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We employ a functional approach to investigate the confinement problem in quenched
Landau gauge QCD. We demonstrate analytically that a linear rising potential between
massive quarks is generated by infrared singularities in the dressed quark–gluon vertex.
The self-consistent mechanism that generates these singularities is driven by the scalar
Dirac amplitudes of the full vertex and the quark propagator. These can only be present
when chiral symmetry is broken. We have thus uncovered a novel mechanism that directly
links chiral symmetry breaking with confinement.

More than three decades after the identification of non-Abelian gauge theory as

the appropriate framework to describe the strong interactions, we still lack a sat-

isfactory understanding of the confinement phenomenon. Isolated particles with

nonvanishing colour charges have not been observed in nature. This fact is as-

sumed to be encoded in the infrared structure of QCD. In the quenched theory

a gauge-invariant signature of confinement is the area law of the Wilson loop at

large distances. This behaviour corresponds to a linear rising potential between

static colour charges in the fundamental representation of the gauge group. This

signature has been unambiguously verified in lattice gauge QCD, see e.g. Ref. 1.

However, the dynamical mechanism that generates the Wilson potential is still elu-

sive. Since the underlying long range interaction is provided by gauge-dependent

objects, this mechanism may have a different appearance in different gauges. Here

we present such a mechanism for covariant Landau gauge QCD.

The idea of “infrared slavery”, i.e. the notion that infrared singularities gener-

ate confinement, dates back to the early ’70s.2,3 Speculations about the infrared

behaviour of the running coupling at that time distinguish two cases: (a) the cou-
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pling develops an infrared fixed point and (b) the coupling diverges at small or zero

momentum. The last possibility has been considered as the driving mechanism for

the generation of infrared singularities and quark confinement. Today there is am-

ple evidence from functional approaches that the first possibility is realised in the

Yang–Mills sector of Landau gauge QCD: the running coupling freezes out at small

momenta.4–7 However, this does not imply that the Green’s functions of Yang–Mills

theory are finite in the infrared: Instead, depending on the number of ghost and

gluon legs, many of the one-particle irreducible Green’s functions are indeed singu-

lar in the limit that all external momenta vanish.7 Here we demonstrate that these

singularities also induce a corresponding singularity in the dressed quark–gluon

vertex. As a consequence the running coupling defined from this vertex diverges

at vanishing renormalization scale, and a linear potential between massive quarks

is generated thereby realising infrared slavery via an infrared singular quark–gluon

vertex.

Besides confinement, the other fundamental property of infrared QCD is dynam-

ical chiral symmetry breaking, i.e. the non-perturbative generation of quark masses

from dynamical interaction with gluons. Lattice QCD tells us that the chiral phase

transition and the deconfinement transition take place at a similar temperature.8

This suggests a relation between confinement and dynamical chiral symmetry break-

ing, which, however, has not been clarified in detail yet. In this letter we present,

based mostly on an analytical calculation, an explicit mechanism that links these

two phenomena.

The functional approach we employ for our investigation is given by the tower of

Dyson–Schwinger equations for the one-particle irreducible (1PI) Green’s functions

of QCD.9–11 A great advantage of this continuum-based formulation as compared

to lattice QCD is the analytical access to the infrared behaviour of these func-

tions without finite-volume effects necessarily present in lattice calculations. As

has been demonstrated for the propagators of three-dimensional Yang–Mills the-

ory extremely large lattices are mandatory to access the small momentum region

where the infrared asymptotic scaling can be identified.12 The computational costs

for a corresponding investigation in four dimensions exceed current possibilities.

This problem is even more severe for higher n-point functions. This underlines the

necessity for a continuum-based approach to the Green’s functions of QCD.

To begin with we summarise previous results for the infrared behaviour of

the Green’s function in Landau gauge Yang–Mills theory. Gauge fixing in this

framework is performed by the standard Faddeev–Popov method supplemented

by auxiliary conditions such that the generating functional consists of an integral

over gauge field configurations that are contained in the first Gribov region. (The

feasibility of this method has been justified in a framework employing stochastic

quantisation.13) The resulting Dyson–Schwinger equations for 1PI-Green’s func-

tions have been solved analytically in the infrared to all orders in a skeleton

expansion (i.e. a loop expansion using full propagators and vertices).7 Here we
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are interested in the case where all external momenta go to zero. Choosing all

momenta proportional to each other and requiring for the largest one p2 � Λ2
QCD

a self-consistent solution of the whole (untruncated) tower of DSEs is given by7

Γn,m(p2) ∼ (p2)(n−m)κ , (1)

where Γn,m stands for the infrared leading dressing function of a Green’s functions

with 2n external ghost legs and m external gluon legs. The exponent κ is known

to be positive.14 An important property of the infrared solution (1) is the fact

that it is generated by exactly those parts of the DSEs that involve ghost loops.7

In other words: the Faddeev–Popov determinant dominates the infrared behaviour

of non-Abelian Yang–Mills theories. Thus an infrared asymptotic theory can be

obtained by “quenching” the Yang–Mills action, i.e. setting exp(−SYM) → 1 in

the generating functional.13 The solution of this asymptotic theory is given by

the power laws (1). Interestingly, this limit is a continuum analogue of the strong

coupling limit of lattice gauge theory.

