# The zeta-function of a quasi-ordinary singularity II

P. D. González Pérez, L. J. McEwan, and A. Némethi

ABSTRACT. We prove that the zeta-function of a hypersurface quasi-ordinary singularity f equals the zeta-function of a plane curve singularity g. If we reorder the coordinates, then g has the form  $g = f(x_1, 0, \ldots, 0, x_{d+1})$ . Moreover, the topological type of g can also be recovered from the set of distinguished tuples of f.

#### 1. Introduction

The main goal of this note is the computation of the zeta-function of a hypersurface quasi-ordinary singularity  $f: (\mathbf{C}^{d+1}, 0) \to (\mathbf{C}, 0)$ . The paper generalizes [McN01], where the result is proved for an irreducible germ f. The zeta-function formula was conjectured in [BMcN00].

The quasi-ordinary assumption means, that in some local coordinates the projection  $pr: (F,0) := (\{f=0\},0) \to (\mathbf{C}^d,0)$ , induced by  $(x,x_{d+1}) \mapsto x$   $(x=(x_1,\ldots,x_d) \in \mathbf{C}^d)$ , is finite and its (reduced) discriminant is included in  $(\{x_1\cdots x_d=0\},0)$ .

The zeta-function of a hypersurface germ  $f: (\mathbf{C}^{d+1}, 0) \to (\mathbf{C}, 0)$  is defined as follows. Fix a sufficiently small closed ball  $B_r$  in  $\mathbf{C}^{d+1}$  of radius r, and consider the Milnor fiber  $F_{\epsilon} := f^{-1}(\epsilon) \cap B_r$  ( $0 < \epsilon \ll r$ ). By [Milnor68],  $f^{-1}(\{|w| = \epsilon\}) \cap B_r \to \{|w| = \epsilon\}$  is a fibration with fiber  $F_{\epsilon}$ . Let  $m_q \in AutH_q(F_{\epsilon}, \mathbf{R})$  ( $q \geq 0$ ) be the algebraic monodromy operators of this fibration. Then the zeta-function of f is defined by the following rational function:

$$\zeta(f)(t) := \prod_{q \ge 0} \det(I - t m_q)^{(-1)^q}.$$

The most efficient way to determine  $\zeta(f)$  is by A'Campo's formula [A'Campo75] via the embedded resolution of f. Hence, in the case of those families of singularities whose embedded resolution is well understood, one gets  $\zeta(f)$ . This is the case for plane curve singularities (see e.g. [EN85]) and isolated singularities with non-degenerate Newton boundary ([Varchenko76], see also [MO70]). For non-isolated singularities the methods of series of singularities provide partial results

<sup>2000</sup> Mathematics Subject Classification. 14B05, 32S\*\*.

 $<sup>\</sup>it Key\ words\ and\ phrases.$  Quasi-ordinary singularities, Milnor fiber, monodromy, zeta-function, Newton polyhedron, toric resolution.

The third author is partially supported by the NSF Grant DMS-0088950.

(see e.g. [Siersma90, Schrauwen90, Némethi93]) provided that the singular locus is one-dimensional. But, in general, for non-isolated singularities there is no nice, explicit formula of  $\zeta(f)$ .

We recall that in general the singular locus of quasi-ordinary singularities is large. Our main result for these singularities is the following:

**Theorem A.** Assume that  $f: (\mathbf{C}^{d+1}, 0) \to (\mathbf{C}, 0)$   $(d \geq 2)$  is a quasi-ordinary singularity (which does not need to be reduced). Then there is a (precisely described) reordering of the coordinates  $(x_1, \ldots, x_d)$  such that  $\zeta(f) = \zeta(f|_{x_2 = \cdots = x_d = 0})$ .

This theorem can also be reinterpreted as follows. The quasi-ordinary singularities are generalizations of the plane curve singularities. There is a generalization of Puiseux pairs in general coordinates, called the distinguished tuples, associated to the quasi-ordinary singularity f and the projection pr (see [Zariski67, Lipman65, Lipman83, Lipman88]). The distinguished tuples can be organized in a tree generalizing the Egger-Wall weighted tree encoding the topological type of a plane curve singularity (see [Eggers83, GarcíaB00, PopescuP01]).

In the irreducible case, using Zariski's result on saturation of local rings, one can prove that the distinguished tuples determine the embedded topological type of f (cf. [Zariski68] and [Lipman88], or [Oh93]). In the general case this fact is still a conjecture. On the other hand, by [BMcN00] (cf. also with [Lê73]), the zeta-function of any reduced hypersurface singularity depends only on the embedded topological type of the singularity. This shows that in the irreducible case  $\zeta(f)$  depends only on the set of distinguished tuples (fact explicitly verified in [McN01]). In the general case, a similar result would strongly support the above conjecture.

Theorem A provides exactly this result; for its revised version, see §4.

Theorem A is the consequence of Theorem B:

**Theorem B.** Let f be as in Theorem A. Then  $\zeta(x^{\beta}f)(t) = 1$  for any  $\beta = (\beta_1, \ldots, \beta_d) \in \mathbf{Z}_{>0}^d$ , where  $x^{\beta} := x_1^{\beta_1} \cdots x_d^{\beta_d}$ .

The proof of Theorem B occupies all of sections 2, 3, and the first part of 4. The definition of the distinguished tuples, and some of their properties is given in Section 2. As a general reference, see [Lipman65, Lipman83, Lipman88] for the irreducible case, and [González01, González00a] in the general case.

In section 3 we recall the construction of a toric modification  $\pi(\Sigma)$  associated with the distinguished tuple of f from [González01], nevertheless our presentation is different from [loc. cit.] (where even a more general case is treated). Here, we insert the needed new results of [González01] in the package used in [McN01] (which was based on the thesis of the first author [González00a]). For general facts about toric geometry, we recommend e.g. the books [KKMS73, Oda88]. For the properties of the toric modification  $\pi(\Sigma)$  see also [Varchenko76] or [GT00].

In the first part of section 4 we will prove Theorem B. The proof uses a result of [**GLM97**], which provides a formula for the zeta-function in the presence of a partial embedded resolution. We will apply this result in the case of  $\pi(\Sigma)$ . Then we prove Theorem A, as a consequence of Theorem B and the "weak splitting property" of the zeta-function proved in [**McN01**].

Some general properties of the Milnor fibration and smoothing invariants, in particular, of the zeta-function, can be found in the books [Milnor68] or [EN85].

Finally (and similarly as in [McN01]) we notice that in the literature the notation for the parametrization of an irreducible quasi-ordinary singularity is  $\zeta$ , and for the zeta-function of a hypersurface singularity is  $\zeta(f)$ . Even if these notations are almost identical, we do not modify them: the meaning of the corresponding notation will also be clear from the context.

### 2. Quasi-ordinary singularities and their distinguished tuples

In this section we recall the definition of the distinguished tuples associated with a hypersurface quasi-ordinary singularity  $(F,0) \subset (\mathbf{C}^{d+1},0)$  (see [Lipman65, Lipman88, Lipman88] for the irreducible, and [González01] for the non-irreducible case).

**2.1.** We will use the notation  $x = (x, x_{d+1}) = (x_1, \dots, x_d, x_{d+1}) \in \mathbf{C}^d \times \mathbf{C} = \mathbf{C}^{d+1}$  for coordinates in  $\mathbf{C}^{d+1}$  or for local coordinates in  $(\mathbf{C}^{d+1}, 0)$ . Let  $\mathbf{C}\{x\}$  denote the ring of convergent power series in x.

