{*}(Y, \delta) .
$$

The relevant gluing theorem is:
Theorem 9 ([5]). Let $X=X_{1} \cup_{Y} X_{2}$ and $w \in H^{2}(X ; \mathbb{Z})$ such that there exists $\Sigma \in$ $H^{2}(X ; \mathbb{Z})$ whose Poincaré dual lies in the image of $H_{2}(Y ; \mathbb{Z}) \rightarrow H_{2}(X ; \mathbb{Z})$, and satisfies $w \cdot \Sigma \equiv 1(\bmod 2)$. Put $w_{i}=\left.w\right|_{X_{i}} \in H^{2}\left(X_{i} ; \mathbb{Z}\right)$. Let $D \in H_{2}(X)$ decomposed as $D=D_{1}+D_{2}$ with $D_{i} \subset X_{i}, i=1,2$, 2-cycles with $\partial D_{1}=\delta, \partial D_{2}=-\delta$. Choose $z_{i} \in \mathbb{A}\left(X_{i}\right), i=1,2$. Then

$$
D_{X}^{(w, \Sigma)}\left(z_{1} z_{2} e^{t D}\right)=\left\langle\phi^{w_{1}}\left(X_{1}, z_{1} e^{t D_{1}}\right), \phi^{w_{2}}\left(X_{2}, z_{2} e^{t D_{2}}\right)\right\rangle,
$$

where $D_{X}^{(w, \Sigma)}=D_{X}^{w}+D_{X}^{w+\Sigma}$. When $b^{+}=1$ the invariants are calculated for metrics on X giving a long neck.

We restrict to the case $Y=\Sigma \times \mathbb{S}^{1}$, where Σ is a surface of genus $g \geq 1, w=$ P.D. $\left[\mathbb{S}^{1}\right]$, $\delta=\mathbb{S}^{1} \subset Y$. As $Y \cong(-Y)$, we have a natural identification $\operatorname{HFF}_{*}\left(Y, \mathbb{S}^{1}\right) \cong \operatorname{HFF}^{*}\left(Y, \mathbb{S}^{1}\right)$ and a pairing

$$
\langle,\rangle: H F F^{*}\left(Y, \mathbb{S}^{1}\right) \otimes H F F^{*}\left(Y, \mathbb{S}^{1}\right) \rightarrow \mathbb{C}[[t]] .
$$

Let $A=\Sigma \times D^{2}$ be the product of Σ times a 2 -dimensional disc and consider the horizontal section $\Delta=\Sigma \times \operatorname{pt} \subset A$. Let $\left\{\gamma_{i}\right\}$ be a symplectic basis for $H_{1}(\Sigma)$ with $\gamma_{i} \cdot \gamma_{g+i}=1,1 \leq i \leq g$. The Fukaya-Floer homology $\operatorname{HFF} F^{*}\left(Y, \mathbb{S}^{1}\right)$ is actually a $\mathbb{C}[[t]]$-algebra [5, section 5] generated by $\alpha=2 \phi^{w}\left(A, \Sigma e^{t \Delta}\right), \beta=-4 \phi^{w}\left(A, x e^{t \Delta}\right)$ and $\psi_{i}=\phi^{w}\left(A, \gamma_{i} e^{t \Delta}\right), 1 \leq i \leq 2 g$, where the product is determined by $\phi^{w}\left(A, z_{1} e^{t \Delta}\right) \phi^{w}\left(A, z_{2} e^{t \Delta}\right)=\phi^{w}\left(A, z_{1} z_{2} e^{t \Delta}\right), z_{1}, z_{2} \in \mathbb{A}(\Sigma)$. In particular $\phi^{w}\left(A, z e^{t \Delta}\right), z \in \mathbb{A}(\Sigma)$, generate $\operatorname{HFF}\left(Y, \mathbb{S}^{1}\right)$. The mapping class group of Σ acts on $\operatorname{HFF}^{*}\left(Y, \mathbb{S}^{1}\right)$ factoring through an action of the symplectic group $\operatorname{Sp}(2 g, \mathbb{Z})$ on $\left\{\psi_{i}\right\}$. The invariant part is generated by α, β and $\gamma=-2 \sum \psi_{i} \psi_{g+i}$.

In general, we shall have the following situation: X is a 4 -manifold with $b^{+}>1$ and $\Sigma \hookrightarrow X$ is an embedded surface of genus $g \geq 1$ and self-intersection zero such that there exists $w \in H^{2}(X ; \mathbb{Z})$ with $w \cdot \Sigma \equiv 1(\bmod 2)$. Let A be a small tubular neighbourhood of Σ in X and denote by X_{1} the complement of the interior of A, so that X_{1} is a 4 -manifold with boundary $\partial X_{1}=Y=\Sigma \times \mathbb{S}^{1}$ and $X=X_{1} \cup_{Y} A$. Take $D \in H_{2}(X)$ with $D \cdot \Sigma=1$. Then D can be represented by a cycle $D=D_{1}+\Delta$, where $D_{1} \subset X_{1}, \partial D_{1}=\mathbb{S}^{1}$ and $\Delta=\mathrm{pt} \times D^{2} \subset A$. Theorem 9 says

$$
D_{X}^{(w, \Sigma)}\left(z e^{t D+s \Sigma+\lambda x}\right)=\left\langle\phi^{w}\left(X_{1}, z e^{t D_{1}+s \Sigma+\lambda x}\right), \phi^{w}\left(A, e^{t \Delta}\right)\right\rangle,
$$

for any $z \in \mathbb{A}\left(X_{1}\right)$. Here t is a formal variable, and both terms are meant to be developed in powers of s and λ. Also Σ denotes the homology class represented by the surface and the corresponding cohomology class by Poincaré duality. The effective Fukaya-Floer homology, $\widetilde{H F F_{g}^{*}}$, (see [5, definition 5.10]) is the sub- $\mathbb{C}[[t]]$-module of $H F F_{g}^{*}$ with the property that

$$
\phi^{w}\left(X_{1}, z e^{t D_{1}}\right) \in \widetilde{H F F_{g}^{*}} \subset H F F_{g}^{*}
$$

