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ON VERY NON-LINEAR SUBSETS OF CONTINUOUS

FUNCTIONS

G. BOTELHO, D. CARIELLO, V.V. FÁVARO, D. PELLEGRINO AND J.B.
SEOANE-SEPÚLVEDA

Abstract. In this paper we continue the study initiated by Gurariy and Quarta
in 2004 on the existence of linear spaces formed, up to the null vector, by continu-
ous functions that attain the maximum only at one point. Inserting a topological
flavor to the subject, we prove that results already known for functions defined
on certain subsets of R are actually true for functions on quite general topological
spaces. In the line of the original results of Gurariy and Quarta, we prove that,
depending on the desired dimension, such subspaces may exist or not.

Introduction

The problem of finding linear spaces formed, up to the origin, solely by real-
valued continuous functions on certain subsets of R that attain the maximum only
at one point was successfully investigated by V.I. Gurariy and L. Quarta [3]. Given

a topological space D, by Ĉ(D) we denote the subset of the linear space C (D) of
all real-valued continuous functions on D composed by the functions that attain the
maximum exactly once in D. The main results obtained by Gurariy and Quarta in
this direction are the following:

(A) Ĉ[a, b) contains, up to the origin, a 2-dimensional linear subspace of C[a, b).

(B) Ĉ(R) contains, up to the origin, a 2-dimensional linear subspace of C(R).

(C) There is no 2-dimensional linear subspace of C [a, b] contained in Ĉ [a, b]∪{0}.

In the words of Gurariy and Quarta (see, e.g., [3]): Ĉ[a, b) and Ĉ(R) are 2-lineable

and Ĉ [a, b] is very non-linear (we refer the interested reader to [1, 3] for an account
on this recently coined concept of lineability).

The situation is interesting because, for example, although Ĉ [a, b] is a dense Gδ

subset of C[a, b], it does not contain, up to the origin, a 2-dimensional subspace of

C[a, b]. The proof, due to Gurariy (2004), of the fact that Ĉ [a, b] is a dense Gδ

set has never appeared, so we shall sketch it in the Appendix for the benefit of the
reader (and as a tribute to V.I. Gurariy).
On the one hand, the results (A) and (B) above can be obtained in a fairly simple

way. Indeed, for (A) just take sin · and cos · on [0, 2π), whereas for (B) consider the
two linearly independent functions x(t), y(t) defined on R as

x(t) := µ(t) cos(4 arctan(|t|)) and y(t) := µ(t) sin(4 arctan(|t|)),
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where µ is the real valued continuous function defined on R by

µ(t) =

{
et if t ≤ 0,
1 if t ≥ 0.

Then, take the 2-dimensional vector space given by V = span{x(t), y(t)}. It can be

seen, quite easily, that V ( Ĉ(R)∪{0}. On the other hand, result (C) above requires
a series of highly technical lemmas (see [3])
The purpose of this paper is to obtain far-reaching generalizations of the afore-

mentioned results of Gurariy and Quarta. The idea is to consider spaces of functions
defined on domains much more general than the original ones ([a, b),R, [a, b], respec-
tively), for which the corresponding results hold true. Moreover, we investigate the
existence of n-dimensional subspaces – instead of 2-dimensional subspaces – formed
by functions that attain the maximum exactly once. The search for such general
domains disclosed the topological nature of the problem. In this way, for each of the
three results we ended up with general domains that replicate a topological property
of the original domain. While Gurariy and Quarta [3] used typical analytic tech-
niques, the manifested nature of the problem led us to apply topological techniques,
for example the Borsuk-Ulam theorem.
This paper is arranged as follows. In Section 1 we extend (A) to spaces of functions

defined on topological spaces D that can be continuously embedded onto some
Euclidean sphere Sn. In Section 2 we extend (B) to spaces of functions defined on
quite general topological spaces D that include R. In the two former cases we prove

that Ĉ(D) ∪ {0} contains an (n+ 1)-dimensional subspace. In Section 3 we extend
(B) to spaces of functions defined on compact subsets K of Rm. In this case we

prove that Ĉ(K) ∪ {0} does not contain an (m+ 1)-dimensional subspace of C(K)
for every compact K ⊂ Rm but, on the other hand, there are compact sets K ⊂ Rm

for which Ĉ(K) ∪ {0} contains an m-dimensional subspace of C(K). In a final
section we provide an example of a compact space K for which there is an infinite
dimensional subspace of C(K) formed by functions that attain the maximum only
at one point.