Examples of the general solution (1) are given by the inverse ghost and gluon

dressing functions, Γ1,0(p2) = G−1(p2) and Γ0,2(p2) = Z−1(p2), respectively. They

are related to the ghost and gluon propagators via

DG(p2) = −G(p2)

p2
, Dµν(p2) =

(

δµν − pµpν

p2

)

Z(p2)

p2
. (2)

The corresponding power laws in the infrared are

G(p2) ∼ (p2)−κ , Z(p2) ∼ (p2)2κ . (3)

Since κ is positive, one obtains an infrared diverging ghost propagator, a behaviour

which is necessary to ensure a well-defined, i.e. unbroken, global colour charge.15 In

Landau gauge an explicit value for κ can be derived from the observation that the

dressed ghost–gluon vertex becomes (almost) bare in the infrared.16–18 One then

obtains κ = (93−
√

1201)/98 ≈ 0.595,5,6,19 which implies that the gluon propagator

vanishes in the infrared. A direct consequence of this behaviour are positivity viola-

tions in the gluon propagator and therefore the confinement of transverse gluons.4,20

A further important consequence of the solution (1) is the qualitative univer-

sality of the running coupling in the infrared. Renormalisation group invariant

couplings can be defined from either of the primitively divergent vertices of Yang–

Mills-theory, i.e. from the ghost–gluon vertex (gh–gl), the three-gluon vertex (3g)

or the four-gluon vertex (4g) via

αgh–gl(p2) =
g2

4π
G2(p2)Z(p2)

p2
→0∼ c1/Nc ,

α3g(p2) =
g2

4π
[Γ0,3(p2)]2Z3(p2)

p2
→0∼ c2/Nc ,

α4g(p2) =
g2

4π
[Γ0,4(p2)]2Z4(p2)

p2
→0∼ c3/Nc .

(4)
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Employing the DSE-solution (1) it is easy to see that all three couplings ap-

proach a fixed point in the infrared. However, the explicit value of the fixed point,

c1,2,3/Nc, may be different for each coupling. For a bare ghost–gluon vertex one

obtains5 αgh–gl(0) ≈ 8.92/Nc; the other couplings have not been determined yet.

Equations (4) underline that indeed the fixed point scenario (a) is realised in the

Yang–Mills sector of QCD. In turn this explains the existence of the power law

solutions (1): the theory becomes approximately conformal in the far infrared.

We now present a significant extension of this analysis to the quark sector of

quenched QCD. To this end we first choose the masses of the valence quarks to be

large, i.e. m ≥ ΛQCD. The remaining scales below ΛQCD are those of the external

momenta of the Green’s functions. Here we are primarily interested in the case

where all external momenta go to zero. Then, without loss of generality, one can

choose all external momenta to be proportional to one scale p2, which is small

compared to all other scales in the theory, i.e. p2 � Λ2
QCD. One can then employ

Dyson–Schwinger equations to search for self-consistent solutions in terms of powers

of p2.a

We apply this method to the Dyson–Schwinger equation for the full quark–gluon

vertex, given diagrammatically in the first line of Fig. 1. In the second line the higher

n-point functions of this equation have been expanded to lowest order in a skeleton

expansion in terms of full propagators and vertices. The dressed quark–gluon vertex

Γµ can be decomposed in a basis of 12 tensor structures, which are given explicitly

e.g. in Ref. 22. Due to momentum conservation the vertex depends only on the

two external quark momenta (pµ, qµ) or three Lorentz invariants (p2, q2, p · q). To

analyse the infrared limit of this vertex in the presence of only one external scale

p2 � Λ2
QCD, we can set qµ = 2pµ without loss of generality. This leaves us with

only four possible tensor structures which can be denoted by

Γµ(p) = ig

4
∑

i=1

ξi(p
2)Gi

µ (5)

aIntegrals with an infrared power-law enhancement are themselves dominated by infrared integra-
tion momenta. We illustrate this with the following simple example, where α > 1 is a real number.
Consider

I(p) =

∫

Λ

0

dq

(q + p)α
=

1

1 − α
((Λ + p)1−α − p1−α) .