If R is a polynomial such that $R(\alpha, \beta)=0$ acting on $\widetilde{H F F_{g}^{*}}$ then

$$
R\left(2 \frac{\partial}{\partial s},-4 \frac{\partial}{\partial \lambda}\right) \phi^{w}\left(X_{1}, z e^{t D_{1}+s \Sigma+\lambda x}\right)=0
$$

and therefore $R\left(2 \frac{\partial}{\partial s},-4 \frac{\partial}{\partial \lambda}\right) D_{X}^{(w, \Sigma)}\left(z e^{t D+s \Sigma+\lambda x}\right)=0$. The Donaldson invariants $D_{X}^{(w, \Sigma)}$ satisfy thus partial differential equations coming from the polynomials vanishing on $\widetilde{H F F_{g}^{*}}$. We have the following result

Proposition 10. ([5, theorem 5.13]) The effective Fukaya-Floer homology is a sub- $\mathbb{C}[[t]]$ module $\widehat{H F F_{g}^{*}} \subset H F F_{g}^{*}$ such that there is a direct sum decomposition

$$
\widetilde{H F F}_{g}^{*}=\bigoplus_{r=-(g-1)}^{g-1} R_{g, r}
$$

where $R_{g, r}$ are free $\mathbb{C}[[t]]$-modules such that, in $R_{g, r}, \alpha-(4 r i-2 t), \beta-8$ and γ are nilpotent if r is even, $\alpha-(4 r+2 t), \beta+8$ and γ are nilpotent if r is odd.

3. Strong simple type manifolds

This section is devoted to the proof of theorem 2 . We start with two technical lemmas. We shall abbreviate strong simple type to "sst" in this section.

Lemma 11. Let X be a 4-manifold with $b^{+}>1$ and $w, \Sigma \in H^{2}(X ; \mathbb{Z})$ such that $\Sigma^{2}=0$ and $w \cdot \Sigma \equiv 1(\bmod 2)$. If X is both of w-sst and of $(w+\Sigma)$-sst and $D \in H_{2}(X)$ then there exist power series $f_{r, D}(t),-(g-1) \leq r \leq g-1$, such that

$$
\begin{equation*}
\mathbb{D}_{X}^{w}(t D+s \Sigma)=e^{Q(t D+s \Sigma) / 2} \sum_{r=-(g-1)}^{g-1} f_{r, D}(t) e^{2 r s} \tag{2}
\end{equation*}
$$

i.e. $\mathbb{D}_{X}^{w}(t D+s \Sigma)$ is a solution of the differential equation $\prod_{r=-(g-1)}^{g-1}\left(\frac{\partial}{\partial s}-(2 r+t(D \cdot \Sigma))\right)$. Moreover

$$
\mathbb{D}_{X}^{w+\Sigma}(t D+s \Sigma)=e^{Q(t D+s \Sigma) / 2} \sum_{r=-(g-1)}^{g-1}(-1)^{r+1} f_{r, D}(t) e^{2 r s}
$$

Proof. It is enough to prove (2) for $D \in H_{2}(X)$ with $D \cdot \Sigma=1$, using linearity and continuity. Consider an embedded surface $\Sigma \hookrightarrow X$ of genus $g \geq 1$ representing the Poincaré dual of $\Sigma \in H^{2}(X ; \mathbb{Z})$. Then we are in the situation described in section 2 and will stick to the notations used therein. The relative Donaldson invariant

$$
\phi^{w}\left(X_{1}, e^{t D_{1}}\right) \in H F F_{*}\left(\Sigma \times \mathbb{S}^{1}, \mathbb{S}^{1}\right)
$$

lies in the kernels of $\beta^{2}-64$ and all $\psi_{i}, 1 \leq i \leq 2 g$. This is clear as, for instance, $\left\langle\left(\beta^{2}-64\right) \phi^{w}\left(X_{1}, e^{t D_{1}}\right), \phi^{w}\left(A, z e^{t \Delta}\right)\right\rangle=D_{X}^{(w, \Sigma)}\left(16\left(x^{2}-4\right) z e^{t D}\right)=0$, for any $\phi^{w}\left(A, z e^{t \Delta}\right)$, since X is both of w-sst and of $(w+\Sigma)$-sst. Thus $\left(\beta^{2}-64\right) \phi^{w}\left(X_{1}, e^{t D_{1}}\right)=0$.

Thus in order to compute $D_{X}^{(w, \Sigma)}\left(e^{t D+s \Sigma+\lambda x}\right)=\left\langle\phi^{w}\left(X_{1}, e^{t D_{1}}\right), \phi^{w}\left(A, e^{t \Delta+s \Sigma+\lambda x}\right)\right\rangle$, it only matters the projection of $\phi^{w}\left(A, e^{t \Delta+s \Sigma+\lambda x}\right)$ to the reduced Fukaya-Floer homology (see [5, definition 5.6])

$$
\overline{H F F}_{g}^{*}=H F F_{g}^{*} /\left(\beta^{2}-64, \psi_{1}, \ldots, \psi_{2 g}\right) H F F_{g}^{*}
$$