We assume that  $(F,0)=(\{f=0\},0)$  for some (not necessarily reduced) analytic germ  $f:(\mathbf{C}^{d+1},0)\to(\mathbf{C},0)$  (i.e. F will always be considered reduced, but f not). Then, by the very definition of the hypersurface quasi-ordinary singularities, (F,0) is quasi-ordinary, if there exist local coordinates  $(x,x_{d+1})$  such that f can be expressed as a pseudo-polynomial  $f(x,x_{d+1})=x_{d+1}^n+g_1(x)x_{d+1}^{n-1}+\cdots+g_n(x)$  with  $g_i\in\mathbf{C}\{x\}$ , and the reduced discriminant of  $pr:(F,0)\to(\mathbf{C}^d,0)$  induced by  $(x,x_{d+1})\mapsto x$  is contained in  $(\{x_1\cdots x_d=0\},0)$ . Let  $\{f^{(i)}\}_{i\in I}$  be the set of irreducible components of f, and set  $(F^{(i)},0):=(\{f^{(i)}=0\},0)$  for any  $i\in I$ . Then each  $(F^{(i)},0)$  is an irreducible quasi-ordinary singularity.

By Jung-Abhyankar Theorem, for each  $i \in I$ , there exists a parametrization of  $(F^{(i)},0)$  by a fractional power series  $\zeta^{(i)} = H^{(i)}(x_1^{1/m},\ldots,x_d^{1/m})$ , where  $H^{(i)}(s_1,\ldots,s_d)$  is a power series and m is a suitable natural number (see [Abhyankar55] Th. 3 and [Jung08]). This means that there exists a finite map  $(\mathbf{C}^d,0) \to (F^{(i)},0)$  given by  $x_{d+1} = H^{(i)}(s_1,\ldots,s_d), \ x_t = s_t^m \text{ for } t=1,\ldots,d$ . The number m can be chosen independently of the index  $i \in I$ , but, obviously, it depends on f. (E.g. m=n! is suitable; for an explicit construction of  $\zeta^{(i)}$  one can consult [González00b] and [ALR89]).

The conjugates of  $\zeta^{(i)}$  are obtained by multiplying any of  $x_t^{1/m}$   $(t=1,\ldots,d)$  by  $m^{th}$ -roots of unity; the number of different conjugates  $\{\zeta_k^{(i)}\}_k$  of  $\zeta^{(i)}$  is precisely the degree  $n^{(i)}$  of the covering  $pr|_{F^{(i)}}: (F^{(i)},0) \to (\mathbf{C}^d,0)$ , and

$$f^{(i)}(x, x_{d+1}) = \prod_{k=1}^{n^{(i)}} (z - \zeta_k^{(i)}).$$

We recall that f is not necessarily reduced; write  $f_{red} = \prod_i f^{(i)}$  for its reduced germ.

Obviously, the equation of the discriminant of the projection pr is a product of type:

$$\prod (\zeta_k^{(i)} - \zeta_l^{(j)}).$$

There is an important finite subset of the set of exponents  $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbf{Q}_{\geq 0}^d$  of the terms  $x^{\lambda} := x_1^{\lambda_1} \cdots x_d^{\lambda_d}$  appearing in  $\{\zeta^{(i)}\}_i$  with non-zero coefficient, called the *distinguished tuples* (in some articles they are called characteristic exponents). In the irreducible case they play a role similar to Puiseux pairs for irreducible plane

curve singularities. In the case of non-irreducible germs, besides the tuples of the irreducible components there are some additional tuples as well: they measure the order of coincidence of the parametrizations of different components.

By unique factorization of the discriminant one has:

$$\zeta_k^{(i)} - \zeta_l^{(j)} = x^{\lambda_{kl}^{ij}} \cdot \epsilon_{kl}^{ij} (x_1^{1/m}, \dots, x_d^{1/m}) \text{ with } \epsilon_{kl}^{ij}(0) \neq 0.$$

and  $\lambda_{kl,t}^{ij} \in \frac{1}{m} \mathbf{Z}_{\geq 0}$ . The set  $\Lambda := \{\lambda_{kl}^{ij}\}_{ij,kl} = \{(\lambda_{kl,1}^{ij}, \dots, \lambda_{kl,d}^{ij})\}_{ij,kl} \subset \frac{1}{m} \mathbf{Z}_{\geq 0}^d$  constitute the set of distinguished tuples.

Fix an irreducible component  $(F^{(i)}, 0)$  for some  $i \in I$ , and let  $\zeta^{(i)}$  be its parametrization. Then (by similar argument as above) the distinguished tuples of  $(F^{(i)}, 0)$  are  $\Lambda^{(i)} := \{\lambda^{ii}_{kl}\}_{kl}$ . Set  $g^{(i)} := \#\Lambda^{(i)}$ .

**2.2.** In the sequel we will use the following partial ordering. For any  $\lambda$ ,  $\mu \in \mathbf{Q}^d$  we say that  $\lambda \leq \mu$  if  $\lambda_t \leq \mu_t$  for all  $t = 1, \ldots, d$ . If  $\lambda \leq \mu$ , but  $\lambda \neq \mu$ , then we write  $\lambda < \mu$ .

The point is that for any fixed irreducible component  $(F^{(i)}, 0)$ , the distinguished tuples  $\Lambda^{(i)}$  are totally ordered (cf. [**Lipman65**, **Zariski67**, **Lipman83**, **Lipman88**]). For simplicity, we denote the tuples of  $\Lambda^{(i)}$  by  $\{\lambda_k^{(i)}\}_{k=1}^{g^{(i)}}$ . Hence:

(1) 
$$0 < \lambda_1^{(i)} < \lambda_2^{(i)} < \dots < \lambda_{a^{(i)}}^{(i)}$$
.

 $\Lambda^{(i)}$  is empty if and only if  $F^{(i)}$  is smooth.

Moreover, let  $\alpha_{\lambda}^{(i)}$  be the coefficient of the term  $x^{\lambda}$  in  $\zeta^{(i)}$  having exponent  $\lambda$ . Then the distinguished tuples  $\Lambda^{(i)}$  generate all the exponents appearing in  $\zeta^{(i)}$  in the following sense:

(2) If 
$$\alpha_{\lambda}^{(i)} \neq 0$$
 then  $\lambda \in \mathbf{Z}^d + \sum_{\lambda_h^{(i)} < \lambda} \mathbf{Z}(\lambda_k^{(i)})$ .

In general, the set  $\Lambda$  is *not* totally ordered. This is a crucial difference between the irreducible and non-irreducible cases, therefore we explain it briefly.

Fix an index  $i \in I$  as above. Assume that  $\zeta_{k_1}^{(i)}$  is obtained from  $\zeta_1^{(i)}$  by multiplying any  $x_t^{1/m}$  by an  $m^{th}$ -root of unity. Assume that the same Galois action transforms  $\zeta_{l_1}^{(i)}$  into  $\zeta_{l'_1}^{(i)}$ . Then  $\lambda_{k_1l_1}^{ii} = \lambda_{1l'_1}^{ii}$ . Similarly, for another pair  $(k_2, l_2)$ , one has  $\lambda_{k_2l_2}^{ii} = \lambda_{1l'_2}^{ii}$  for some  $l'_2$ . Since  $\zeta_{l'_1}^{(i)} - \zeta_{l'_2}^{(i)} = (\zeta_{l'_1}^{(i)} - \zeta_1^{(i)}) - (\zeta_{l'_2}^{(i)} - \zeta_1^{(i)})$  divides the discriminant of f, one must have  $\lambda_{1l'_1}^{ii} \leq \lambda_{1l'_2}^{ii}$  or  $\lambda_{1l'_2}^{ii} < \lambda_{1l'_1}^{ii}$ . We call this line of argument "the Galois trick".

On the other hand, in the case of  $\Lambda$ , the same argument does not work, since it is impossible to compare  $\lambda_{kl}^{ij}$  and  $\lambda_{k'l'}^{i'j'}$  if  $\{i,j\} \cap \{i',j'\} = \emptyset$ . If this intersection is not empty, then a similar argument as above gives (cf. [Zariski67]):

- (3) Fix an index  $i \in I$ . Then  $\{\lambda_{kl}^{ij}\}_{j,kl}$  is totally ordered.
- **2.3. Definition.** Fix two indices  $i,j \in I$ ,  $i \neq j$ , and set  $\Lambda^{(i,j)} := \{\lambda^{ij}_{kl}\}_{kl}$ . Since  $\Lambda^{(i,j)} \subset \{\lambda^{ij}_{kl}\}_{j,kl}$ , by (3) one obtains that  $\Lambda^{(i,j)}$  is totally ordered. Let  $\lambda^{(i,j)} := \max \Lambda^{(i,j)}$  be its maximal element.  $\lambda^{(i,j)}$  is called *the order of coincidence* of the components  $f^{(i)}$  and  $f^{(j)}$ . Obviously,  $\Lambda^{(i,j)} = \Lambda^{(j,i)}$ , hence  $\lambda^{(i,j)} = \lambda^{(j,i)}$  as well.

