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P. D. Gonzélez Pérez, L. J. McEwan, and A. Némethi

ABSTRACT. We prove that the zeta-function of a hypersurface quasi-ordinary
singularity f equals the zeta-function of a plane curve singularity g. If we re-

order the coordinates, then g has the form g = f(z1,0,...,0,244+1). Moreover,
the topological type of g can also be recovered from the set of distinguished
tuples of f.

1. Introduction

The main goal of this note is the computation of the zeta-function of a hypersurface
quasi-ordinary singularity f : (C***,0) = (C,0). The paper generalizes [McNO1],
where the result is proved for an irreducible germ f. The zeta-function formula was
conjectured in [BMcNO0O].

The quasi-ordinary assumption means, that in some local coordinates the pro-
jection pr : (F,0) :== ({f = 0},0) — (C%,0), induced by (z,z441) = 2 (z =
(x1,...,24) € C?),is finite and its (reduced) discriminant is included in ({x; - - 24 =
0},0).

The zeta-function of a hypersurface germ f : (C%*!,0) — (C,0) is defined as
follows. Fix a sufficiently small closed ball B, in C%*! of radius r, and consider
the Milnor fiber F, := f~'(e) N B, (0 < ¢ < 7). By [Milnor68], f~'({|w| =
€}) N B, — {|w| = €} is a fibration with fiber F.. Let m, € AutH,(F,,R) (¢ > 0)
be the algebraic monodromy operators of this fibration. Then the zeta-function of
f is defined by the following rational function:

(@) = T det(r — tmy) =",
920
The most efficient way to determine ((f) is by A’Campo’s formula [A’Campo75]
via the embedded resolution of f. Hence, in the case of those families of singular-
ities whose embedded resolution is well understood, one gets ((f). This is the
case for plane curve singularities (see e.g. [EN85]) and isolated singularities with
non-degenerate Newton boundary ([Varchenko76], see also [MO70]). For non-
isolated singularities the methods of series of singularities provide partial results
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(see e.g. [Siersma90, Schrauwen90, Némethi93]) provided that the singular
locus is one-dimensional. But, in general, for non-isolated singularities there is no
nice, explicit formula of {(f).

We recall that in general the singular locus of quasi-ordinary singularities is
large. Our main result for these singularities is the following;:

Theorem A. Assume that f : (C¥1,0) — (C,0) (d > 2) is a quasi-ordinary
singularity (which does not need to be reduced). Then there is a (precisely described)
reordering of the coordinates (x1,...,xzq4) such that ((f) = ((fleo==24=0)-

This theorem can also be reinterpreted as follows. The quasi-ordinary singularities
are generalizations of the plane curve singularities. There is a generalization of
Puiseux pairs in general coordinates, called the distinguished tuples, associated to
the quasi-ordinary singularity f and the projection pr (see [Zariski67, Lipman65,
Lipman83, Lipman88]). The distinguished tuples can be organized in a tree
generalizing the Egger-Wall weighted tree encoding the topological type of a plane
curve singularity (see [Eggers83, GarciaB00, PopescuP01]).

In the irreducible case, using Zariski’s result on saturation of local rings, one
can prove that the distinguished tuples determine the embedded topological type of
f (cf. [Zariski68] and [Lipman88], or [Oh93]). In the general case this fact is still
a conjecture. On the other hand, by [BMcNOO] (cf. also with [Lé73]), the zeta-
function of any reduced hypersurface singularity depends only on the embedded
topological type of the singularity. This shows that in the irreducible case ((f)
depends only on the set of distinguished tuples (fact explicitly verified in [McNO01]).
In the general case, a similar result would strongly support the above conjecture.

Theorem A provides exactly this result; for its revised version, see §4.

Theorem A is the consequence of Theorem B:

Theorem B. Let f be as in Theorem A. Then ((z°f)(t) = 1 for any B =
(B1,---,B4) € Z¢,, where 27 := 2! x’gd

The proof of Theorem B occupies all of sections 2, 3, and the first part of 4.

The definition of the distinguished tuples, and some of their properties is given
in Section 2. As a general reference, see [Lipman65, Lipman83, Lipman88] for
the irreducible case, and [Gonzélez01, Gonzdlez00a] in the general case.

In section 3 we recall the construction of a toric modification 7(X) associated
with the distinguished tuple of f from [Gonzdlez01], nevertheless our presentation
is different from [loc. cit.] (where even a more general case is treated). Here, we
insert the needed new results of [Gonzdlez01] in the package used in [McINO01]
(which was based on the thesis of the first author [Gonzélez00a]). For general
facts about toric geometry, we recommend e.g. the books [KKMS73, Oda88]. For
the properties of the toric modification 7(X) see also [Varchenko76] or [GT00].