By [5, theorem 5.9],
$\overline{H F F_{g}^{*}}=\bigoplus_{r=-(g-1)}^{g-1} \bar{R}_{g, r}, \quad$ where $\bar{R}_{g, r}= \begin{cases}\mathbb{C}[[t]][\alpha, \beta] /(\alpha-(4 r i-2 t), \beta-8) & r \text { even } \\ \mathbb{C}[[t]][\alpha, \beta] /(\alpha-(4 r+2 t), \beta+8) & r \text { odd }\end{cases}$
Now we translate the relations of $\overline{H F F_{g}^{*}}$ into partial differential equations satisfied by the Donaldson invariants. For instance, the relation

$$
(\beta-8) \prod_{\substack{-(g-1) \leq r \leq g-1 \\ r \text { odd }}}(\alpha-(4 r+2 t))=0
$$

gives the differential equation

$$
\left(\frac{\partial}{\partial \lambda}+2\right) \prod_{\substack{-(g-1) \leq r \leq g-1 \\ r \text { odd }}}\left(\frac{\partial}{\partial s}-(2 r+t)\right) D_{X}^{(w, \Sigma)}\left(e^{t D+s \Sigma+\lambda x}\right)=0 .
$$

This finally yields the existence of power series $g_{r}(t),-(g-1) \leq r \leq g-1$ (we drop the D from the subindex), such that

$$
D_{X}^{(w, \Sigma)}\left(e^{t D+s \Sigma+\lambda x}\right)=\sum_{r \text { odd }} g_{r}(t) e^{s t+2 r s+2 \lambda}+\sum_{r \text { even }} g_{r}(t) e^{-s t+2 r i s-2 \lambda} .
$$

If $d_{0}=d_{0}(w)=-w^{2}-\frac{3}{2}\left(1-b_{1}+b^{+}\right)$denotes half the dimensions (modulo 4) of the moduli spaces of anti-self-dual connections of $S O(3)$-bundles determined by w, then

$$
\begin{aligned}
& D_{X}^{w}\left(e^{t D+s \Sigma+\lambda x}\right)=\frac{1}{2}\left(\sum_{r \text { odd }} g_{r}(t) e^{s t+2 r s+2 \lambda}+\sum_{r \text { even }} g_{r}(t) e^{-s t+2 r i s-2 \lambda}+\right. \\
& \left.\quad+\sum_{r \text { odd }} i^{-d_{0}} g_{r}(i t) e^{-s t+2 r i s-2 \lambda}+\sum_{r \text { even }} i^{-d_{0}} g_{r}(i t) e^{s t-2 r s+2 \lambda}\right),
\end{aligned}
$$

and hence

$$
\mathbb{D}_{X}^{w}(t D+s \Sigma)=\sum f_{r}(t) e^{s t+2 r s}, \quad \text { where } f_{r}(t)= \begin{cases}g_{r}(t) & r \text { odd } \\ i^{-d_{0}} g_{-r}(i t) & r \text { even }\end{cases}
$$

We leave $\mathbb{D}_{X}^{w+\Sigma}$ to the reader upon noting that $d_{0}(w+\Sigma) \equiv d_{0}(w)+2(\bmod 4)$.
Lemma 12. In the situation of lemma 11, X is of w-sst if and only if it is of $(w+\Sigma)$-sst.
Proof. Arguing by contradiction, suppose X is of w-sst but not of $(w+\Sigma)$-sst. Then there exists $z=\left(x^{2}-4\right)^{r} \delta_{1} \cdots \delta_{p}$ with $\delta_{i} \in H_{1}(X)$ and $r+p>0$ such that $D_{X}^{w}\left(z e^{t D+s \Sigma+\lambda x}\right)=0$, $D_{X}^{w+\Sigma}\left(z e^{t D+s \Sigma+\lambda x}\right)$ is non-zero but $D_{X}^{w+\Sigma}\left(z\left(x^{2}-4\right) e^{t D+s \Sigma+\lambda x}\right)=0$ and $D_{X}^{w+\Sigma}\left(z \delta e^{t D+s \Sigma+\lambda x}\right)=$ 0 for any $\delta \in H_{1}(\Sigma)$. Keeping the notations of the proof of the previous lemma, $\phi^{w}\left(X_{1}, z e^{t D_{1}}\right)$ lies in the kernel of $\beta^{2}-64$ and γ and so, arguing as in lemma 11, it is

$$
D_{X}^{(w, \Sigma)}\left(z e^{t D+s \Sigma+\lambda x}\right)=\sum_{r \text { odd }} g_{r}(t) e^{s t+2 r s+2 \lambda}+\sum_{r \text { even }} g_{r}(t) e^{-s t+2 r i s-2 \lambda},
$$

for some power series $g_{r}(t),-(g-1) \leq r \leq g-1$. In particular $D_{X}^{w}\left(z e^{t D+s \Sigma+\lambda x}\right)$ is non-zero, so X is not of w-sst. This contradiction proves the lemma.

Proof of theorem 2. Now we proceed to the proof of theorem 2 by steps.
Step 1. X is of strong simple type.
Let S be a 4 -manifold with $b^{+}>1$ and $w \in H^{2}(S ; \mathbb{Z})$. Let $\tilde{S}=S \# \overline{\mathbb{C P}}^{2}$ denote its blow-up and let E stand for the cohomology class of the exceptional divisor. Therefore $H^{2}(\tilde{S} ; \mathbb{Z})=H^{2}(S ; \mathbb{Z}) \oplus \mathbb{Z} E$. The general blow-up formula [2] implies that S is of w-sst if and only if \tilde{S} is of w-sst if and only if \tilde{S} is of $(w+E)$-sst.