1. Continuous functions on preimages of Euclidean spheres

In this section we show that in (A) the interval [a, b) can be replaced by preimages
D of Euclidean spheres. Moreover, the dimension of the resulting subspace of C(D)

contained in Ĉ(D) ∪ {0} equals the dimension of the sphere plus 1. By 〈·, ·〉 we
denote the usual inner product in the Euclidean spaces.

Theorem 1.1. Let n ≥ 2 be a positive integer and D be a topological space for
which there is a continuous bijection from D to Sn−1. Then Ĉ (D) contains, up to
the origin, an n-dimensional linear subspace of C(D).

Proof. Let πi : S
n−1 −→ R be the projection on the component i = 1, . . . , n and let

G : D −→ Sn−1 be a continuous bijection. We first note that the maps πi, 1 ≤ i ≤ n,
are linearly independent. In fact, consider a linear combination

∑n
i=1 aiπi. If ai 6= 0

for some i, then (
∑n

i=1 a
2
i )

1/2
6= 0. Let z = (a1, . . . , an)/ (

∑n
i=1 a

2
i )

1/2
∈ Sn−1. Then

n∑

i=1

aiπi(z) =

∑n
i=1 a

2
i

(
∑n

i=1 a
2
i )

1/2
6= 0.
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Now we shall prove that each nontrivial linear combination of the functions πi,
1 ≤ i ≤ n, has only one point of maximum. Consider

∑n
i=1 aiπi with some ai 6= 0.

For an arbitrary y ∈ Sn−1,
n∑

i=1

aiπi(y) = 〈a, y〉,

where a = (a1, . . . , an). It is well known that the function y 7→ 〈a, y〉 attains its
maximum in z ∈ Sn−1 if, and only if,

(1.1) z =
(a1, . . . , an)

(
∑n

i=1 a
2
i )

1/2
.

Therefore the unique point of maximum of
∑n

i=1 aiπi : S
n−1 −→ R is z as in (1.1).

Now, consider the compositions

πi ◦G : D −→ R

for i = 1, . . . , n. It is easy to see that set {πi ◦G : i = 1, . . . , n} is linearly indepen-
dent. Let h =

∑n
i=1 bi (πi ◦G) be a nontrivial linear combination of the functions

πi ◦ G. Since
∑n

i=1 biπi attains its maximum at an unique point x0 ∈ Sn−1, and G
is a bijection, it follows that h attains its maximum at an unique point, namely,
G−1 (x0) . The linear subspace spanned by the functions πi ◦ G, i = 1, . . . , n, com-
pletes the proof. �

2. Generalizing the 2-lineability of Ĉ(R)

In this section we show that the argument of the proof of Theorem 1.1 actually
holds for more general domains; general enough to have R as a particular instance.
By ‖ · ‖2 we mean the Euclidean norm on Rn.

Theorem 2.1. Let n ≥ 2 be a positive integer and D be a topological space contain-
ing a closed set Y such that there are a continuous bijection F : Y −→ Sn−1 and a
continuous extension G : D −→ Rn of F such that ‖G(x)‖2 < 1 for every x /∈ Y .

Then Ĉ (D) contains, up to the origin, an n-dimensional linear subspace of C(D).

Proof. The symbol πi stands for the i-th projection on Rn. Note that Sn−1 ⊂ G(D)
and G(D) is contained in the closed unit ball of Rn. Let us see that any nontrivial
linear combination

f :=

n∑

i=1

biπi : G(D) −→ R

attains its maximum at an unique point x0 ∈ G(D) and that this point belongs
to Sn−1. Indeed, restricting

∑n
i=1 biπi to Sn−1 ⊂ G(D), the same argument of the

previous section tells us that there is an unique x0 ∈ Sn−1 such that

(2.1)

n∑

i=1

biπi(x) ≤

n∑

i=1

biπi(x0)

for every x ∈ Sn−1. So, for any x ∈ Sn−1, as −x ∈ Sn−1, we have
n∑

i=1

biπi(−x) ≤
n∑

i=1

biπi(x0)
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hence

(2.2) −
n∑

i=1

biπi(x) ≤
n∑

i=1

biπi(x0).