In the first part of section 4 we will prove Theorem B. The proof uses a result
of [GLM97], which provides a formula for the zeta-function in the presence of a
partial embedded resolution. We will apply this result in the case of 7#(¥). Then
we prove Theorem A, as a consequence of Theorem B and the “weak splitting
property” of the zeta-function proved in [McNO1].

Some general properties of the Milnor fibration and smoothing invariants, in
particular, of the zeta-function, can be found in the books [Milnor68] or [EN85].
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Finally (and similarly as in [McINO1]) we notice that in the literature the no-
tation for the parametrization of an irreducible quasi-ordinary singularity is ¢, and
for the zeta-function of a hypersurface singularity is {(f). Even if these notations
are almost identical, we do not modify them: the meaning of the corresponding
notation will also be clear from the context.

2. Quasi-ordinary singularities and their distinguished tuples

In this section we recall the definition of the distinguished tuples associated with a
hypersurface quasi-ordinary singularity (F,0) C (C?*!,0) (see [Lipman65, Lipman83,
Lipman88] for the irreducible, and [Gonzalez01] for the non-irreducible case).

2.1. We will use the notation Z = (2, 2441) = (z1,...,%4,T4+1) € C¢ x C =
C¥*! for coordinates in C4t! or for local coordinates in (C4*!,0). Let C{z} denote
the ring of convergent power series in z.

We assume that (F,0) = ({f = 0},0) for some (not necessarily reduced) ana-
Iytic germ f : (C1,0) = (C,0) (i.e. F will always be considered reduced, but f
not). Then, by the very definition of the hypersurface quasi-ordinary singularities,
(F,0) is quasi-ordinary, if there exist local coordinates (x,x441) such that f can
be expressed as a pseudo-polynomial f(z,z441) = 2}, + g1 (a:)mglll + -+ gn(x)
with g; € C{z}, and the reduced discriminant of pr : (F,0) — (C%,0) induced
by (z,2441) + x is contained in ({z; ---x4 = 0},0). Let {fP}ics be the set of
irreducible components of f, and set (F(?),0) := ({f(Y = 0},0) for any i € I. Then
each (F(0) is an irreducible quasi-ordinary singularity.

By Jung—Abhyankar Theorem, for each i € I, there exists a parametriza-
tion of (F(),0) by a fractional power series () = H® (ac}/m,...,wtli/m), where
H(sy,...,s4) is a power series and m is a suitable natural number (see [Abhyankar55]
Th. 3 and [Jung08]). This means that there exists a finite map (C%,0) — (F(®),0)
given by z4p1 = HO(s1,...,84), 2, = s for t = 1,...,d. The number m
can be chosen independently of the index i € I, but, obviously, it depends on
f. (E.g. m = n! is suitable; for an explicit construction of ((¥) one can consult
[Gonzdlez00b] and [ALRS89]).

The conjugates of (¥ are obtained by multiplying any of x% /m t=1,...,d
by mt*-roots of unity; the number of different conjugates {C,gl)} x of ¢1) is precisely
the degree n') of the covering pr|pu : (F(?,0) = (C%,0), and

()

f(i)(iﬂ,mdﬂ) = H(Z - Cki))-
k=1

We recall that f is not necessarily reduced; write freq = [[; f(i) for its reduced
germ.
Obviously, the equation of the discriminant of the projection pr is a product of

type:

[ -6
There is an important finite subset of the set of exponents A = (A,...,A\q) € Q%,
of the terms 2* := ' ---2)* appearing in {¢(9}; with non-zero coefficient, called

the distinguished tuples (in some articles they are called characteristic exponents).
In the irreducible case they play a role similar to Puiseux pairs for irreducible plane
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curve singularities. In the case of non-irreducible germs, besides the tuples of the
irreducible components there are some additional tuples as well: they measure the
order of coincidence of the parametrizations of different components.

By unique factorization of the discriminant one has:

G = ¢ =N e (@)™, ™) with € (0) £0,

and )\l“ S IVZZO- The set A := {)‘kl}ij7kl = {(’\;cjl,l""7/\;cjl,d)}ij7kl C %Z%O
constitute the set of distinguished tuples.