With this said, suppose X is of w-sst for some $w \in H^{2}(X ; \mathbb{Z})$. We shall prove that X is of w^{\prime}-sst for any other $w^{\prime} \in H^{2}(X ; \mathbb{Z})$. Consider any cohomology class $L \in H^{2}(X ; \mathbb{Z})$ with $N=L^{2}>0$. Blow up X at N points to obtain $\tilde{X}=X \# N \overline{\mathbb{C P}}^{2}$, with E_{1}, \ldots, E_{N} denoting the exceptional divisors. Let $L^{\prime}=L-E_{1}-\ldots-E_{N} \in H^{2}(\tilde{X} ; \mathbb{Z})$ which has $\left(L^{\prime}\right)^{2}=0$. As X is of w-sst, \tilde{X} will be both of w-sst and $\left(w+E_{1}\right)$-sst (recall that $N>0$). Now $w \cdot L^{\prime}$ and $\left(w+E_{1}\right) \cdot L^{\prime}$ have different parity since $E_{1} \cdot L^{\prime}=1$. Therefore one of them is odd. If $w \cdot L^{\prime} \equiv 1(\bmod 2)$, then lemma 12 implies that \tilde{X} is of $\left(w+L^{\prime}\right)=\left(w+L-E_{1}-\ldots-E_{N}\right)$-sst, and hence X is of $(w+L)$-sst. Alternatively, if $\left(w+E_{1}\right) \cdot L^{\prime} \equiv 1(\bmod 2)$, then \tilde{X} is of $\left(w+E_{1}+L^{\prime}\right)=\left(w+L-E_{2}-\ldots-E_{N}\right)$-sst and X of $(w+L)$-sst again. In conclusion, X is of $(w+L)$-sst, for any $L \in H^{2}(X ; \mathbb{Z})$ with $L^{2}>0$.

Now given w and w^{\prime}, take $T \in H^{2}(X ; \mathbb{Z})$ with $T^{2}>0$. For n large, it will be $\left(w^{\prime}-w+\right.$ $n T)^{2}>0$. Considering $L=w^{\prime}-w+n T$, it follows that X is of $(w+L)=\left(w^{\prime}+n T\right)$-sst. Now taking $L=-n T$, we have that X is of w^{\prime}-sst, as required.
 cohomology classes $K_{i} \in H^{2}(X ; \mathbb{Z})$ and rational numbers $a_{i, w}$.

Let S be a 4 -manifold with $b^{+}>1$ and of sst. If \tilde{S} is the blow-up of S with exceptional divisor E, then the blow-up formula [2] says that $\mathbb{D}_{S}^{w}(t D)=\mathbb{D}_{\tilde{S}}^{w}(t D)$ and $\mathbb{D}_{S}^{w}(t D)=$ $\left.\frac{\partial}{\partial r}\right|_{r=0} \mathbb{D}_{\tilde{S}}^{w+E}(t D+r E)$, for $D \in H_{2}(X)$, so we see that it is enough to prove the claim for \tilde{S}.

After possibly blowing up, we can suppose that X has an indefinite odd intersection form of the form $Q=r(1) \oplus s(-1)$, with $r, s \geq 2, n=r+s$. Put $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{s}$ for the corresponding basis. Then we set $\Sigma_{1}=A_{2}-B_{1}, \Sigma_{j}=A_{j}+B_{1}, 2 \leq j \leq r$, $\Sigma_{r+1}=B_{2}-A_{1}, \Sigma_{r+j}=B_{j}+A_{1}, 2 \leq j \leq s$, and $w=A_{1}+B_{1}$. Then we have a subgroup $H=\left\langle\Sigma_{1}, \ldots, \Sigma_{n}\right\rangle \subset \bar{H}_{2}(X ; \mathbb{Z})=H_{2}(X ; \mathbb{Z}) /$ torsion, such that $2 \bar{H}_{2}(X ; \mathbb{Z}) \subset H$, with $\Sigma_{j}^{2}=0$ and $w \cdot \Sigma_{j} \equiv 1(\bmod 2), 1 \leq j \leq n$.

We represent Σ_{j} by embedded surfaces of genus $g_{j} \geq 1$. Lemma 11 implies then

$$
\begin{equation*}
\mathbb{D}_{X}^{w}\left(t_{1} \Sigma_{1}+\cdots+t_{n} \Sigma_{n}\right)=e^{Q\left(t_{1} \Sigma_{1}+\cdots+t_{n} \Sigma_{n}\right) / 2} \sum_{\substack{-\left(g_{j} 11 \leq r_{j} \leq g_{j}-1 \\ 1 \leq j \leq n\right.}} a_{r_{1} \ldots r_{n}, w} e^{2 r_{1} t_{1}+\cdots+2 r_{n} t_{n}}, \tag{3}
\end{equation*}
$$

for complex numbers $a_{r_{1} \ldots r_{n}, w}$. They are rational because of the rationality of the Donaldson invariants. The claim follows. K_{i} are integral cohomology classes since $2 \bar{H}_{2}(X ; \mathbb{Z}) \subset H$.

Step 3. K_{i} are lifts of $w_{2}(X)$ to integer coefficients.
Equivalently, we need to prove that $K_{i} \cdot x \equiv x^{2}(\bmod 2)$, for any $x \in \bar{H}_{2}(X ; \mathbb{Z})$. Clearly formula (3) implies that $K_{i} \cdot \Sigma_{j} \equiv 0=\Sigma_{j}^{2}(\bmod 2)$, for $1 \leq j \leq n$. Take $x \in \bar{H}_{2}(X ; \mathbb{Z})-H$. There is some index k such that $x \cdot \Sigma_{k} \neq 0$. We can find an integer m such that $x^{\prime}=x+m \Sigma_{k}$ has $N=\left(x^{\prime}\right)^{2} \geq 0$ and $w \cdot x^{\prime} \equiv 1(\bmod 2)\left(\right.$ recall that $w \cdot \Sigma_{j} \equiv 1(\bmod 2)$ for all $\left.j\right)$. We blow up X at N points to get $\tilde{X}=X \# N \overline{\mathbb{C P}}^{2}$ with exceptional divisors E_{1}, \ldots, E_{N}. Then $y=x^{\prime}-E_{1}-\ldots-E_{N}$ has $y^{2}=0$ and $w \cdot y \equiv 1(\bmod 2)$. The blow-up formula [2] says