Then, asymptotically for small p,

I(p) →
1

α − 1

1

pα−1

and it is the lower integration limit that contributes. Then we just need to subdivide the integration
interval

∫

Λ

0

=

∫

λ1

0

+

∫

λ2

λ1

+ · · · +

∫

λn

λ
n−1

and it is always the lower (0) limit of the first subinterval that generates the power-law in p.
Therefore, for low-p, the q integration is infrared-dominated.

Another way of putting it is that the integral is divergent with p = 0, and keeping finite p

regulates it. Then the integral is dominated by momentum scales of order the regulator.
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= + + + +

= + + ++

Fig. 1. Dyson–Schwinger equation for the quark–gluon vertex. In the first line we show the full
equation.21 The second line shows the lowest order of a skeleton expansion, that already reveals
the correct power counting in the infrared. All internal lines in the diagrams represent fully dressed
propagators.

with ξi being Lorentz and Dirac scalar functions and

G1
µ = γµ , G2

µ = p̂µ , G3
µ = p̂/p̂µ , G4

µ = p̂/γµ , (6)

where we have normalised the momentum, p̂µ = pµ/
√

p2, to ease power counting.

Note that G1
µ and G3

µ have an odd number of γ-matrices, whereas G2
µ and G4

µ have

an even number. Therefore ξ2,4 6= 0 only if chiral symmetry is broken.

The internal loops of the skeleton expansion in Fig. 1 are dominated by loop

momenta similar to the external scale p2 due to the denominators of the loop

propagators. Thus for p2 � Λ2
QCD the dressing functions of internal propagators

and vertices can be approximated by the power laws given in (1). We therefore

use (3) for the scaling of the ghost and gluon propagators. The ghost–gluon vertex

scales as a constant in the infrared.16–18 The internal quark propagator lines can

be written as

S(p) =
ip/ + M(p2)

p2 + M2(p2)
Zf (p2) → ip/Zf

M2
+

Zf

M
(7)

for momenta p2 � Λ2
QCD, M = M(p2 → 0) & ΛQCD and Zf = Zf (p2 → 0).

Hereby we assume that neither the quark mass function M(p2) nor the wave func-

tion renormalisation Zf (p2) is singular in the infrared.23 This assumption will be

justified below by self-consistency arguments. From the two tensor structures in (7)

the scalar piece turns out to be the leading one in the infrared.

For the internal quark–gluon vertices we can employ the expression (5) with any

internal momentum as argument: it contains all possible types of Dirac structures

(vector, scalar, and tensor) and any more complicated dependence on external and

internal momenta will generate the same powers of external momenta in ξ1···4 after

integration (for dimensional reasons). To determine the infrared exponents of the

quark–gluon vertex we employ the ansatz

ξ1 ∼ (p2)β1 , ξ2 ∼ (p2)β2 , ξ3 ∼ (p2)β3 , ξ4 ∼ (p2)β4 (8)

for the scaling of the dressing functions of the quark–gluon vertex with momentum.

We then substitute this ansatz into the skeleton expansion of the vertex-DSE and
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determine the exponents β1···4 self-consistently by matching the left- and right-hand

sides. The resulting infrared solution is given by

β2 = −1/2− κ , β1, β3 ∈ [(−1/2− κ), (−κ)] ,

β4 ∈ [(−1/2− κ), (1/2− κ)] .
(9)

We have checked this analytic solution also in numerical calculations and found

that the case

β1···4 = −1/2− κ (10)

is realised. The details of this calculation will be presented elsewhere.24

There are two important remarks here: Firstly, similar to the DSEs in the Yang–

Mills sector it is the diagram containing the ghost loop that dominates the right-

hand side of the equation in Fig. 1. Thus also the infrared behaviour of the quark

sector is dominated by effects generated from the Faddeev–Popov determinant.

Secondly, the driving tensor structures of the solution (9), (10) are the scalar Dirac

amplitude G2
µ of the quark–gluon vertex and the scalar (Zf/M) part of the quark

propagator. Both structures are only present when chiral symmetry is broken. If

they are absent, as in the case of restored chiral symmetry, one obtains a different

solution. We analyse this case below.

Before we discuss the solution (9) further it is important to check that it persists

to all orders in the skeleton expansion. Higher order terms in this expansion can be

generated by inserting diagrammatical pieces like

(...), ,  , (11)

into lower order diagrams (all propagators are fully dressed). In Ref. 7 we showed

that insertions involving pure Yang–Mills propagators and vertices do not change

the overall infrared divergence of a given diagram. This is also true for the three

pieces involving quark lines: The first one introduces two quark–gluon vertices, two

quark propagators and one gluon propagator plus a new integration into a given

diagram. This amounts to an additional power of

Z2
f (p2)−1−2κ+2κ−1+2

M2
=

Z2
f

M2
(12)

in the external momentum (p2). A similar result is obtained for the other pieces.