In fact,  $\lambda^{(i,j)}$  carries all the information about the mutual positions of  $(F^{(i)},0)$  and  $(F^{(j)},0)$  (cf. the next 2.4 (a)). Moreover, one has the following "valuation type properties". (For the proof use (3) and the "Galois trick", cf. also with [González01], Lemma 16.)

- **2.4. Lemma.** Assume that  $i \neq a \neq j \neq i$ . (a)  $\Lambda^{(i,j)} = \{\lambda \in \Lambda^{(i)} \cap \Lambda^{(j)}; \lambda < \lambda^{(i,j)}\} \cup \{\lambda^{(i,j)}\}.$  (b)  $\min\{\lambda^{(i,a)}, \lambda^{(i,j)}\} \leq \lambda^{(j,a)}.$  (c) If  $\lambda^{(i,a)} < \lambda^{(i,j)}$  then  $\lambda^{(i,a)} = \lambda^{(j,a)}.$
- **2.5. Definition.** Fix an index  $i \in I$ , and consider the subset  $\mathcal{A}(i) := (\{\lambda^{(i,j)}\}_j \cap \mathbf{Z}^d) \cup \{\lambda_1^{(i)}\}$  of  $\{\lambda_{kl}^{ij}\}_{j,kl}$ . In special cases this subset can be empty; define  $I' := \{i | \mathcal{A}(i) \neq \emptyset\}$ . If  $i \in I'$  then  $\mathcal{A}(i)$  is totally ordered by (3). Following [**González01**], we define  $\lambda_{\kappa(i)} := \min \mathcal{A}(i)$  for any  $i \in I'$ . For  $i \in I \setminus I'$  we write  $\lambda_{\kappa(i)} = +\infty$ . (By convention:  $\lambda < +\infty$  for any  $\lambda \in \mathbf{Q}^d$ .)

Notice that using (1), property (2) (cf. 2.2) reads as:

(2\*) Assume that  $\lambda \not\in \mathbf{Z}^d$  satisfies  $\lambda_{\kappa(i)} \not\leq \lambda$  for some  $i \in I$ . Then  $\alpha_{\lambda}^{(i)} = 0$ .

The above facts imply the next result.

- 2.6. Proposition. ([González01], Lemma 17)
- (a)  $\#(I \setminus I') \leq 1$ . If  $\#(I \setminus I') = 1$  then the number of smooth irreducible component of F is exactly one. In particular,  $\Lambda = \emptyset$  if and only if F is irreducible and smooth
- (b) Assume that  $\lambda_{\kappa(i)} \in \mathbf{Z}^d$  for some  $i \in I'$ . Then  $\lambda_{\kappa(j)} \leq \lambda_{\kappa(i)}$  for any  $j \in I'$ . In particular, the set  $\{\lambda_{\kappa(i)}\}_{i \in I'}$  contains at most one element from  $\mathbf{Z}^d$  (which is its greatest element).
  - (c) The set  $\{\lambda_{\kappa(i)}\}_{i\in I'}$  is totally ordered.
- **2.7.** This proposition together with the next technical result will allow us to modify the coefficients of f by a change of variables in such a way that in the new situation the Newton polyhedron of  $f_{red}$  will reflect the set  $\{\lambda_{\kappa(i)}\}_i$ . The change of variable has the form  $x'_{d+1} = x_{d+1} \varphi(x), \ x'_t = x_t \text{ for } t = 1, \ldots, d$ , with  $\varphi(x)$  of type  $\sum_{\lambda \in \mathbf{Z}^d_{\geq 0}} a_{\lambda} x^{\lambda}$ . This provides automatically a set of new parametrizations  $\zeta'^{(i)} := \zeta^{(i)} \varphi(x) \ (i \in I)$ . Such a change of variables and parametrizations does not modify the set of distinguished tuples.

First, we verify the following lemma.

**2.8.** Lemma. Assume that  $\lambda_{\kappa(i)} \not\leq \lambda$  and  $\lambda_{\kappa(j)} \not\leq \lambda$ . Then  $\alpha_{\lambda}^{(i)} = \alpha_{\lambda}^{(j)}$ .

Proof. By (2\*) we can assume that  $\lambda \in \mathbf{Z}^d$ . Assume that  $\alpha_{\lambda}^{(i)} \neq \alpha_{\lambda}^{(j)}$ . Then by the definition of  $\lambda^{(i,j)}$  one has  $\lambda^{(i,j)} \leq \lambda$ . This together with  $\lambda_{\kappa(i)} \not\leq \lambda$  implies (\*)  $\lambda_{\kappa(i)} \not\leq \lambda^{(i,j)}$ . Therefore, by the definition of  $\lambda_{\kappa(i)}$  one has (\*\*)  $\lambda^{(i,j)} \not\in \mathbf{Z}^d$ . Then (\*), (\*\*) and (2\*) give  $\alpha_{\lambda^{(i,j)}}^{(i)} = 0$ . Similarly  $\alpha_{\lambda^{(i,j)}}^{(j)} = 0$ . These two vanishing contradict the definition of  $\lambda^{(i,j)}$ .

**2.9.** Proposition/Definition. (cf. [González01]) There is a change of variables as in 2.7 such that the new parametrizations have the following form:

$$\zeta^{(i)} = \alpha_1^{(i)} x^{\lambda_{\kappa(i)}} + \sum_{\lambda_{\kappa(i)} < \lambda} \alpha_{\lambda}^{(i)} x^{\lambda} \quad (\alpha_1^{(i)} \neq 0) \quad (i \in I').$$

If  $i \in I \setminus I'$  then  $f^{(i)}(x, x'_{d+1}) = x'_{d+1}$  (i.e.  $\zeta^{(i)} = 0$ ).

A coordinate system which admits parametrizations as above is called "good".

*Proof.* Choose an index  $i_0 \in I$  so that  $\lambda_{\kappa(i_0)} = \max\{\lambda_{\kappa(i)}\}_{i \in I}$ . Then define  $\varphi(x)$ by  $\sum \alpha_{\lambda}^{(i_0)} x^{\lambda}$ , where the sum is over  $\lambda \in \mathbf{Z}_{\geq 0}^d$  with  $\lambda_{\kappa(i_0)} \not\leq \lambda$ . (In particular, if  $i \in I \setminus I'$  then  $\varphi = \zeta^{(i_0)}$ .) Then the result follows from lemma 2.8.

**2.10.** Corollary. A has a unique minimal element min  $\Lambda$  which equals min $\{\lambda_{\kappa(i)}\}_i$ .

### 3. The partial toric resolution.

In this section we will assume that f is a quasi-ordinary singularity, and we will use the notations of the previous section. We will consider a toric modification  $\pi(\Sigma): Z(\Sigma) \to \mathbf{C}^{d+1}$  whose restriction above a small ball  $B_r$  provides a partial resolution of  $(F,0) := (f^{-1}(0),0) \subset (\mathbf{C}^{d+1},0)$ . For simplicity and uniformity of the notation we will use  $\mathbf{C}^{d+1}$  instead of  $B_r$ , but this will not affect the proofs. For the definition of  $\pi(\Sigma)$  associated with an arbitrary fan  $\Sigma$ , see [KKMS73] or [Oda88]. In the case of some special hypersurface singularities,  $\pi(\Sigma)$  is a natural (partial) embedded resolution, see e.g. [Varchenko76] or [GT00]. For irreducible quasiordinary singularities the modification  $\pi(\Sigma)$  was constructed in [González00a], and [González01] contains the reduced case. The presentation here combines [González00a]. [González01] and [McN01].