$$
\mathbb{D}_{\tilde{X}}^{w}=\mathbb{D}_{X}^{w} \cdot e^{-\left(E_{1}^{2}+\cdots+E_{N}^{2}\right) / 2} \cosh E_{1} \cdots \cosh E_{N}=e^{Q / 2} \sum \frac{a_{i, w}}{2^{N}} e^{K_{i}+\sum \pm E_{l}}
$$

so the basic classes of \tilde{X} are of the form $K_{i}+\sum \pm E_{l}$, with K_{i} basic classes for X. Now lemma 11 applied to w and y implies in particular that

$$
0 \equiv\left(K_{i}+\sum \pm E_{l}\right) \cdot y \equiv K_{i} \cdot x^{\prime}+N \quad(\bmod 2)
$$

and hence $K_{i} \cdot x \equiv x^{2}(\bmod 2)$, for all K_{i}.
Step 4. $\mathbb{D}_{X}^{w^{\prime}}=e^{Q / 2} \sum(-1)^{\frac{K_{i}, w^{\prime}+w^{\prime 2}}{2}} a_{i} e^{K_{i}}$, for any other $w^{\prime} \in H^{2}(X ; \mathbb{Z})$, where we put $a_{i}=$ $(-1)^{-\frac{K_{i} \cdot w+w^{2}}{2}} a_{i, w}$ (by step 3 the exponent is an integer).

Lemma 11 implies that if we have proved the claim for w^{\prime} and $w^{\prime} \cdot \Sigma \equiv 1(\bmod 2)$ and $\Sigma^{2}=0$, then the claim is true for $w^{\prime}+\Sigma$. Now to prove the assertion for any $w^{\prime} \in H^{2}(X ; \mathbb{Z})$, it is enough to consider $w^{\prime}=w+L$, with $N=L^{2}>0$ as in step 1. Keep those notations and suppose for instance that we are in the case $\left(w+E_{1}\right) \cdot L^{\prime} \equiv 1(\bmod 2)$ (i.e. $w \cdot L$ is even). Then the blow-up formula again says

$$
\mathbb{D}_{\tilde{X}}^{w+E_{1}}=-\mathbb{D}_{X}^{w} \cdot e^{-\left(E_{1}^{2}+\cdots+E_{N}^{2}\right) / 2} \sinh E_{1} \cosh E_{2} \cdots \cosh E_{N},
$$

so the coefficient of the basic class $K_{i}+\sum a_{l} E_{l}$, where $\left(a_{l}\right)_{l=1}^{N}$ is a sequence of numbers $a_{l}= \pm 1$, is $(-1)^{\frac{a_{1}+1}{2}} a_{i, w} / 2^{N}$. By lemma 11,

$$
\mathbb{D}_{\tilde{X}}^{w+L-E_{2}-\ldots-E_{N}}=e^{Q / 2} \sum c_{K_{i}+\sum a_{l} E_{l}}\left(a_{i, w} / 2^{N}\right) e^{K_{i}+\sum a_{l} E_{l}},
$$

where

$$
c_{K_{i}+\sum a_{l} E_{l}}=(-1)^{\frac{a_{1}+1}{2}}(-1)^{\frac{\left(K_{i}+\sum \sum_{l} a_{l}\right) \cdot L^{\prime}}{2}+1}=(-1)^{\frac{K_{i} \cdot L_{++L^{2}}^{2}}{2}}(-1)^{\frac{a_{2}+1}{2}} \cdots(-1)^{\frac{a_{N}+1}{2}}(-1)^{N-1} .
$$

Using the blow-up formula again together with the standard fact $D_{X}^{w+2 \alpha}=(-1)^{\alpha^{2}} D_{X}^{w}$, we get $\mathbb{D}_{X}^{w+L}=e^{Q / 2} \sum(-1)^{\frac{K_{i} \cdot L+2 w \cdot L+L^{2}}{2}} a_{i, w} e^{K_{i}}$ (since $w \cdot L$ is even), as required.
Step 5. The final assertion is proven as follows. Let $S \hookrightarrow X$ be an embedded surface of genus g with $N=S^{2} \geq 0$ and representing a non-torsion homology class. The argument in [3, page 709] reduces to prove only the case $N>0$. If the genus is $g=0$ then the Donaldson invariants vanish identically and hence it is trivially true. In the case $g \geq 1$, blow-up X at N points to get $\tilde{X}=X \# N \overline{\mathbb{C P}}^{2}$ with exceptional divisors E_{1}, \ldots, E_{N}. Consider the proper transform \tilde{S} of S which is an embedded surface in \tilde{X} of genus g representing the homology class $S-E_{1}-\ldots-E_{N}$. Then lemma 11 applied to \tilde{X}, \tilde{S} and $w=E_{1}$ gives

$$
2(g-1) \geq\left|\left(K_{i}+\sum \pm E_{l}\right) \cdot\left(S-E_{1}-\ldots-E_{N}\right)\right|
$$

for all K_{i} basic classes of X. Therefore we have $2 g-2 \geq\left|K_{i} \cdot S\right|+S^{2}$.

4. Basic classes

We first prove theorem 5. We start with the following analogue of lemma 12.
Lemma 13. In the situation of lemma 11, X is of w-finite type of order k if and only if it is of $(w+\Sigma)$-finite type of order k.

Proof. Arguing by contradiction, suppose X is of w-finite type of order k and of $(w+\Sigma)$-finite type of order $k+a, a>0$. Then there exists $z=\left(x^{2}-4\right)^{k+a-1} \delta_{1} \cdots \delta_{p}$ with $\delta_{i} \in H_{1}(X)$, $p \geq 0$, such that $D_{X}^{w}\left(z e^{t D+s \Sigma+\lambda x}\right)=0, D_{X}^{w+\Sigma}\left(z e^{t D+s \Sigma+\lambda x}\right)$ is non-zero but $D_{X}^{w+\Sigma}\left(z\left(x^{2}-\right.\right.$ 4) $\left.e^{t D+s \Sigma+\lambda x}\right)=0$ and $D_{X}^{w+\Sigma}\left(z \delta e^{t D+s \Sigma+\lambda x}\right)=0$, for any $\delta \in H_{1}(\Sigma)$. The arguments in the proof of lemma 12 now carry over verbatim.