Fix an irreducible component (F(®),0) for some i € I, and let ¢V be its
parametrization. Then (by similar argument as above) the distinguished tuples
of (F(,0) are A0 := = {A\} . Set gV = #A0),

2.2. In the sequel we will use the following partial ordering. For any A\, u €
Q% we say that A < pif \; < pg forall t =1,....d. If A < p, but X\ # p, then we
write A < p.

The point is that for any fixed irreducible component (F(,0), the distin-
guished tuples A are totally ordered (cf. [Lipman65, Zariski67, Lipman83,

Lipman88]). For simplicity, we denote the tuples of A by {)\Sf) i(:i)l. Hence:
(1) 0<A? <A <<l

A is empty if and only if F() is smooth.
Moreover, let a(;) be the coefficient of the term z* in ({9 having exponent .
Then the distinguished tuples A generate all the exponents appearing in ¢() in

the following sense:

(2) If a)‘ # 0 then X € Z¢ + Z)\(’)<}\ ()\Ej))-

In general, the set A is not totally ordered. This is a crucial difference between the
irreducible and non-irreducible cases, therefore we explain it briefly.

Fix an index i € I as above. Assume that C,(cll) is obtained from Cfi) by mul-
tiplying any x,/ th
transforms Cl into Cl,l) Then )\kl L= )‘lfl’, . Similarly for another pa,ir (kg, l), one
has A\, = /\”,2 for some I},. Since CI(:) - (l(, (Cl, 1 ) (Cl C ) divides
the discriminant of f, one must have )\llll, < )\“l, or )\il, < /\lll, . We call this line of

by an m'"-root of unity. Assume that the same Galois action

argument “the Galois trick”.
On the other hand, in the case of A, the same argument does not work, since

it is impossible to compare )\;jl and )‘Z']z: it {i,5}n{d',4'} = 0. If this intersection
is not empty, then a similar argument as above gives (cf. [Zariski67]):

(3) Fix an index i € I. Then {/\ }J k18 totally ordered.

2.3. Definition. Fix two indices i,j € I, i # j, and set AGI) = {)\ }kl
Since A7) ¢ {)\ }] i, by (3) one obtains that A(J) is totally ordered. Let
A9 .= max AU be its maximal element. A9 is called the order of coincidence
of the components f( and f(9). Obviously, A(»9) = AGD hence A(B3) = AU ag
well.
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In fact, A(»9) carries all the information about the mutual positions of (F(?),0)
and (F) 0) (cf. the next 2.4 (a)). Moreover, one has the following “valuation
type properties”. (For the proof use (3) and the “Galois trick”, cf. also with
[Gonzalez01], Lemma 16.)

2.4. Lemma. Assume that i # a # j # 1.

(a) AT = {x e A NAD: X < AEGD YU {AGD ],
(b) min{ A4 AGDY < AG@),

(c) If \(b®) < \(B0) then A(B@) = \(Uha),

2.5. Definition. Fix anindexi € I, and consider the subset A(i) := ({\(9)};N
zZ4) U {/\(l } of {\7}, 1. Tn special cases this subset can be empty, define I' :=
{z|A( )£ 0} Ifi € I’ then A(4) is totally ordered by (3). Following [GonzalezOl],
we define ;) := min A(i) for any i € I'. For i € I\ I' we write \,(; = +o00. (By
convention: A < +oc for any A € Q%)

Notice that using (1), property (2) (cf. 2.2 ) reads as:

(2*) Assume that X ¢ Z? satisfies Ae(s) £ A for some i € I. Then a&i) = 0.

The above facts imply the next result.

2.6. Proposition. ([Gonzilez01], Lemma 17)

(a) #(I\ ') < 1. If #(I\I') = 1 then the number of smooth irreducible
component of F is exactly one. In particular, A = 0 if and only if F' is irreducible
and smooth.

(b) Assume that ;) € Z¢ for somei € I'. Then Ae(i) < M) for any j € 1"
In particular, the set {\..; }tier contains at most one element from 74 (which is

its greatest element).
(c) The set { Ny tier is totally ordered.

2.7.  This proposition together with the next technical result will allow us to
modify the coefficients of f by a change of variables in such a way that in the new
situation the Newton polyhedron of f..q will reflect the set {A,;};. The change
of variable has the form x), , = zqp1 — @(x), =} = ¢ for t = 1,...,d, with ¢(x)
of type > ez, axz®. This provides automatically a set of new parametrizations

¢'@) = ¢@ — o(x) (i € I). Such a change of variables and parametrizations does
not modify the set of distinguished tuples.
First, we verify the following lemma.