Thus diagrammatic insertions of quark lines do not change the infrared behaviour

of a given diagram but introduce additional powers of Zf/M . This implies that the

solution (9) is valid to all orders in the skeleton expansion. It is therefore also an

infrared solution of the full vertex-DSE.

We wish to add that the infrared divergence presented here has been found under

the pretext that all external momenta of the vertex go to zero. However, a more
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= + + (...)

Fig. 2. The four-quark 1PI Green’s function and the first terms of its skeleton expansion.

detailed analysis of the vertex-DSE also shows, that the power law must be more

general, (p2
3)

−1/2−κ in terms of the gluon momentum p3. The uniform divergence

presented here is therefore a particular case since, once all momenta vanish, also

the gluon momentum vanishes. The details of the more general analysis will be

presented elsewhere.24

An important application of our infrared power counting scheme concerns the

four-quark 1PI Green’s function H(p), which is given in Fig. 2 together with its

skeleton expansion. From the terms of the skeleton expansion one obtains H(p) ∼
(p2)−2 in the infrared. The well-known relation

V (r) =
1

(2π)3

∫

H(p0 = 0,p)eipr d3p ∼ |r| (13)

between the static four-quark function H(p0 = 0,p) and the quark potential V (r)

therefore gives a linear rising potential by naive dimensional arguments. A more

refined treatment, as described in Ref. 25, leads to the same result. Note that

the first term in the skeleton expansion, i.e. non-perturbative one-gluon exchange

displayed in Fig. 2, already generates this result. Since the following terms in the

expansion are equally enhanced in the infrared, the string tension will be built up

by summing over an infinite number of diagrams. The coefficients of these diagrams

will be investigated elsewhere.24

A further interesting quantity is the running coupling αqg from the quark–gluon

vertex. A non-perturbative and renormalisation group invariant definition of this

coupling is given by

αqg(p
2) =

g2

4π
ξ2
1(p2)Z2

f (p2)Z(p2) ∼ 1

Nc

1

p2
, (14)

where ξ1 dresses the γµ-part of the vertex, see Eq. (5). With the exponents

β2 = β1 = −1/2 − κ, as obtained in our numerical solutions, we find by power

counting that the coupling is proportional to 1/p2. Thus, contrary to the couplings

(4) from the Yang–Mills vertices, we find this coupling to be singular in the infrared,

i.e. “infrared slavery” is realised.

So far we found quark confinement in the chirally broken phase of quenched

QCD. Our power counting scheme worked in this case, because only one external

momentum and no other small scales were present. This is also true in the chirally

symmetric phase of (quenched) QCD with massless valence quarks. The solution (1)

for the pure Yang–Mills sector is still valid in this case. In the quark sector all tensor

structures in the quark propagator and the quark–gluon vertex that violate chiral
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symmetry have to disappear, in particular ξ2 and ξ4 have to vanish identically. We

are thus left with

S(p) =
ip/

p2
Zf (p2) , Γµ(p) = ig

∑

i=1,3

ξi(p
2)Gi

µ (15)

for the quark propagator and for the quark–gluon vertex. On general grounds Zf (p2)

cannot be infrared singular and can be treated as a constant. We then obtain

β1 = β3 = −κ (16)

for the exponents in (8). This solution no longer leads to a confining potential. One

obtains H(p) ∼ (p2)−1 for the infrared behaviour of the four-quark function. This

leads to a potential of Coulomb type

V (r) =
1

(2π)3

∫

H(p0 = 0,p)eipr d3p ∼ 1

|r| . (17)

Also the resulting running coupling from the quark–gluon vertex is no longer di-

verging but goes to a fixed point in the infrared

αqg(p
2) =

g2

4π
ξ2
1(p2)Z2

f (p2)Z(p2) ∼ 1

Nc
, (18)

similar to the couplings from the Yang–Mills vertices. The restoration of chiral

symmetry is therefore directly linked with the disappearance of infrared slavery

and confinement.

To summarise: We presented an analysis of quenched QCD in the covariant Lan-

dau gauge. Our results show that infrared slavery is at work, though in a different

fashion than has been assumed in many previous investigations. It is not a gluon

propagator with a 1/p4-behaviour in the infrared that confines quarks. Instead the

gluon propagator is even vanishing at zero momentum. However, there is enough in-

frared strength in the quark–gluon vertex to compensate for this: We found a linear

rising potential from the four-quark Green’s function. This potential is triggered by

scalar Dirac amplitudes in the quark propagator and quark–gluon vertex. However,

since β1 = β2, the potential also contains vector contributions. An answer to the

old question of scalar versus vector confinement is therefore a non-trivial dynami-

cal issue. Corresponding numerical results will be published elsewhere.24 Finally, we

wish to emphasise again that if chiral symmetry is restored, the confining solution

disappears. As a result, we have uncovered a novel link between dynamical chiral

symmetry breaking and confinement.
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