From (2.1) and (2.2) we obtain

(2.3)

∣∣∣∣∣

n∑

i=1

biπi(x)

∣∣∣∣∣ ≤
n∑

i=1

biπi(x0)

for every x ∈ Sn−1. Now we just need to show that if y ∈ G(D)− Sn−1, then

n∑

i=1

biπi(y) <

n∑

i=1

biπi(x0).

The case y = 0 is immediate. Let us suppose y 6= 0. Recalling that ‖y‖ < 1 and
applying (2.3), we have

n∑

i=1

biπi(y) ≤

∣∣∣∣∣

n∑

i=1

biπi(y)

∣∣∣∣∣ = ‖y‖ ·

∣∣∣∣∣

n∑

i=1

biπi

(
y

‖y‖

)∣∣∣∣∣

<

∣∣∣∣∣

n∑

i=1

biπi

(
y

‖y‖

)∣∣∣∣∣ ≤
n∑

i=1

biπi(x0).

Thus far we have proved that any nontrivial linear combination

f =

n∑

i=1

biπi : G(D) −→ R

attains its maximum at an unique point x0 ∈ G(D) and that this point belongs to
Sn−1. Now we claim that any nontrivial linear combination

h :=

n∑

i=1

bi (πi ◦G) : D −→ R

attains its maximum only at the point F−1 (x0) ∈ Sn−1. In fact, note that h attains
a maximum at a point z ∈ D if and only if f attains a maximum at G(z). So,
the only point of maximum of h is G (F−1 (x0)) = x0. Since Sn−1 ⊂ G(D) and
the functions πi, i = 1, . . . , n, are linearly independent on Sn−1, it follows that the
functions πi ◦ G, i = 1, . . . , n, are linearly independent on D. The linear subspace
spanned by the functions πi ◦G, i = 1, . . . , n, completes the proof. �

Let us see that Theorem 2.1 recovers the 2-lineability of Ĉ(R). For a, b ∈ R2,
by (a, b) we mean the open line segment in R2 from a to b. Take Y = [0,+∞) ⊂
R, a continuous bijection F : [0,+∞) −→ S1, a homeomorphism g : (−∞, 0) −→
(F (0), (0, 0)) ⊂ R2 such that lim

x→0
g(x) = F (0). Define

G : R −→ R2 , G(x) =

{
F (x), x ≥ 0,
g(x), x < 0.



ON VERY NON-LINEAR SUBSETS OF CONTINUOUS FUNCTIONS 5

3. Functions on compact subsets of Euclidean spaces

As to the result (C) of the Introduction on Ĉ[a, b], in this section we prove that,

on the one hand, Ĉ(Sm−1) ∪ {0} contains an m-dimensional subspace of C(Sm−1);

and on the other hand, for every compact subset K of Rm, Ĉ(K) ∪ {0} does not
contain an (m+ 1)-dimensional subspace of C(K).
First we have to prove four technical lemmas which will be used in the proof of

the main result of this section (Theorem 3.6).

Lemma 3.1. Let D be a metric space such that there is a linear space V of contin-
uous functions from D to R such that

(1) dim(V ) = n, n ∈ N,
(2) Each 0 6= f ∈ V has an unique point of maximum.

Let D′ ⊂ D be the set of points of maximum of the functions belonging to V . Then
the linear space

V ′ := {f |D′ : f ∈ V }

also satisfies (1) and (2).