2.8. Lemma. Assume that A\, £ A and A £ A. Then ag‘i) = af\j).

£(J)
Proof. By (2*) we can assume that A € Z%. Assume that ag‘i) # af\j). Then by
the definition of A% one has A(»/) < X. This together with Ae(s) £ A implies
(*) Aui) £ A9, Therefore, by the definition of /\H(l one has (xx) A(b7) ¢ 74,
Then (*), (**) and (2%) give al ()l ;) = 0. Similarly al (Z ;7 = 0. These two vanishing
contradict the definition of )\(’*J).
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2.9. Proposition/Definition. (cf. [Gonzdlez01]) There is a change of vari-
ables as in 2.7 such that the new parametrizations have the following form.:

¢ = agi)x’\”(“ - Z a(;)x’\ (agi) #0) (iel).
Ar(i) <A

Ifi € I\I' then fO(z,a!,, ) = 2!, (i.e. () =0).
A coordinate system which admits parametrizations as above is called “good”.

Proof. Choose an index iq € I so that A.;,) = max{\.@ }tier. Then define p(x)
by Zaf\“’)wx, where the sum is over A € Z%o with Mgy £ A. (In particular, if
i € I\ I' then ¢ = ().} Then the result follows from lemma 2.8 .

2.10. Corollary. A has a unique minimal element min A which equals min{ ;) };.

3. The partial toric resolution.

In this section we will assume that f is a quasi-ordinary singularity, and we
will use the notations of the previous section. We will consider a toric modification
7(X) : Z(¥) — C4! whose restriction above a small ball B, provides a partial
resolution of (F,0) := (f~(0),0) c (C%*!,0). For simplicity and uniformity of the
notation we will use C4*! instead of B,, but this will not affect the proofs. For the
definition of 7(¥) associated with an arbitrary fan ¥, see [KKMS73] or [Oda88].
In the case of some special hypersurface singularities, 7(X) is a natural (partial)
embedded resolution, see e.g. [Varchenko76] or [GTO00]. For irreducible quasi-
ordinary singularities the modification 7(X) was constructed in [Gonzalez00a],
and [Gonzdlez01] contains the reduced case. The presentation here combines
[Gonzdlez00a], [Gonzdlez01] and [McINO1].

3.1. The germs fl(i). Assume that f is represented in a “good” coordinate
system, which admits parametrizations as in 2.9 .

Define Cfi) = agi)x’\ﬂﬂ fori € I' and Cfi) := () = 0 otherwise. Obviously, Cfi)
determines an irreducible quasi-ordinary singularity fl(i). If L denotes the fraction
field of C{z}, then n() = [L(¢®) : L] is the degree of f@, and n!” = [L(z*®) : L]
is the degree of ffi). Since the field extension [L((() : L] is generated over I by
the distinguished tuples of f(*) ([Lipman88], Lemma 5.7), 2.2 (2) implies that nli)
divides n®. Set el := n(i)/nsi) € Zwo. (Ifi ¢ T' then n( = nsi) = el =1)
Obviously

f1(i) = H(xd_H — wjocgi)xk(i)) = :Ljdlfl — fy(i)xngi))"@(i): with ’y(i) = (agi))"g“:
Jj=1
where {w;}; are the ngi)-roots of unity. Notice also that if k(i) = x(j) and 7)) =
) then f](i) = f](j ). The importance of the germ f](i) is given by the fact that its
Newton polyhedron determines the Newton polyhedron of f( (see below).
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3.2. The Newton polyhedron of f. Given f,.q = ), c,Z" € C{Z}, its
Newton polyhedron N(freq) is the convex hull of the set 37, _,v + R‘é‘gl. Any
vector u € (R*™1)3 defines the face F, of N'(frea) by

]:u = S N : 5 = inf ) ! .
{U (fred) (u 'U) v'E./{fI%fred)<u v >}
N (f®) has only two vertices, namely (0,...,0,n®) and (n® X,y 1, .., 0D Ap(i).4,0)
provided that i € I'. If i ¢ I' then N'(f() has only one vertex, namely (0,...,0,1).
Finally, the Newton polyhedron N (freq) of freq is the Minkowski sum of the poly-
hedrons N'(f() (i € I). Recall that the set {Ax(i) }ier is totally ordered, hence
the compact faces of N'(feq) constitute a “monotone polygonal path” (using the

terminology of [Gonzdlez00b] and [McDonald95]). Let F., be the union of all
compact faces of N(freq). Then

i)y el
Frealz., = [T,
el
Above freqlF denotes the (symbolic) restriction of fr..q to F, namely freqlr =
Zve]—' CUE'U.