Proof of theorem 5. It goes as in step 1 of the proof of theorem 2 with the difference that we use lemma 13 and note the following: Let S be a 4 -manifold with $b^{+}>1$ and $w \in H^{2}(S ; \mathbb{Z})$. Let $\tilde{S}=S \# \overline{\mathbb{C P}}^{2}$ denote its blow-up and let E stand for the cohomology class of the exceptional divisor. Then S is of w-finite type of order k if and only if \tilde{S} is of w-finite type of order k if and only if \tilde{S} is of $(w+E)$-finite type of order k.

Proof of theorem 6. Now we proceed to the proof of theorem 6. The analogue of lemma 11 is the following:

Lemma 14. Let X be a 4-manifold with $b^{+}>1$ and $w, \Sigma \in H^{2}(X ; \mathbb{Z})$ such that $\Sigma^{2}=0$ and $w \cdot \Sigma \equiv 1(\bmod 2)$. Let $z \in \Lambda^{*} H_{1}(X)$ homogeneous. Take $D \in H_{2}(X)$. Then

$$
D_{X}^{w}\left(z e^{t D+s \Sigma+\lambda x}\right)=e^{Q(t D+s \Sigma) / 2+2 \lambda} \sum_{r=-(g-1)}^{g-1} P_{r}(t, s, \lambda)+e^{-Q(t D+s \Sigma) / 2-2 \lambda} \sum_{r=-(g-1)}^{g-1} Q_{r}(t, s, \lambda),
$$

where $P_{r}(t, s, \lambda)$ is a solution of the differential equations $\left(\frac{\partial}{\partial s}-2 r\right)^{N},\left(\frac{\partial}{\partial \lambda}\right)^{N}$, and $Q_{r}(t, s, \lambda)$ is a solution of $\left(\frac{\partial}{\partial s}-2 r i\right)^{N},\left(\frac{\partial}{\partial \lambda}\right)^{N}$, for N sufficiently large. Moreover

$$
\begin{aligned}
D_{X}^{w+\Sigma}\left(z e^{t D+s \Sigma+\lambda x}\right)= & e^{Q(t D+s \Sigma) / 2+2 \lambda} \sum_{r=-(g-1)}^{g-1}(-1)^{r+1} P_{r}(t, s, \lambda)+ \\
& +e^{-Q(t D+s \Sigma) / 2-2 \lambda} \sum_{r=-(g-1)}^{g-1}(-1)^{r} Q_{r}(t, s, \lambda) .
\end{aligned}
$$

Proof. We proceed as in the proof of lemma 11, but in this case we have $\phi^{w}\left(X_{1}, z e^{t D_{1}+s \Sigma+\lambda x}\right) \in$ $\widetilde{H F F_{g}^{*}} \subset H F F_{g}^{*}$. Now the eigenvalues of (α, β, γ) in $\widetilde{H F F_{g}^{*}}$ given by proposition 10 yield that

$$
D_{X}^{(w, \Sigma)}\left(z e^{t D+s \Sigma+\lambda x}\right)=e^{Q(t D+s \Sigma) / 2+2 \lambda} \sum_{\substack{-(g-1) \leq r \leq g-1 \\ r \text { odd }}} P_{r}(t, s, \lambda)+e^{-Q(t D+s \Sigma) / 2-2 \lambda} \sum_{\substack{-(g-1) \leq r \leq s-1 \\ r \text { even }}} Q_{r}(t, s, \lambda),
$$

where P_{r} and Q_{r} satisfy the differential equations in the statement. Then put $d_{0}=d_{0}(w)=$ $-w^{2}-\frac{3}{2}\left(1-b_{1}+b^{+}\right)$, so

$$
\begin{gathered}
D_{X}^{w}\left(e^{t D+s \Sigma+\lambda x}\right)=\frac{1}{2}\left(e^{Q(t D+s \Sigma) / 2+2 \lambda}\left(\sum_{\substack{-(g-1) \leq r \leq g-1 \\
r \text { odd }}} P_{r}(t, s, \lambda)+i_{\substack{-(g-1) \leq r \leq g-1 \\
r \text { even }}}^{-d_{0}} \sum_{r}(i t, i s,-\lambda)\right)\right. \\
\left.\quad+e^{-Q(t D+s \Sigma) / 2-2 \lambda}\left(\sum_{\substack{-(g-1) \leq r \leq g-1 \\
r \text { even }}} Q_{r}(t, s, \lambda)+i^{-d_{0}} \sum_{\substack{-(g-1) \leq r \leq g-r \\
r \text { odd }}} P_{-r}(i t, i s,-\lambda)\right)\right) .
\end{gathered}
$$

We leave $D_{X}^{w+\Sigma}$ to the reader.
Step 1. Suppose X is a 4-manifold with $b^{+}>1, w \in H^{2}(X ; \mathbb{Z}), z \in \Lambda^{*} H_{1}(X)$ homogeneous and that there is a subgroup $H=\left\langle\Sigma_{1}, \ldots, \Sigma_{n}\right\rangle \subset \bar{H}_{2}(X ; \mathbb{Z})$ such that $2 \bar{H}_{2}(X ; \mathbb{Z}) \subset H$, with $\Sigma_{j}^{2}=0$ and $w \cdot \Sigma_{j} \equiv 1(\bmod 2), 1 \leq j \leq n$. Then (1) holds.