Proof. We first show that the elements of V ′ satisfy (2). In fact, note that each
nonzero function f |D′ ∈ V ′ has a point of maximum which is unique because f ∈ V
has an unique point of maximum. Now we just need to prove that dim(V ′) = n.
Let {f1, . . . , fn} be a basis of V . If a1, . . . , an ∈ R are such that

∑n
i=1 aifi|D′ = 0,

then −
∑n

i=1 aifi|D′ = 0. Supposing that g :=
∑n

i=1 aifi 6= 0; it follows that −g 6= 0.
Since the points of maximum of g and −g belong to D′, the images of these points
of maximum are 0, since g|D′ = −g|D′ = 0. We thus conclude that g = 0. Since
the set {f1, . . . , fn} is linearly independent, we have a1 = · · · = an = 0, and hence
{f1|D′, . . . , fn+1|D′} is linearly independent as well. The proof is complete because
the inequality dim(V ′) ≤ dim V is obvious. �

Lemma 3.2. Keeping the terminology and the notation of Lemma 3.1 and that of
its proof, consider the continuous function

F : D −→ Rn , F (y) = (f1(y), . . . , fn(y)).

Let X := F (D′). Then

(1) For every v ∈ Sn−1, the function

gv : X −→ R , gv(x) = 〈x, v〉,

has an unique point of maximum.
(2) For every x ∈ X there is v ∈ Sn−1 such that x is the unique point of maximum

of the function gv.
(3) Endowing D′ with the metric induced by the metric of D and X with the

Euclidean metric of Rn, then F |D′ : D′ −→ X is a continuous bijection.

Proof. (1) Given v = (a1, . . . , an) ∈ Sn−1, consider the function gv ◦ F : D′ −→ R.
For every y ∈ D′,

gv ◦ F (y) = 〈F (y), v〉 =
n∑

i=1

aifi|D′(y) ∈ V ′.
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From Lemma 3.1, gv ◦ F : D′ −→ R has an unique maximum d ∈ D′. Therefore,
〈F (y), v〉 ≤ 〈F (d), v〉 for every y ∈ D′, and the equality holds only when y = d.
Then, 〈x, v〉 ≤ 〈F (d), v〉 for every x ∈ X . So F (d) is a point of maximum of gv.
Assume that gv has another point of maximum x′ in X . In this case, x′ = F (d′) for
some d′ 6= d and the function gv ◦ F : D′ −→ R has two points of maximum. But
this contradicts what we have just proved.

(2) For each x ∈ X there is d ∈ D′ so that x = F (d). But d is the point of maximum
of some nonnull function

∑n
i=1 aifi|D′ : D′ −→ R. With no loss of generality, we may

suppose ‖(a1, . . . , an)‖2 = 1. Calling v := (a1, . . . , an) ∈ Sn−1, we have,
n∑

i=1

aifi|D′(y) = 〈F (y), v〉 ≤ 〈F (d), v〉 = 〈x, v〉,

for every y ∈ D′. Then 〈z, v〉 ≤ 〈x, v〉 for every z ∈ X . From (1) it follows that x is
the unique point of maximum of gv.

(3) As each coordinate function fi|D′ is continuous and X = F (D′), we just need to
prove that F is injective. If d′1 6= d′2 ∈ D′ are such that F (d′1) = F (d′2) then,

gv ◦ F (d′1) = 〈v, F (d′1)〉 = 〈v, F (d′2)〉 = gv ◦ F (d′2).

for every v ∈ Rn. Therefore neither d′1 nor d′2 can be unique points of maximum of
gv ◦F ∈ V ′, for any v. The proof is complete because this contradicts the definition
of D′ and Lemma 3.1. �

Definition 3.3. Let n ≥ 2 and let X be a subset of Rn containing more than one
point satisfying the following conditions:

(1) For every v ∈ Sn−1, the function

gv : X −→ R , gv(x) = 〈x, v〉,

has an unique point of maximum denoted by xv.
(2) For every x ∈ X there is vx ∈ Sn−1 such that x is the unique point of

maximum of the function gvx .

Define the function
f : Sn−1 −→ X , f(v) = xv,

where xv is described in (1). From (2) it follows that f is surjective.

Lemma 3.4. Let X and f be as in Definition 3.3 and let K be a compact subset of
Rn so that K ⊂ X. Then f−1(K) ⊂ Sn−1 is a compact subset of Rn.