3.3. The fan X(N(f,cq)) and its subdivision ¥ in (R%1)% . We say that
two vectors in (R*1)%  are related if they define the same face in N(freq). The
fan (N (freq)) is defined in such a way that the classes of the above relation are
the relative interiors of the cones of X(N(freq)). In fact, the fan L(N(freq)) is
obtained by subdividing the cone (R41)%, with the linear subspaces IV (i € I')
given by the equations N

d
19 (v) = Z/\k(i),tvt —vgp1 =0 (i€l).
t=1

Since {A.() }ier is totally ordered, for any i, j € I', k(i) # £(j), one has
(%) 19 N1 N (R, = 0.

In general, X(N (freq)) is not nonsingular (for the terminology, see [Oda88] 1.4; in
some articles “regular” is used for “nonsingular”). We will use the notation ¥ for
a nonsingular (simplicial) subdivision of £(N(freq)) supported by (R4T1)% . For
the existence of such a fan ¥, see Theorem 11 (page 32) of [ KKMS73].

For an arbitrary ¥ it is not true that 7(X) : Z(X) — C9*! is an isomorphism
above C%*!\ Sing F (a property sometimes required for an embedded resolution).
But, with a good choice of X, one has a slightly weaker property (which is still
sufficient for us, cf. 4.2 ). More precisely, there exists a nonsingular fan Y. so that
7(X) is an isomorphism above C?*!\ F. For the proof see (3.15) of [McNO1], a
similar property was also used in [Varchenko76] and [Gonzalez01].

In fact, in [Gonzalez01], the first author considered those nonsingular subdi-
visions ¥ which have the following additional property: any nonsingular cone of
S(N(frea)) is a cone of X. The existence of such a fan is proved in [Cox00], The-
orem 5.1. Tf ¥ satisfies this property then 7(X) is an isomorphism above C4+1\ F
(cf. [McNO1]), and the restriction of 7(X) to the strict transform F of F is an
isomorphism above F'\ Sing F' (fact shown in [Gonzdlez00a, Gonzailez01]).

In the sequel, we will assume that Y. satisfies the above property.
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3.4. The fan ¥ supported by (R%*1)% defines a modification (%) : Z(X) —
C*+!. The variety Z(3) is smooth, and it is covered by affine spaces {Z(0) }dim o—d-1
(i.e. each Z(o) ~ C1'). The inclusion ¢ C (R¥1)%, induces a morphism
7(0) : Z(o) = CHL. If ¢ = (a',...,a%™) and a* has coordinates (af,...,ak. ).
then 7(o) has the form:

1 d+1 1 d+1
— M 1 _ ,%d+1 @giq
T1=Up' UGy e S Td41 = Uy S U

The total transform of f = 3" ¢, 2" by (o) is

Forle) = Y el ooufii ) oLy,

where m(a) := inf,enr(s,.,)(a,v) and f, defines the equation of the strict transform
of f in the chart Z(o) C Z(X%).

3.5. The divisors D(a) in Z(¥). To any primitive vector a of X(M)(:= 1-
skeleton of X), we associate a divisor D(a) in Z(X). In any chart Z(o), associated
with a cone 0 = (a', ..., a%*!), D(a*) is given by {u = 0}. If b & {a',...,a%1},
then D(b) N Z(o) = 0. The divisor D := U,cxa)D(a) in the smooth variety Z(X)
is a normal crossing divisor with smooth irreducible components.

By 3.4 one gets that m(X)(D(a*)) is the coordinate subspace defined by
x; = 0 for all ¢ with af # 0. Tf e!,... e?*! denote the canonical basis on Zt!,
then 7(X)(D(e*)) = {zr = 0}, but for any a € M \ {e!,...,e%!} one has
dim 7(X)(D(a)) < d — 1. The critical locus (exceptional divisor) of w(X) is exactly
the union of these divisors:

Uaez(l)\{ek}k D(a)
By the above discussion, D(a) is compact (i.e. D(a) C 7(X)~1(0)) if and only if a is
an interior point of (R?+1)%,. More generally, let A = {a',...,a*} be a non-empty
subset of (), and write D 4 := Ngea D(a). The D4 # 0 if and only if {a',...,a*}

forms a cone o4 in ¥. In this case D4 is compact if and only if o4 N (R4TL)% ) # 0.
In fact

m(2)7H(0) = U Da.

o AN(RAF)L (0

3.6. The strict transform F of F. Set F() = {f({) = 0} and for any space
Y write Y for its strict transform via m(X).

We start with the following remark. If we fix an index ¢ € I', then all the
properties of the germs f(*), fl(i) and their strict transforms follow from section 3
of [McNO01], where the irreducible case is treated. Indeed, our fan ¥ considered
here satisfies all the restrictions required in [loc. cit.] (even some more, since it is
compatible with all the linear spaces [()). In the next paragraph we list those prop-
erties of F() which will be needed later. For proofs see [McNO1], [Gonzalez00a)
or [Gonzalez01] (but, for the convenience of the reader, we provide some hints as
well).