We represent Σ_{j} by embedded surfaces of genus $g_{j} \geq 1$. Lemma 14 implies that

$$
\begin{gathered}
D_{X}^{w}\left(z e^{t_{1} \Sigma_{1}+\cdots+t_{n} \Sigma_{n}+\lambda x}\right)=e^{Q\left(t_{1} \Sigma_{1}+\cdots+t_{n} \Sigma_{n}\right) / 2+2 \lambda} \sum_{\substack{-\left(g_{j}-1 \leq r_{j} \leq g_{j}-1 \\
1 \leq j \leq n\right.}} P_{r_{1} \ldots r_{n}, w}\left(s_{1}, \ldots, s_{n}, \lambda\right) e^{2 r_{1} t_{1}+\cdots+2 r_{n} t_{n}}+ \\
e^{-Q\left(t_{1} \Sigma_{1}+\cdots+t_{n} \Sigma_{n}\right) / 2-2 \lambda} \sum_{\substack{-\left(g_{j}-1 \leq r_{j} \leq g_{j}-1 \\
1 \leq j \leq n\right.}} Q_{r_{1} \ldots r_{n}, w}\left(s_{1}, \ldots, s_{n}, \lambda\right) e^{i\left(2 r_{1} t_{1}+\cdots+2 r_{n} t_{n}\right)},
\end{gathered}
$$

where P 's and Q 's are polynomials. This finishes the step, noting again that K_{i} are integral cohomology classes since $2 \bar{H}_{2}(X ; \mathbb{Z}) \subset H$.

Step 2. Fix an arbitrary $w \in H^{2}(X ; \mathbb{Z})$. Then (1) holds for X and w.
First note that if $w, \Sigma \in H^{2}(X ; \mathbb{Z})$ with $w \cdot \Sigma \equiv 1(\bmod 2)$ and $\Sigma^{2}=0$ then (1) holds for w implies (1) holds for $w+\Sigma$.

The relationship of the Donaldson invariants of a 4 -manifold S and the blow-up $\tilde{S}=$ $S \# \overline{\mathbb{C P}}^{2}$ is not as straightforward as in the simple type case, therefore the strategy of proving that (1) holds for one $w \in H^{2}(X ; \mathbb{Z})$ implies that it holds for any other $w^{\prime} \in H^{2}(X ; \mathbb{Z})$ by blowing-up does not work easily. Instead we fix $w \in H^{2}(X ; \mathbb{Z})$ and shall look for a blow-up $\tilde{X}=X \# m \overline{\mathbb{C P}}^{2}$ with exceptional divisors E_{1}, \ldots, E_{m} such that there exists $\tilde{w} \in H^{2}(\tilde{X} ; \mathbb{Z})$ of the form $\tilde{w}=w+\sum a_{i} E_{i}, a_{i}$ integers, with (\tilde{X}, \tilde{w}) satisfying the conditions in step 1 . This is enough since $D_{X}^{w}\left(z e^{t D+\lambda x}\right)=D_{\tilde{X}}^{w}\left(z e^{t D+\lambda x}\right)$ and $D_{X}^{w}\left(z e^{t D+\lambda x}\right)=\left.\frac{\partial}{\partial r}\right|_{r=0} D_{\tilde{X}}^{w+E}\left(z e^{t D+r E+\lambda x}\right)$, for $D \in H_{2}(X)$.

We can blow up to ensure that $Q=r(1) \oplus s(-1), r \geq 2, s \geq 1$, with corresponding basis $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{s}$ and $w \cdot B_{n} \equiv 0(\bmod 2)$. There are several cases:

- Suppose that (up to reordering) $w \cdot A_{1} \equiv 1(\bmod 2), w \cdot A_{2} \equiv 0(\bmod 2)$. Then blow up once, $\tilde{X}=X \#{\overline{\mathbb{C P}^{2}}}^{2}$, with E the exceptional divisor. Set

$$
\begin{aligned}
\Sigma_{j} & = \begin{cases}A_{j}+E & \text { if } w \cdot A_{j} \equiv 0(\bmod 2) \\
A_{j}+B_{n} & \text { if } w \cdot A_{j} \equiv 1(\bmod 2)\end{cases} \\
\Sigma_{r+j} & = \begin{cases}B_{j}-A_{1} & \text { if } w \cdot B_{j} \equiv 0(\bmod 2) \\
B_{j}-A_{2} & \text { if } w \cdot B_{j} \equiv 1(\bmod 2)\end{cases} \\
\Sigma_{n+1} & =E-A_{2}
\end{aligned}
$$

Then the subgroup $H=\left\langle\Sigma_{1}, \ldots, \Sigma_{n+1}\right\rangle \subset H_{2}(\tilde{X} ; \mathbb{Z})$ and $\tilde{w}=w+E$ satisfy the required properties in step 1 .

- Suppose that $w \cdot A_{j} \equiv 1(\bmod 2)$, for all j. Then put $\Sigma=A_{1}+B_{n}$ and $w^{\prime}=w+\Sigma$. Then w^{\prime} satisfies the conditions of the previous case so (1) holds for w^{\prime}. Now $w^{\prime} \cdot \Sigma \equiv 1(\bmod 2)$ and $\Sigma^{2}=0$, so (1) also holds for w.
- Suppose that $w \cdot A_{j} \equiv 0(\bmod 2)$, for all j and that there exists B_{1} such that $w \cdot B_{1} \equiv 1(\bmod 2)$. Then put $\Sigma=A_{1}+B_{1}$ and $w^{\prime}=w+\Sigma$, and work as in the previous case.
- Suppose $w \equiv 0(\bmod 2)$. Blow-up once and put $\tilde{w}=w+E$. It reduces to the previous case.

Before carrying on with the proof of theorem 6, let us pause to give a characterization of the basic classes of X. So far we only can say that the basic classes are relative to a particular $w \in H^{2}(X ; \mathbb{Z})$. So we define a basic class for (X, z, w) to be a cohomology class K_{i} provided by step 2 , such that $p_{i} \neq 0$.