**3.1. The germs**  $f_1^{(i)}$ . Assume that f is represented in a "good" coordinate system, which admits parametrizations as in 2.9. Define  $\zeta_1^{(i)} := \alpha_1^{(i)} x^{\lambda_{\kappa(i)}}$  for  $i \in I'$  and  $\zeta_1^{(i)} := \zeta^{(i)} = 0$  otherwise. Obviously,  $\zeta_1^{(i)}$ 

determines an irreducible quasi-ordinary singularity  $f_1^{(i)}$ . If L denotes the fraction field of  $C\{x\}$ , then  $n^{(i)} = [L(\zeta^{(i)}) : L]$  is the degree of  $f^{(i)}$ , and  $n_1^{(i)} = [L(x^{\lambda_{\kappa(i)}}) : L]$ is the degree of  $f_1^{(i)}$ . Since the field extension  $[L(\zeta^{(i)}):L]$  is generated over L by the distinguished tuples of  $f^{(i)}$  ([Lipman88], Lemma 5.7), 2.2–(2) implies that  $n_1^{(i)}$  divides  $n^{(i)}$ . Set  $e^{(i)} := n_1^{(i)}/n_1^{(i)} \in \mathbf{Z}_{>0}$ . (If  $i \notin I'$  then  $n^{(i)} = n_1^{(i)} = e^{(i)} = 1$ .) Obviously

$$f_1^{(i)} = \prod_{i=1}^{n_1^{(i)}} (x_{d+1} - \omega_j \alpha_1^{(i)} x^{\lambda_{\kappa(i)}}) = x_{d+1}^{n_1^{(i)}} - \gamma^{(i)} x^{n_1^{(i)} \lambda_{\kappa(i)}}, \quad \text{with} \quad \gamma^{(i)} := (\alpha_1^{(i)})^{n_1^{(i)}},$$

where  $\{\omega_j\}_j$  are the  $n_1^{(i)}$ -roots of unity. Notice also that if  $\kappa(i) = \kappa(j)$  and  $\gamma^{(i)} = \gamma^{(j)}$  then  $f_1^{(i)} = f_1^{(j)}$ . The importance of the germ  $f_1^{(i)}$  is given by the fact that its Newton polyhedron determines the Newton polyhedron of  $f^{(i)}$  (see below).

**3.2.** The Newton polyhedron of f. Given  $f_{red} = \sum_{v} c_v \bar{x}^v \in \mathbf{C}\{\bar{x}\}$ , its Newton polyhedron  $\mathcal{N}(f_{red})$  is the convex hull of the set  $\sum_{c_v \neq 0} v + \mathbf{R}_{\geq 0}^{d+1}$ . Any vector  $u \in (\mathbf{R}^{d+1})_{>0}^*$  defines the face  $\mathcal{F}_u$  of  $\mathcal{N}(f_{red})$  by

$$\mathcal{F}_u := \{ v \in \mathcal{N}(f_{red}) : \langle u, v \rangle = \inf_{v' \in \mathcal{N}(f_{red})} \langle u, v' \rangle \}.$$

 $\mathcal{N}(f^{(i)})$  has only two vertices, namely  $(0,\ldots,0,n^{(i)})$  and  $(n^{(i)}\lambda_{k(i),1},\ldots,n^{(i)}\lambda_{k(i),d},0)$  provided that  $i\in I'$ . If  $i\not\in I'$  then  $\mathcal{N}(f^{(i)})$  has only one vertex, namely  $(0,\ldots,0,1)$ . Finally, the Newton polyhedron  $\mathcal{N}(f_{red})$  of  $f_{red}$  is the Minkowski sum of the polyhedrons  $\mathcal{N}(f^{(i)})$   $(i\in I)$ . Recall that the set  $\{\lambda_{\kappa(i)}\}_{i\in I}$  is totally ordered, hence the compact faces of  $\mathcal{N}(f_{red})$  constitute a "monotone polygonal path" (using the terminology of [González00b] and [McDonald95]). Let  $\mathcal{F}_{co}$  be the union of all compact faces of  $\mathcal{N}(f_{red})$ . Then

$$f_{red}|_{\mathcal{F}_{cc}} = \prod_{i \in I} (f_1^{(i)})^{e^{(i)}}.$$

Above  $f_{red}|_{\mathcal{F}}$  denotes the (symbolic) restriction of  $f_{red}$  to  $\mathcal{F}$ , namely  $f_{red}|_{\mathcal{F}} = \sum_{v \in \mathcal{F}} c_v \bar{x}^v$ .

**3.3.** The fan  $\Sigma(\mathcal{N}(f_{red}))$  and its subdivision  $\Sigma$  in  $(\mathbf{R}^{d+1})^*_{\geq 0}$ . We say that two vectors in  $(\mathbf{R}^{d+1})^*_{\geq 0}$  are related if they define the same face in  $\mathcal{N}(f_{red})$ . The fan  $\Sigma(\mathcal{N}(f_{red}))$  is defined in such a way that the classes of the above relation are the relative interiors of the cones of  $\Sigma(\mathcal{N}(f_{red}))$ . In fact, the fan  $\Sigma(\mathcal{N}(f_{red}))$  is obtained by subdividing the cone  $(\mathbf{R}^{d+1})^*_{\geq 0}$  with the linear subspaces  $l^{(i)}$   $(i \in I')$  given by the equations

$$l^{(i)}(v) := \sum_{t=1}^{d} \lambda_{k(i),t} v_t - v_{d+1} = 0 \quad (i \in I').$$

Since  $\{\lambda_{\kappa(i)}\}_{i\in I'}$  is totally ordered, for any  $i,j\in I'$ ,  $\kappa(i)\neq\kappa(j)$ , one has

(\*) 
$$l^{(i)} \cap l^{(j)} \cap (\mathbf{R}^{d+1})^*_{>0} = \emptyset.$$

In general,  $\Sigma(\mathcal{N}(f_{red}))$  is not nonsingular (for the terminology, see [**Oda88**] 1.4; in some articles "regular" is used for "nonsingular"). We will use the notation  $\Sigma$  for a nonsingular (simplicial) subdivision of  $\Sigma(\mathcal{N}(f_{red}))$  supported by  $(\mathbf{R}^{d+1})^*_{\geq 0}$ . For the existence of such a fan  $\Sigma$ , see Theorem 11 (page 32) of [**KKMS73**].

For an arbitrary  $\Sigma$  it is *not true* that  $\pi(\Sigma): Z(\Sigma) \to \mathbf{C}^{d+1}$  is an isomorphism above  $\mathbf{C}^{d+1} \setminus Sing F$  (a property sometimes required for an embedded resolution). But, with a good choice of  $\Sigma$ , one has a slightly weaker property (which is still sufficient for us, cf. 4.2). More precisely, there exists a nonsingular fan  $\Sigma$  so that  $\pi(\Sigma)$  is an isomorphism above  $\mathbf{C}^{d+1} \setminus F$ . For the proof see (3.15) of [McN01], a similar property was also used in [Varchenko76] and [González01].

In fact, in [González01], the first author considered those nonsingular subdivisions  $\Sigma$  which have the following additional property: any nonsingular cone of  $\Sigma(\mathcal{N}(f_{red}))$  is a cone of  $\Sigma$ . The existence of such a fan is proved in [Cox00]. Theorem 5.1. If  $\Sigma$  satisfies this property then  $\pi(\Sigma)$  is an isomorphism above  $\mathbf{C}^{d+1} \setminus F$  (cf. [McN01]), and the restriction of  $\pi(\Sigma)$  to the strict transform  $\tilde{F}$  of F is an isomorphism above  $F \setminus Sing F$  (fact shown in [González00a, González01]).

In the sequel, we will assume that  $\Sigma$  satisfies the above property.