For a fixed i € I' the following facts hold:

(1) For any A = {a!,...,a*} ¢ SO, if Dy, N FO £ @, then {a',...,a"}
should be a cone o4 in X NI, In this case, D4 N F® is compact if and only if
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oa N0 A (RIANE, =04 N (R, # 0. In particular, Dy N F@ is compact if
and only if D4 is compact (cf. 3.5 ).

(2) We say that the “natural stratification” of D N F( is given by strata of
type:
(maeAD(a) \UaQAD(a)) N F(z) (A C E(l))'
Then for any stratum Z of DNF( with dim Z > 0, one has x(Z) = 0. (This follows
from the fact that = is contined in an orbit of the toric variety Z(X) represented in
some chart Z(o) by an equation u441 =a non-zero constant.)

Next, we fix 4,5 € I' with i # j. Then the assumption about ¥ (cf. 3.3 ) and
the above properties give:

(3) If k(i) # K(j), then ()~ (0) N EF@O N FU) = ¢, (Ifﬂ(E) 1(0) NEONFO)
is non empty, there is D4 C 7(X)~1(0) such that D4 N F® N FU) is non empty,
and o4 N (R¥1)% ) # 0, of. with the last formula of 3.5 . Then by (1) we have
that o4 C N 1M N1U). This implies that o4 N (RT)%, c 10 N0 0 (RE)%,
is empty by 3.3 (x), a contradiction.)

(4) T k(i) = K(j), then 7(2)~1(0) N FO = 7(2)~1(0) N FU) provided that
D = ~(); otherwise 7(2)~1(0) N F& n F@ = (. (This follows again by the
irreducible case, where the intersection 7(£)~1(0) N F(®) is described in terms of

F9 cf. [McNO1], 3.20 and 3.21. See also the discussion in 3.7 , or Proposition 24
of [Gonzalez01].)

(5) D(e“tyn FU = @ for any j € I’ Since F() = D(ed*!) fori e I\ T,
one obtains that for such an i, F() N FG) = for any j € I'. (This follows from
et & Uie 1™ and part (1).)

3.7. The total transform of z°f. The divisor D N F has a “natural strat-
ification” given by strata of type

(ﬂaeAD(a) \UaQAD(a)) N F, (A C E(l))'

We are interested only in those strata which are situated in 7(X)71(0). They are
contained in compact intersections of type D 4.

Next, we fix 3 € Z¢,, and consider the germ z° f. Notice that (%)~ ({z; =
0}) = D(e?) (for t = 1,...,d), hence (D U {the total transform of {z°f = 0}}) =
(DUF'), and both of them have the same “natural stratification” (i.e. by introducing
the factor 27, we do not create new strata).

Consider such a strata = with dim = > 0. We claim that the total transform of
2P f along Z is an equisingular family of singularities. The argument is similar as
in [Gonzélez00a] and [Gonzdlez01] where it is proved that the total transform
of f is equisingular along =.

(By this we mean the following. The strict transform along the stratum = de-
fines a family of hypersurface quasi-ordinary singularities in such a way that each
member of the family has the same distinguished tuples. The situation locally is de-
scribed in [Lipman88] Appendix 7, where “natural stratification” of an irreducible
quasi-ordinary hypersurface is studied. The important point is that this family is
equiresolvable, a resolution is obtained from the embedded resolution of the total
transform of f, see [Gonzdlez01]).

Now we concentrate our discussion on the zero-dimensional strata {Z}gim==

of DNF.
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We fix an arbitrary d-cone o' = (a',...,a?) of ¥NI® (i € I'), and we consider
the unique (d+ 1)-cone o = (a',...,a% a®"!) of ¥ with a primitive vector a?*!
satisfying [() (a?t1) > 0. Then, in the chart Z(c) one can find a zero-dimensional
stratum O, := FN D(a')N---ND(a?) of DN F. In fact, if I = I', then there is
a one-to-one correspondence between the zero-dimensional strata of DN F and the
points O, where ¢’ runs over the d-cones of X N1 for all i € I'. Tf I # I' then
D N F has some additional zero-dimensional strata on D(edt1) as well.