Proposition 15. Let X be a 4-manifold with $b^{+}>1, z \in \Lambda^{*} H_{1}(X)$ homogeneous and $w \in H^{2}(X ; \mathbb{Z})$. Then $K \in H^{2}(X ; \mathbb{Z})$ is a basic class for (X, z, w) if and only if there exists $z^{\prime} \in \mathbb{A}_{\text {even }}(X)=\operatorname{Sym}^{*}\left(H_{0}(X) \oplus H_{2}(X)\right)$ such that $D_{X}^{w}\left(z z^{\prime} e^{t D+\lambda x}\right)=e^{Q(t D) / 2+2 \lambda+K \cdot t D}$.

Proof. Take N larger than the order of finite type of X. Then $D_{X}^{w}\left(z\left(1+\frac{x}{2}\right)^{N} e^{t D+\lambda x}\right)=$ $e^{Q(t D) / 2+2 \lambda} \sum p_{i}(t D, \lambda) e^{K_{i} \cdot t D}$. Consider a basis $\left\{D_{1}, \ldots, D_{n}\right\}$ of $\bar{H}_{2}(X ; \mathbb{Z})$. Let $\alpha_{j}=K \cdot D_{j}$, $j=1, \ldots, n$. Then take

$$
z^{\prime}=\prod_{j} \prod_{\beta_{j} \neq \alpha_{j}}\left(D_{j}-\beta_{j}\right)^{N}
$$

for a large enough N (just take it larger than the degrees of the polynomials p_{i}). Then $D_{X}^{w}\left(z\left(1+\frac{x}{2}\right)^{N} z^{\prime} e^{t D+\lambda x}\right)=e^{Q(t D) / 2+2 \lambda} p(t D, \lambda) e^{K \cdot t D}$, for a polynomial p. Take some $z^{\prime \prime}=$ $c\left(1-\frac{x}{2}\right)^{m}\left(D_{1}-\alpha_{1}\right)^{m_{1}} \cdots\left(D_{n}-\alpha_{n}\right)^{m_{n}}$, for appropriate exponents and constant c, to get $D_{X}^{w}\left(z\left(1+\frac{x}{2}\right)^{N} z^{\prime} z^{\prime \prime} e^{t D+\lambda x}\right)=e^{Q(t D) / 2+2 \lambda} e^{K \cdot t D}$. The converse is obvious.

We leave the following characterization of basic classes in terms of the blow-up to the reader.

Corollary 16. Let X be a 4-manifold with $b^{+}>1$, $z \in \Lambda^{*} H_{1}(X)$ homogeneous and $w \in H^{2}(X ; \mathbb{Z})$. Let $\tilde{X}=X \# \overline{\mathbb{C P}}^{2}$ be its blow-up with exceptional divisor E. Then $K \in H^{2}(X ; \mathbb{Z})$ is a basic class for (X, z, w) if and only if there exists $z^{\prime} \in \mathbb{A}_{\text {even }}(X)$ such that $D_{\tilde{X}}^{w}\left(z z^{\prime} e^{t D+\lambda x}\right)=e^{Q(t D) / 2+2 \lambda+K \cdot t D} \cosh (E \cdot t D)$ if and only if there exists $z^{\prime} \in \mathbb{A}_{\text {even }}(X)$ such that $D_{\tilde{X}}^{w+E}\left(z z^{\prime} e^{t D+\lambda x}\right)=-e^{Q(t D) / 2+2 \lambda+K \cdot t D} \sinh (E \cdot t D)$.

Now we resume the proof of theorem 6.

By lemma 14 the basic classes for (X, z, w) and $(X, z, w+\Sigma)$ are the same for any Σ such that $\Sigma^{2}=0$ and $w \cdot \Sigma \equiv 1(\bmod 2)$. The argument runs as in step 4 of section 3 using the characterization of basic classes gathered in corollary 16. We need to use lemma 14 in the blow-up manifold \tilde{X} with an extra $z^{\prime} \in \mathbb{A}_{\text {even }}(\Sigma)$, but it is easy to see that its statement still holds.

Step 4. Any basic class K_{i} is a lift of $w_{2}(X)$ to integer coefficients.
This is as in step 3 of section 3 by noting that corollary 16 implies in particular that $K \pm E$ are basic classes of the blow-up of X.

Note also the following corollary to corollary 16
Corollary 17. If $K \in H^{2}(X ; \mathbb{Z})$ is a basic class for X then $K \pm E$ are basic classes for the blow-up $\tilde{X}=X \# \overline{\mathbb{C P}}^{2}$.

Remark 18. It is natural to expect that there are more basic classes $K+m E, m$ odd, $m \neq \pm 1$.

Acknowledgements: Thanks to Ignasi Mundet for comments on early versions of this manuscript. I am grateful to the Department of Mathematics of Universidad Autónoma de Madrid for their hospitality.

References

1. R. Fintushel and R. J. Stern, Donaldson invariants of 4-manifolds with simple type, Jour. Diff. Geometry, 42 1995, 577-633.
2. R. Fintushel and R. J. Stern, The blow-up formula for Donaldson invariants, Annals of Math. 143 1996, 529-546.
3. P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, Jour. Differential Geometry, 41 1995, 573-734.
4. P. B. Kronheimer and T. S. Mrowka, The structure of Donaldson's invariants for four-manifolds not of simple type, http://www.math.harvard.edu/HTML/Individuals/Peter_Kronheimer.html
5. V. Muñoz, Fukaya-Floer homology of $\Sigma \times \mathbb{S}^{1}$ and applications, math.DG/9804081.
6. A. Stipsicz, Ph. D. Thesis, Rutgers University, NJ, Computations of Donaldson invariants via cut and paste techniques, 1994.

Departamento de Álgebra Geometría y Topología, Facultad de Ciencias, UniverSidad de Málaga, 29071 Málaga, Spain

E-mail address: vmunoz@agt.cie.uma.es