**3.4.** The fan  $\Sigma$  supported by  $(\mathbf{R}^{d+1})^*_{\geq 0}$  defines a modification  $\pi(\Sigma): Z(\Sigma) \to \mathbf{C}^{d+1}$ . The variety  $Z(\Sigma)$  is smooth, and it is covered by affine spaces  $\{Z(\sigma)\}_{\dim \sigma = d+1}$  (i.e. each  $Z(\sigma) \approx \mathbf{C}^{d+1}$ ). The inclusion  $\sigma \in (\mathbf{R}^{d+1})^*_{\geq 0}$  induces a morphism  $\pi(\sigma): Z(\sigma) \to \mathbf{C}^{d+1}$ . If  $\sigma = \langle a^1, \dots, a^{d+1} \rangle$  and  $a^k$  has coordinates  $(a^k_1, \dots, a^k_{d+1})$ , then  $\pi(\sigma)$  has the form:

$$x_1 = u_1^{a_1^1} \cdots u_{d+1}^{a_{1}^{d+1}}, \dots, x_{d+1} = u_1^{a_{d+1}^1} \cdots u_{d+1}^{a_{d+1}^{d+1}}.$$

The total transform of  $f = \sum_{v} c_v \bar{x}^v$  by  $\pi(\sigma)$  is

$$f\circ\pi(\sigma)=\sum_{v}c_{v}u_{1}^{\langle a^{1},v
angle}\cdots u_{d+1}^{\langle a^{d+1},v
angle}=u_{1}^{m(a^{1})}\cdots u_{d+1}^{m(a^{d+1})}\cdot ilde{f}_{\sigma},$$

where  $m(a) := \inf_{v \in \mathcal{N}(f_{red})} \langle a, v \rangle$  and  $\tilde{f}_{\sigma}$  defines the equation of the strict transform of f in the chart  $Z(\sigma) \subset Z(\Sigma)$ .

**3.5.** The divisors D(a) in  $Z(\Sigma)$ . To any primitive vector a of  $\Sigma^{(1)}(:= 1$ -skeleton of  $\Sigma$ ), we associate a divisor D(a) in  $Z(\Sigma)$ . In any chart  $Z(\sigma)$ , associated with a cone  $\sigma = \langle a^1, \ldots, a^{d+1} \rangle$ ,  $D(a^k)$  is given by  $\{u_k = 0\}$ . If  $b \notin \{a^1, \ldots, a^{d+1}\}$ , then  $D(b) \cap Z(\sigma) = \emptyset$ . The divisor  $D := \bigcup_{a \in \Sigma^{(1)}} D(a)$  in the smooth variety  $Z(\Sigma)$  is a normal crossing divisor with smooth irreducible components.

By 3.4 one gets that  $\pi(\Sigma)(D(a^k))$  is the coordinate subspace defined by  $x_t = 0$  for all t with  $a_t^k \neq 0$ . If  $e^1, \ldots, e^{d+1}$  denote the canonical basis on  $\mathbf{Z}^{d+1}$ , then  $\pi(\Sigma)(D(e^k)) = \{x_k = 0\}$ , but for any  $a \in \Sigma^{(1)} \setminus \{e^1, \ldots, e^{d+1}\}$  one has  $\dim \pi(\Sigma)(D(a)) \leq d-1$ . The critical locus (exceptional divisor) of  $\pi(\Sigma)$  is exactly the union of these divisors:

$$\bigcup_{a\in\Sigma^{(1)}\setminus\{e^k\}_k} D(a).$$

By the above discussion, D(a) is compact (i.e.  $D(a) \subset \pi(\Sigma)^{-1}(0)$ ) if and only if a is an interior point of  $(\mathbf{R}^{d+1})^*_{>0}$ . More generally, let  $A = \{a^1, \dots, a^s\}$  be a non-empty subset of  $\Sigma^{(1)}$ , and write  $D_A := \bigcap_{a \in A} D(a)$ . The  $D_A \neq \emptyset$  if and only if  $\{a^1, \dots, a^s\}$  forms a cone  $\sigma_A$  in  $\Sigma$ . In this case  $D_A$  is compact if and only if  $\sigma_A \cap (\mathbf{R}^{d+1})^*_{>0} \neq \emptyset$ . In fact

$$\pi(\Sigma)^{-1}(0) = \bigcup_{\sigma_A \cap (\mathbf{R}^{d+1})^*_{> 0} \neq \emptyset} D_A.$$

**3.6.** The strict transform  $\tilde{F}$  of F. Set  $F^{(i)} = \{f^{(i)} = 0\}$  and for any space Y write  $\tilde{Y}$  for its strict transform via  $\pi(\Sigma)$ .

We start with the following remark. If we fix an index  $i \in I'$ , then all the properties of the germs  $f^{(i)}$ ,  $f_1^{(i)}$  and their strict transforms follow from section 3 of [McN01], where the irreducible case is treated. Indeed, our fan  $\Sigma$  considered here satisfies all the restrictions required in [loc. cit.] (even some more, since it is compatible with all the linear spaces  $l^{(j)}$ ). In the next paragraph we list those properties of  $\tilde{F}^{(i)}$  which will be needed later. For proofs see [McN01], [González00a] or [González01] (but, for the convenience of the reader, we provide some hints as well).

For a fixed  $i \in I'$  the following facts hold:

(1) For any  $A = \{a^1, \ldots, a^s\} \subset \Sigma^{(1)}$ , if  $D_A \cap \tilde{F}^{(i)} \neq \emptyset$ , then  $\{a^1, \ldots, a^s\}$  should be a cone  $\sigma_A$  in  $\Sigma \cap l^{(i)}$ . In this case,  $D_A \cap \tilde{F}^{(i)}$  is compact if and only if

 $\sigma_A \cap l^{(i)} \cap (\mathbf{R}^{d+1})^*_{>0} = \sigma_A \cap (\mathbf{R}^{d+1})^*_{>0} \neq \emptyset$ . In particular,  $D_A \cap \tilde{F}^{(i)}$  is compact if and only if  $D_A$  is compact (cf. 3.5).

(2) We say that the "natural stratification" of  $D \cap \tilde{F}^{(i)}$  is given by strata of type:

$$(\cap_{a\in A}D(a)\setminus \cup_{a\notin A}D(a))\cap \tilde{F}^{(i)},\quad (A\subset \Sigma^{(1)}).$$

Then for any stratum  $\Xi$  of  $D \cap \tilde{F}^{(i)}$  with dim  $\Xi > 0$ , one has  $\chi(\Xi) = 0$ . (This follows from the fact that  $\Xi$  is contined in an orbit of the toric variety  $Z(\Sigma)$  represented in some chart  $Z(\sigma)$  by an equation  $u_{d+1} = a$  non-zero constant.)

Next, we fix  $i, j \in I'$  with  $i \neq j$ . Then the assumption about  $\Sigma$  (cf. 3.3 ) and the above properties give:

- (3) If  $\kappa(i) \neq \kappa(j)$ , then  $\pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(i)} \cap \tilde{F}^{(j)} = \emptyset$ . (If  $\pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(i)} \cap \tilde{F}^{(j)}$  is non empty, there is  $D_A \subset \pi(\Sigma)^{-1}(0)$  such that  $D_A \cap \tilde{F}^{(i)} \cap \tilde{F}^{(j)}$  is non empty, and  $\sigma_A \cap (\mathbf{R}^{d+1})^*_{>0} \neq \emptyset$ , cf. with the last formula of 3.5. Then by (1) we have that  $\sigma_A \subset \Sigma \cap l^{(i)} \cap l^{(j)}$ . This implies that  $\sigma_A \cap (\mathbf{R}^{d+1})^*_{>0} \subset l^{(i)} \cap l^{(j)} \cap (\mathbf{R}^{d+1})^*_{>0}$  is empty by 3.3 (\*), a contradiction.)
- (4) If  $\kappa(i) = \kappa(j)$ , then  $\pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(i)} = \pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(j)}$  provided that  $\gamma^{(i)} = \gamma^{(j)}$ ; otherwise  $\pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(i)} \cap \tilde{F}^{(j)} = \emptyset$ . (This follows again by the irreducible case, where the intersection  $\pi(\Sigma)^{-1}(0) \cap \tilde{F}^{(i)}$  is described in terms of  $f_1^{(i)}$ , cf. [McN01], 3.20 and 3.21. See also the discussion in 3.7, or Proposition 24 of [González01].)
- (5)  $D(e^{d+1}) \cap \tilde{F}^{(j)} = \emptyset$  for any  $j \in I'$ . Since  $\tilde{F}^{(i)} = D(e^{d+1})$  for  $i \in I \setminus I'$ , one obtains that for such an i,  $\tilde{F}^{(i)} \cap \tilde{F}^{(j)} = \emptyset$  for any  $j \in I'$ . (This follows from  $e^{d+1} \notin \bigcup_{i \in I'} l^{(i)}$  and part (1).)
- **3.7. The total transform of**  $x^{\beta}f$ **.** The divisor  $D \cap \tilde{F}$  has a "natural stratification" given by strata of type

$$(\cap_{a\in A}D(a)\setminus \cup_{a\not\in A}D(a))\cap \tilde{F},\quad (A\subset \Sigma^{(1)}).$$

We are interested only in those strata which are situated in  $\pi(\Sigma)^{-1}(0)$ . They are contained in compact intersections of type  $D_A$ .

Next, we fix  $\beta \in \mathbf{Z}_{>0}^d$ , and consider the germ  $x^{\beta}f$ . Notice that  $\pi(\Sigma)^{-1}(\{x_t = 0\}) = D(e^t)$  (for t = 1, ..., d), hence  $(D \cup \{\text{the total transform of } \{x^{\beta}f = 0\}\}) = (D \cup \tilde{F})$ , and both of them have the same "natural stratification" (i.e. by introducing the factor  $x^{\beta}$ , we do not create new strata).

Consider such a strata  $\Xi$  with dim  $\Xi > 0$ . We claim that the total transform of  $x^{\beta}f$  along  $\Xi$  is an equisingular family of singularities. The argument is similar as in [González00a] and [González01] where it is proved that the total transform of f is equisingular along  $\Xi$ .

(By this we mean the following. The strict transform along the stratum  $\Xi$  defines a family of hypersurface quasi-ordinary singularities in such a way that each member of the family has the same distinguished tuples. The situation locally is described in [**Lipman88**] Appendix 7, where "natural stratification" of an irreducible quasi-ordinary hypersurface is studied. The important point is that this family is equiresolvable, a resolution is obtained from the embedded resolution of the total transform of f, see [**González01**]).

Now we concentrate our discussion on the zero-dimensional strata  $\{\Xi\}_{\dim\Xi=0}$  of  $D\cap \tilde{F}$ .

We fix an arbitrary d-cone  $\sigma' = \langle a^1, \ldots, a^d \rangle$  of  $\Sigma \cap l^{(i)}$  ( $i \in I'$ ), and we consider the unique (d+1)-cone  $\sigma = \langle a^1, \ldots, a^d, a^{d+1} \rangle$  of  $\Sigma$  with a primitive vector  $a^{d+1}$  satisfying  $l^{(i)}(a^{d+1}) > 0$ . Then, in the chart  $Z(\sigma)$  one can find a zero-dimensional stratum  $O_{\sigma'} := \tilde{F} \cap D(a^1) \cap \cdots \cap D(a^d)$  of  $D \cap \tilde{F}$ . In fact, if I = I', then there is a one-to-one correspondence between the zero-dimensional strata of  $D \cap \tilde{F}$  and the points  $O_{\sigma'}$  where  $\sigma'$  runs over the d-cones of  $\Sigma \cap l^{(i)}$  for all  $i \in I'$ . If  $I \neq I'$  then  $D \cap \tilde{F}$  has some additional zero-dimensional strata on  $D(e^{d+1})$  as well.

Using the above notations, in the chart  $Z(\sigma)$ , the point  $O_{\sigma'}$  is given by the equations  $u_1 = \cdots = u_d = 0$  and  $w := 1 - \gamma^{(i)} u_{d+1} = 0$ . The first author in [González01] has shown that the strict transform  $\tilde{f}_{\sigma}$  of f in the local coordinates  $(u_1, \ldots, u_d, w)$  is a (not necessarily reduced) quasi-ordinary singularity. Moreover, the germ  $((\tilde{f}_{\sigma})_{red}, O_{\sigma'})$  has smaller complexity than  $f_{red}$  (e.g.  $\#\Lambda$  is smaller, or its Eggers-Wall diagram is simpler).

In the proof of Theorem B, we will use an inductive step, which replaces the germ  $x^{\beta}f$  by its total transform at the points  $\{O_{\sigma'}\}_{\sigma'}$ . Obviously, the total transform of  $x^{\beta}f$  at the point  $O_{\sigma'}$  has similar form, namely  $u^{\eta}\tilde{f}_{\sigma}$  for some  $\eta$  (by 3.4). The point is that if  $\beta \in \mathbf{Z}^d_{\geq 0}$  then  $\eta \in \mathbf{Z}^d_{\geq 0}$  as well. Indeed, let us write  $\langle a^k, \beta \rangle$  for  $\sum_{t=1}^d a_t^k \beta_t$ . Then by 3.4 one gets that  $\eta_k = m(a^k) + \langle a^k, \beta \rangle$  for any  $k=1,\ldots,d$ . Notice that  $a^k \neq e^{d+1}$  since  $e^{d+1} \not\in l^{(i)}$ . Hence  $\langle a^k, \beta \rangle > 0$  for each k.

## 4. The proof of Theorems A and B

- **4.1.** The **proof of Theorem B.**. The proof is based on the facts listed in sections 2 and 3 and on the following result proved in [**GLM97**]. We mention, that in this paper, stratification means a (semi-analytic) pre-stratification, without any regularity assumption.
- **4.2. Theorem.** Let  $g: (\mathbf{C}^{d+1}, 0) \to (\mathbf{C}, 0)$  be the germ of an analytic function, and  $B_r$  a sufficiently small (Milnor) ball of it. Let  $\phi: X \to B_r$  be a birational modification such that  $\phi$  is an isomorphism above the complement of  $\{g=0\}$ . Let  $\mathcal{S}$  be a stratification of  $\phi^{-1}(0)$  such that along each stratum  $\Xi$  of  $\mathcal{S}$  the zeta-function of the germ  $(g \circ \phi, x)$  at  $x \in \Xi$  does not depend on  $x \in \Xi$ . Denote this rational function by  $\zeta_{\Xi}(t)$ . Then:

$$\zeta(g)(t) = \prod_{\Xi \in \mathcal{S}} \zeta_{\Xi}(t)^{\chi(\Xi)}.$$

In order to prove Theorem B we will apply 4.2 for  $\phi=\pi(\Sigma)$ , where the fan  $\Sigma$  satisfies all the properties 3.3 . Since the image of the critical locus of  $\pi(\Sigma)$  is included in F, 4.2 can be applied for the germ  $g=x^{\beta}f$ . The divisor D has a natural stratification with the following strata:

$$\{(\cap_{a\in A}D(a)\setminus \cup_{a\notin A}D(a))\setminus \tilde{F}\}_{A\subset \Sigma^{(1)}},\ \{(\cap_{a\in A}D(a)\setminus \cup_{a\notin A}D(a))\cap \tilde{F}\}_{A\subset \Sigma^{(1)}}.$$

This stratification of D induces a stratification on  $\pi(\Sigma)^{-1}(0)$  which will be denoted by  $\mathcal{S}$ . Each stratum  $\Xi$  of  $\mathcal{S}$  is included in some compact intersection of type  $\cap_{a\in A}D(a)$  (cf. 3.6 (1)). By the very definition, the stratification is compatible with  $\tilde{F}$ . Denote by  $\mathcal{S}\cap\tilde{F}$  (resp. by  $\mathcal{S}\setminus\tilde{F}$ ) the collection of those strata which are in  $\tilde{F}$  (resp. are in  $\pi(\Sigma)^{-1}(0)\setminus\tilde{F}$ ). The stratification  $\mathcal{S}$  satisfies the assumptions of 4.2 by the results of 3.6 and 3.7.