Using the above notations, in the chart Z(o), the point O, is given by the
equations u; = --- = ug = 0 and w := 1 — y(yy,; = 0. The first author in
[Gonzélez01] has shown that the strict transform f, of f in the local coordinates
(u1,-...,uq,w) is a (not necessarily reduced) quasi-ordinary singularity. Moreover,
the germ ((fy)red, Oo) has smaller complexity than freq (e.g. #A is smaller, or its
Eggers-Wall diagram is simpler).

In the proof of Theorem B, we will use an inductive step, which replaces the
germ z° f by its total transform at the points {O, }. Obviously, the total trans-
form of 2 f at the point O, has similar form, namely u” f, for some 7 (by 3.4 ).
The point is that if 3 € ZZ, then n € Z¢, as well. Indeed, let us write (a*,3) for
Ele a¥B;. Then by 3.4 one gets that n; = m(a*) + (a*, 8) for any k = 1,...,d.
Notice that a* # e?t! since e¢+! g 1), Hence (a*, ) > 0 for each k.

4. The proof of Theorems A and B

4.1. The proof of Theorem B.. The proof is based on the facts listed in
sections 2 and 3 and on the following result proved in [GLM97]. We mention, that
in this paper, stratification means a (semi-analytic) pre-stratification, without any
regularity assumption.

4.2. Theorem. Letg: (C%*! 0) — (C,0) be the germ of an analytic function,
and B, a sufficiently small (Milnor) ball of it. Let ¢ : X — B, be a birational
modification such that ¢ is an isomorphism above the complement of {g = 0}. Let
S be a stratification of =1 (0) such that along each stratum = of S the zeta-function
of the germ (g o ¢,x) at x € = does not depend on © € E. Denote this rational
function by (=(t). Then:

MOIOEN | RSORS
ZeS
In order to prove Theorem B we will apply 4.2 for ¢ = n(X), where the fan ¥
satisfies all the properties 3.3 . Since the image of the critical locus of 7(X) is
included in F, 4.2 can be applied for the germ g = z®f. The divisor D has a
natural stratification with the following strata:

{(NaeaD(a) \ UagaD (@) \ F}acx) . {(NaeaD(a) \ UagaD(a)) N F} acxa.

This stratification of D induces a stratification on 7(X)7!(0) which will be de-
noted by S. Each stratum = of S is included in some compact intersection of type
NacaD(a) (cf. 3.6 (1)). By the very definition, the stratification is compatible
with F. Denote by SN F (resp. by S\ F) the collection of those strata which are
in F (resp. are in 7(X)~1(0) \ F). The stratification S satisfies the assumptions of
4.2 by the results of 3.6 and 3.7 .
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We recall that the divisor D = U,ex0)D(a) consists of the exceptional divi-
sors {D(a)}, corresponding to a € XM \ {e#};<t<4y1, and the strict transforms
of the coordinate hyperplanes {D(e*)};<k<4+1. On the other hand, the divisors
{D(e*)}1<k<a are components of the total transform of g. The divisor D(e?*1) will
require a special care. Therefore, we will distinguish two cases: (Case A) I # I
(i.e. w441 is a component of f); and (Case B) I = I' (i.e. x44+1 is not a component
of f).

We will analyze the contribution (z (t)X(

) for each stratum =.

(1) First assume that Z € S\ F is of dimension dim = < d.

Recall that the total transform of 27 f outside of F' is a normal crossing divisor.
Moreover, the zeta-function of a germ (uy, ..., uqp1) = uf’ ---dii' is 1, provided
that at least two pg’s are strictly positive.

In (Case A), along each = there are at least two coordinate hyperplanes in the
zero-set of the total transform of g. Hence the zeta-function (z(¢) = 1. (Cf. also
with the classical case [A’Campo75] when ¢ is an embedded resolution.)

In (Case B) D(e™)NF = (cf. 3.6 (5)). Therefore, any stratum Z for which
the argument presented in (Case A) is not valid, is an orbit of the toric variety
Z(3) of dimension d — 1 and type D(e?*!) N D(a) \ UyD(b). So x(Z) = 0.