Proof. Let (vn)
∞
n=1 be a sequence in f−1(K). As f−1(K) ⊂ Sn−1 and Sn−1 is

compact, there is a convergent subsequence vnj
−→ v ∈ Sn−1. For every j,

let xj = f(vnj
) ∈ K. Since K is compact, there is a convergent subsequence

xjk −→ x ∈ K. Now, since xjk is the unique point of maximum of the function gvnjk

in X, we have 〈f(v), vnjk
〉 ≤ 〈xjk , vnjk

〉. Making k −→ ∞ we get 〈f(v), v〉 ≤ 〈x, v〉.

But f(v) is the unique point of maximum of gv, then f(v) = x and v ∈ f−1(K).
This proves that f−1(K) ⊂ Sn−1 is closed, hence compact. �

Lemma 3.5. The function f defined in Definition 3.3 is continuous if and only if
X is compact.
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Proof. Recall that in X and Sn−1 we are considering the Euclidean metric of Rn.
Suppose that f : Sn−1 −→ X is continuous. Since f is surjective and Sn−1 is com-
pact, it follows that X = f(Sn−1) is compact. Conversely, suppose that X is com-
pact. Let B be a closed subset of X . Since X is a compact metric space, we conclude
that B is also compact in Rn. From Lemma 3.4 we know that f−1(B) is a compact
subset of Sn−1, therefore closed. �

Theorem 3.6. Let n ≥ 2 and m ≥ 1 be positive integers. Then m < n if, and
only if, for every compact set K ⊂ Rm, there is no n-dimensional subspace of C(K)

contained in Ĉ(K) ∪ {0}.

Proof. Assume that m < n and suppose that there exist a compact K ⊂ Rm and a

set V ⊂ Ĉ(K) so that V ∪ {0} is an n-dimensional linear subspace of C(K). The
compact K shall play the role of the metric space D in the lemmas above. Let
f1, . . . , fn be a basis of V ∪ {0} and define F : D −→ Rn as in Lemma 3.2. As
before, let D′ ⊂ D be the set of points of maximum of the functions belonging to V
and let X := F (D′). Since dim(V ∪ {0}) ≥ 2, V contains non-constant functions.
Letting g ∈ V be a non-constant function; it is clear that g and −g have different
points of maximum, so D′ has more than one point. By Lemma 3.2 (3), the map
F |D′ : D′ −→ X is bijective, thus X has more than one point as well. Therefore X
satisfies the conditions of Definition 3.3. Consider also the function f : Sn−1 −→ X
from Definition 3.3. Let us prove that D′ is closed in D, and therefore compact in
Rm. Let (dk)

∞
k=1 be a sequence in D′ converging to d. From the compactness of D

we have d ∈ D. From Definition 3.3 we know that, for each k, F (dk) = f(vk) for
some vk ∈ Sn−1, which means that F (dk) is the unique point of maximum in X of
the function

gvk : X −→ R , gvk(x) = 〈x, vk〉.

By the compactness of Sn−1 there is a convergent subsequence vkj −→ v ∈ Sn−1.
Note that

〈F (dkj), vkj〉 ≥ 〈F (y), vkj〉 for every y ∈ D′.

Since these points y ∈ D′ are points of maximum of the functions gv ◦ F : D −→ R,
the inequality

〈F (dkj), vkj〉 ≥ 〈F (z), vkj〉

holds for every z ∈ D. Using the continuity of F : D −→ Rn, we get

〈F (d), v〉 = lim
j→∞

〈F (dkj), vkj〉 ≥ lim
j→∞

〈F (z), vkj〉 = 〈F (z), v〉,

for every z ∈ D. So d is a point of maximum of the function gv ◦ F : D −→ R, and
thus d ∈ D′. This completes the proof that D′ is closed in D.
By Lemma 3.2(3) we know that the function F : D′ −→ X is a continuous bijection

from the compact D′ to the Haussdorf space X , therefore it is a homeomorphism.
As D′ is compact, X = F (D′) is compact as well, and by Lemma 3.5 the function
f : Sn−1 −→ X is continuous. Considering Rm conveniently embedded in Rn−1