We recall that the divisor  $D = \bigcup_{a \in \Sigma^{(1)}} D(a)$  consists of the exceptional divisors  $\{D(a)\}_a$  corresponding to  $a \in \Sigma^{(1)} \setminus \{e^k\}_{1 \leq k \leq d+1}$ , and the strict transforms of the coordinate hyperplanes  $\{D(e^k)\}_{1 \leq k \leq d+1}$ . On the other hand, the divisors  $\{D(e^k)\}_{1 \leq k \leq d}$  are components of the total transform of g. The divisor  $D(e^{d+1})$  will require a special care. Therefore, we will distinguish two cases: (Case A)  $I \neq I'$  (i.e.  $x_{d+1}$  is a component of f); and (Case B) I = I' (i.e.  $x_{d+1}$  is not a component of f).

We will analyze the contribution  $\zeta_{\Xi}(t)^{\chi(\Xi)}$  for each stratum  $\Xi$ .

(1) First assume that  $\Xi \in \mathcal{S} \setminus \tilde{F}$  is of dimension dim  $\Xi < d$ .

Recall that the total transform of  $x^{\beta}f$  outside of  $\tilde{F}$  is a normal crossing divisor. Moreover, the zeta-function of a germ  $(u_1, \ldots, u_{d+1}) \mapsto u_1^{\rho_1} \cdots d_{d+1}^{\rho_{d+1}}$  is 1, provided that at least two  $\rho_k$ 's are strictly positive.

In (Case A), along each  $\Xi$  there are at least two coordinate hyperplanes in the zero-set of the total transform of g. Hence the zeta-function  $\zeta_{\Xi}(t) = 1$ . (Cf. also with the classical case [A'Campo75] when  $\phi$  is an embedded resolution.)

In (Case B)  $D(e^{d+1}) \cap \tilde{F} = \emptyset$  (cf. 3.6 (5)). Therefore, any stratum  $\Xi$  for which the argument presented in (Case A) is not valid, is an orbit of the toric variety  $Z(\Sigma)$  of dimension d-1 and type  $D(e^{d+1}) \cap D(a) \setminus \bigcup_b D(b)$ . So  $\chi(\Xi) = 0$ .

- (2) Assume that  $\Xi \in \mathcal{S} \setminus \tilde{F}$  and dim  $\Xi = d$ . Then there is a unique stratum  $\Xi'$  of D of type  $D(a) \setminus (\bigcup_{b \neq a} D(b))$  such that  $\Xi \subset \Xi'$ . Moreover,  $\Xi$  is obtained from  $\Xi'$  by eliminating its intersection with  $\tilde{F}$ , which is a union of (d-1)-dimensional strata of type  $\Xi'' \in \mathcal{S} \cap \tilde{F}$ . Now,  $\Xi'$  is an orbit of the toric variety  $Z(\Sigma)$ , hence  $\chi(\Xi') = 0$ . But for each  $\Xi''$ ,  $\chi(\Xi'') = 0$  as well, because of 3.6–(2). Hence  $\chi(\Xi) = 0$ .
- (3) Now, assume that  $\Xi \in \mathcal{S} \cap \tilde{F}$  of dimension dim  $\Xi > 0$ . Then  $\chi(\Xi) = 0$  by 3.6 (2).
- (4) Finally, consider the zero-dimensional strata of  $\Xi \in \mathcal{S} \cap \tilde{F}$ . By 3.7 they corresponds exactly to the set of points  $O_{\sigma'}$  described in 3.7, provided that I = I'. Otherwise there are some additional points on  $D(e^{d+1})$ , but in these points the total transform of g is a normal crossing divisor with zeta-function = 1.

Therefore, steps (1)-(4) give the inductive formula:

$$\zeta(x^{\beta}f)(t) = \prod \zeta(\text{total transform of } x^{\beta}f \text{ at } O_{\sigma'})(t),$$

where the product is over the d-cones  $\sigma' \subset \Sigma \cap (\cup_{i \in I'} l^{(i)})$ .

In 3.7 we verified that total transform at  $O_{\sigma'}$  has the form  $u^{\eta} \tilde{f}_{\sigma}$  satisfying all the inductive properties:  $\tilde{f}_{\sigma}$  is quasi-ordinary in local coordinates (u, w) with smaller complexity than f, and  $\eta \in \mathbf{Z}_{>0}^d$ . Therefore Theorem B follows by induction. (After a finite number of toric modifications, all the total transforms  $u^{\eta} \tilde{f}_{\sigma}$  will have the form  $u^{\eta} w^{\eta_0}$  with zeta-function 1.)

**4.3.** Now we will revise Theorem A. First we recall that  $\Lambda = \emptyset$  if and only if f is irreducible and smooth. For such a germ f, Theorem A is obviously true (with  $\zeta(f)(t) = 1 - t$ ). Therefore, in the sequel, we will assume that  $\Lambda \neq \emptyset$ . We reorder the variables  $(x_1, \ldots, x_d)$  in such a way that the first entry of min  $\Lambda$  is non-zero.

For any index set  $K \subset \{1, \ldots, d\}$  we define  $f|_{x_K=0}$  by  $f|_{x_k=0}$  for all  $k \in K$ .

**4.4. Theorem A'.** Fix the above notations. Then for any index set  $K \subset \{1,\ldots,d\}$  with  $1 \notin K$  one has:  $\zeta(f) = \zeta(f|_{X_K=0})$ . In particular, for  $K = \{2,\ldots,d\}$ ,

one gets that  $\zeta(f) = \zeta(g)$ , where g is the plane curve singularity  $(x_1, x_{d+1}) \mapsto f(x_1, 0, \dots, 0, x_{d+1})$ .

In fact, if min  $\Lambda$  has at least two non-zero entries, then  $\zeta(f)(t) = 1 - t^{\deg f}$ .

*Proof of Theorem A'*. Obviously we can assume that f is represented in a good coordinate system (cf. 2.9). The proof is based on the following fact.

The "weak splitting property" of the zeta-function. [McN01] Assume that for two germs  $f, g: (\mathbf{C}^{d+1}, 0) \to (\mathbf{C}, 0)$  and any  $k \ge 1$  one has  $\zeta(g^k f) = 1$ . Then  $\zeta(f) = \zeta(f|_{g=0})$ .

Using this and Theorem B we obtain that  $\zeta(f) = \zeta(f|_{x_1 \cdots x_d = 0})$ . By a Mayer–Vietoris argument

$$\zeta(f|_{x_1\cdots x_d=0}) = \prod_K \zeta(f|_{x_K=0})^{(-1)^{\#K-1}},$$

where the product is over the non-empty subsets K of  $\{1,\ldots,d\}$ . Hence

$$(*_1) \qquad \qquad \zeta(f) = \prod_K \zeta(f|_{x_K = 0})^{(-1)^{\#K - 1}}.$$

Notice that for any non-empty K, the restriction  $f|_{x_K=0}$  is a quasi-ordinary germ, so if  $\#K \leq d-2$  one can apply  $(*_1)$  repeatedly for  $f|_{x_K=0}$ . Therefore, by repeated induction, one obtains that

(\*2) 
$$\zeta(f) = \frac{\prod_{K: \#K = d-1} \zeta(f|_{x_K = 0})}{(\zeta(f|_{x_1 = \dots = x_d = 0}))^{d-1}}.$$

Now, if  $1 \in K$ , then  $f|_{x_K=0} = x_{d+1}^{\deg f}$  (cf. 2.9), hence  $(*_2)$  becomes  $(*_3)$   $\zeta(f) = \zeta(f|_{x_2=\cdots=x_d=0})$ . The first statement of the theorem follows from  $(*_3)$  applied for both f and  $f|_{x_K=0}$ . Finally, again by 2.9, if  $\min \Lambda$  has at least two non-zero entries, then  $\zeta(f|_{x_2=\cdots=x_d=0}) = x_{d+1}^{\deg f}$ , hence Theorem A' follows.