(2) Assume that Z € S\ F and dim Z = d. Then there is a unique stratum =’
of D of type D(a) \ (Upz,D(b)) such that Z C Z'. Moreover, Z is obtained from
Z' by eliminating its intersection with F, which is a union of (d — 1)-dimensional
strata of type 2" € SN F. Now, Z' is an orbit of the toric variety Z(X), hence
X(Z") = 0. But for each Z", x(E") = 0 as well, because of 3.6 (2). Hence x(Z) = 0.

(3) Now, assume that Z € SN F of dimension dimZ > 0. Then x(Z) = 0 by
3.6 (2).

(4) Finally, consider the zero-dimensional strata of = € SN F. By 3.7 they
corresponds exactly to the set of points O, described in 3.7 , provided that I = I'.
Otherwise there are some additional points on D(e?*!), but in these points the total
transform of g is a normal crossing divisor with zeta-function = 1.

Therefore, steps (1)-(4) give the inductive formula:
C@Pf)t) = H ((total transform of z° f at O,)(t),

where the product is over the d-cones o’ C XN (Usep1®).

In 3.7 we verified that total transform at O, has the form u"f, satisfying
all the inductive properties: f, is quasi-ordinary in local coordinates (u,w) with
smaller complexity than f, and 5 € Z¢,. Therefore Theorem B follows by induc-
tion. (After a finite number of toric modifications, all the total transforms u" fs
will have the form u"w™ with zeta-function 1.)

4.3. Now we will revise Theorem A. First we recall that A = ( if and only if
f is irreducible and smooth. For such a germ f, Theorem A is obviously true (with
C(f)(t) =1 —t). Therefore, in the sequel, we will assume that A # §). We reorder
the variables (z1,...,xq) in such a way that the first entry of min A is non-zero.
For any index set K C {1,...,d} we define f|,,—o0 by fl.,—o for all kek-

4.4. Theorem A'. Fix the above notations. Then for any index set K C
{1,...,d} with1 & K one has: ((f) = ((flzx=0). In particular, for K = {2,...,d},
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one gets that ((f) = ((g), where g is the plane curve singularity (r1,xq+1) —

f(l'l, 0, ey 0, a:d+1)4
In fact, if min A has at least two non-zero entries, then ((f)(t) =1 — tdeef,

Proof of Theorem A’'. Obviously we can assume that f is represented in a good
coordinate system (cf. 2.9 ). The proof is based on the following fact.

The “weak splitting property” of the zeta-function. [McNO1] Assume that
for two germs f,g : (C41,0) — (C,0) and any k > 1 one has ((g*f) = 1. Then
¢(f) = ¢(flg=0)-

Using this and Theorem B we obtain that ((f) = {(f|s...z,=0).- By a Mayer—
Vietoris argument

_1)#K—1

C(flay-za=0) = H C(f|w;<=0)( )
K

where the product is over the non-empty subsets K of {1,...,d}. Hence

(%1) ) =TI ¢Uflaw=o) 0"
K

Notice that for any non-empty K, the restriction f|.,—¢ is a quasi-ordinary germ,
so if #K < d— 2 one can apply (1) repeatedly for f|,,—o. Therefore, by repeated
induction, one obtains that

%  kpr=d—1¢(flax=0)
) LR T — T

Now, if 1 € K |, then f|,,=0 = xgj_glf (cf. 2.9 ), hence (*2) becomes (x3) ((f) =
C((flza=-.=z,=0)- The first statement of the theorem follows from (x3) applied for
both f and f|;,—o. Finally, again by 2.9 , if min A has at least two non-zero

entries, then ((f|zo=..=o,=0) = xgiglf , hence Theorem A’ follows.

4.5. Final remarks. (1) Assume that min A has only one non-zero entry.
Then the set of elements of A with only one non-zero entry determine completely
the topological type of g. This follows from the fact that the Eggers-Wall diagram
(i.e. A) of a plane curve singularity determines its topological type. For details,
see e.g. [GarciaB00]. For a formula for {(g) in terms of the topology of g, see
[ENS85].

(2) ¢(f) forgets almost all the information about the distinguished tuples A of
fred- This behaviour is very different compared with the case of irreducible plane
curve singularities where {(f) is a complete topological invariant.

(3) Theorem B of the present paper (applied for an irreducible f) is slightly
weaker than Theorem B of the article [MlcNO1]. Nevertheless, we decided to
present this very version since its proof is simpler, more conceptual, and its state-
ment still implies Theorem A.

(The exact analog of Theorem B [McNO1] is the following: Assume that 3 €
Z<, is non-zero, and min A + 3 has at least two non-zero entries. Then ((z° f)(t) =
1. Our conjecture is that this statement is true, but we did not verify all the details
of its proof.)
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