- **4.5. Final remarks.** (1) Assume that min  $\Lambda$  has only one non-zero entry. Then the set of elements of  $\Lambda$  with only one non-zero entry determine completely the topological type of g. This follows from the fact that the Eggers-Wall diagram (i.e.  $\Lambda$ ) of a plane curve singularity determines its topological type. For details, see e.g. [GarcíaB00]. For a formula for  $\zeta(g)$  in terms of the topology of g, see [EN85].
- (2)  $\zeta(f)$  forgets almost all the information about the distinguished tuples  $\Lambda$  of  $f_{red}$ . This behaviour is very different compared with the case of irreducible plane curve singularities where  $\zeta(f)$  is a complete topological invariant.
- (3) Theorem B of the present paper (applied for an irreducible f) is slightly weaker than Theorem B of the article [McN01]. Nevertheless, we decided to present this very version since its proof is simpler, more conceptual, and its statement still implies Theorem A.

(The exact analog of Theorem B [McN01] is the following: Assume that  $\beta \in \mathbf{Z}_{\geq 0}^d$  is non-zero, and  $\min \Lambda + \beta$  has at least two non-zero entries. Then  $\zeta(x^\beta f)(t) = 1$ . Our conjecture is that this statement is true, but we did not verify all the details of its proof.)

#### References

- [A'Campo75] A'Campo, N.: La fonction zeta d'une monodromie, Comment. Math. Helvetici, 50 (1975), 233-248.
- [Abhyankar55] Abhyankar, S.S.: On the ramification of algebraic functions, Amer. J. Math., 77. (1955), 575-592.
- [ALR89] Alonso, M.E., Luengo, I. Raimondo, M.: An Algorithm on Quasi-Ordinary Polynomials, LNCS (Proc. AAECC-6) 357. Springer-Verlag, (1989), 59-73.
- [BMc00] Ban, C. and McEwan, L. J.: Canonical resolution of a quasi-ordinary surface singularity, Canadian Journal of Mathematics, Vol. **52**(6) (2000), 1149-1163.
- [BMcN00] Ban, C, McEwan, L. J. and Némethi, A.: On the Milnor fiber of a quasi-ordinary surface singularity, to appear in *Canadian Journal of Mathematics*.
- [Cox00 Cox, D.: Toric Varieties and Toric Resolutions, Resolution of Singularities. Progress in Mathematics No. 181, Birkhäuser-Verlag, 2000, 259-283.
- [Eggers83] Eggers, H.: Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften 147, Universität Bonn, 1983.
- [EN85] Eisenbud, D. and Neumann, W.: Three-dimensional link theory and invariants of plane curve singularities, *Ann. of Math. Studies* 110, Princeton Univ. Press (1985).
- [GarcíaB00] García Barroso, E. R.: Sur les courbes polaires d'une courbe plane réduite, *Proc. London Math. Soc.*, **81**, Part 1, (2000), 1-28.
- [Gau88] Gau, Y.-N.: Embedded topological classification of quasi-ordinary singularities, *Memoirs* of the AMS. 388 (1988).
- [GT00] Goldin, R. and Teissier, B.: Resolving singularities of plane analytic branches with one toric morphism. *Resolution of singularities*, Progress in Mathematics No 181, Birkhäuser-Verlag 2000, 315-340.
- [González00a] González Pérez, P. D.: Quasi-ordinary singularities via toric geometry, Thesis, University of La Laguna, 2000.
- [González00b] González Pérez, P. D.: Singularités quasi-ordinaires toriques et polyédre de Newton du discriminant, Canad. J. Math., Vol. 52 (2), (2000), 348-368.
- [González01] González Pérez, P. D.: Toric embedded resolutions of quasi-ordinary singularities, preprint 2001 June.
- [GZDC99] Gusein-Zade, S. M., Delgado, F, and Campillo, A.: On the monodromy of a Plane Curve Singularity and the Poincaré Series of the Ring of Functions on the Curve, Funct. Anal. and its Appl., 33 (1) (1999), 56-57.
- [GLM97] Gusein-Zade, S. M., Luengo, I. and Melle-Hernández, A.: Partial resolutions and the zeta-function of a singularity. *Comment. Math. Helv.*, **72** (1997), 244-256.
- [Jung08] Jung, H.W.E.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen x, y in der Umgebung einer stelle x = a, y = b, J.Reine Angew. Math., 133 (1908), 289-314.
- [KKMS73] Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B.: *Toroidal Embeddings 1*, Lecture Notes in Math.. **339**. Springer-Verlag 1973.
- [Lê73] Lê Dũng Tráng: Topologie des singularités des hypersurfaces complexes, Astérisque, 7-8 (1973), 171-182.
- [Lipman65] Lipman, J.: Quasi-ordinary singularities of embedded surfaces. *Thesis*, Harvard University (1965).
- [Lipman 83] Lipman, J.: Quasi-ordinary singularities of surfaces in C<sup>3</sup>, Proc. of Symp. in Pure Math., 40, Part 2 (1983), 161-172.
- [Lipman88] Lipman, J.: Topological invariants of quasi-ordinary singularities, *Memoirs of the AMS*, **388**. 1988.
- [McDonald95] McDonald, J.: Fiber Polytopes and fractional power series, *Journal of Pure and Applied Algebra.*. **104** (1995). 213-233.
- [McN01 McEwan, L. J. and Némethi, A.: The zeta-function of a quasi-ordinary singularity, Ohio State Math. Research Inst. Preprints. 01-25, May 2001; to appear in *Compositio Math*.
- [Merle77] Merle, M.: Invariants polaires des courbes planes, Invent. math.. 41 (1977), 103-111.
- [Milnor68] Milnor, J.: Singular points of complex hypersurfaces, *Annals of Math. Studies*. **61**, Princeton Univ. Press, 1968.
- [MO70] Milnor, J. and Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials, *Topology*, **9** (1970), 385-393.

[Némethi91] Némethi, A.: The Milnor fiber and the zeta function of the singularities of type f = P(h, g), Compositio Math., **79** (1991), 63-97.

[Némethi93] Némethi, A.: The zeta function of singularities, J. of Algebraic Geometry, 2 (1993), 1-23.

[Oda88] Oda, T.: Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematic und ihner Grenzgebiete 15. Springer-Verlag. 1988.

[Oh93] Oh, K.: Topological types of quasi-ordinary singularities, Proc. Amer. Math. Soc., 117, Number 1 (1993), 53-59.

[PopescuP01] Popescu-Pampu, P.: Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles, Thesis, University of Paris 7, 2001.

[Schrauwen90] Schrauwen, R.: Topological series of isolated plane curve singularities, *Eiseignement Mathématique*, **36** (1990), 115-141.

[Siersma90] Siersma, D.: The monodromy of a series of hypersurface singularities, *Comment. Math. Helvetici* **65** (1990), 181-197.

[Varchenko76] Varchenko, A. N.: Zeta function of monodromy and Newton diagram, *Invent. Math.*, **37** (1976), 253-262.

[Zariski67] Zariski, O.: Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 8 43 (1967), 135-146; reprinted in Collected papers, vol. 1 (1979).

[Zariski68] Zariski, O.: Studies in equisingularity, III. Saturation of local rings and equisingularity, Amer. J. Math., 90 (1968), 961-1023; reprinted in Collected papers, vol. 4, 96-158.

Université Paris 7, Institut de Mathématiques, Equipe "Geometrie et Dynamique", Case 7012, 2, Place Jussieu, 75251 Paris Cedex 05, France

E-mail address: gonzalez@math.jussieu.fr

Department of Math., The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

 $E\text{-}mail\ address: \verb|mcewan@math.ohio-state.edu|$ 

Department of Math., The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

E-mail address: nemethi@math.ohio-state.edu