(remember that m < n by assumption), the function

F−1 ◦ f : Sn−1 −→ D′ ⊂ Rm ⊂ Rn−1,

is continuous.
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By the Borsuk-Ulam theorem (see, e.g. [2]) there is a pair of antipodal points
v,−v ∈ Sn−1 such that F−1 ◦ f(v) = F−1 ◦ f(−v). The injectivity of F−1 gives
f(v) = f(−v) =: x. Using the definition of f : Sn−1 −→ X we conclude that
both gv : X −→ R and g−v : X −→ R have x as a maximum. On the other hand,
g−v = −gv, so gv : X −→ R is constant. This is a contradiction because X has more
than one point and gv attains its maximum only once in X . For the converse just
make D = Sn−1 in Theorem 1.1. �

4. An infinite dimensional example

Let K be a compact subset of Rm. In Section 3 we saw that, for m < n, there
is no n-dimensional subspace of C(K) formed, up to the origin, by functions that
attain the maximum only at one point. In this section we show that if we allow K
to be a compact subset of an infinite dimensional Banach space, Ĉ(K) may contain,
up to the origin, an infinite dimensional subspace of C(K).

Example 4.1. Let K be the following subset of ℓ2:

K =
{(an

n

)∞

n=1
: (an)

∞
n=1 ∈ ℓ2 and ‖(an)

∞
n=1‖2 ≤ 1

}
.

It is clear thatK is a subset of the Hilbert cube
∏∞

n=1

[
− 1

n
, 1
n

]
. Since the Hilbert cube

is compact, to prove that K is compact it is enough to show that it is closed. Let

(vj)
∞
j=1 =

((
vjn
n

)∞

n=1

)∞

j=1
be a sequence in K converging to w = (wn)

∞
n=1 ∈ ℓ2. Since

convergence in ℓ2 implies coordinatewise convergence, wn = lim
j

vjn
n
, so nwn = lim

j
vjn,

for every fixed n. For every k,

k∑

n=1

n2|wn|
2 =

k∑

n=1

lim
j

|vjn|
2 = lim

j

k∑

n=1

|vjn|
2 ≤ lim sup

j
‖(vjn)

∞
n=1‖

2
2 ≤ 1.

This shows that ‖(nwn)
∞
n=1‖2 ≤ 1, proving that w ∈ K. So K is a compact subset

of ℓ2.
Now we proceed to show that Ĉ(K)∪{0} contains an infinite dimensional subspace

of C(K). Consider the function

F : K −→ ℓ2 , F
((an

n

)∞

n=1

)
= (an)

∞
n=1 .

By πj : ℓ2 −→ R we mean the projection onto the j-th coordinate, j ∈ N. For each
j, the function

πj ◦ F : K −→ R

is continuous because πj ◦F = j · πj . It is clear that the functions πj ◦F, j ∈ N, are

linearly independent. Let f :=
∑k

j=1 bj(πj ◦ F ) be a nontrivial linear combination

of these continuous functions. Writing b = (b1, . . . , bk, 0, 0, . . .) ∈ ℓ2 we have f(x) =
〈b, F (x)〉 for every x ∈ K. As b ∈ ℓk2 and ‖F (x)‖2 ≤ 1 for every x ∈ K,

f(x) = 〈b, F (x)〉 <

〈
b,

b

‖b‖2

〉

whenever F (x) 6= b
‖b‖2

. As F is a bijection onto the closed unit ball of ℓ2, there is a

unique y ∈ K such that F (y) = b
‖b‖2

. This shows that f attains its maximum at y.
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An adaptation of the argument used in the proof of Theorem 2.1 guarantees that
this maximum is unique.

Appendix

The result below was communicated by V. I. Gurariy during a Non-linear Anal-
ysis Seminar at Kent State University (Kent, Ohio, USA) in the Fall of 2004. The
alert reader may hear the echo of Banach’s proof of the fact that the set of contin-
uous nowhere differentiable functions is dense and the set of continuous functions
differentiable at least at one point is meager.

Proposition A. (V.I. Gurariy, 2004) The set Ĉ[0, 1] is a Gδ dense subset of C[0, 1].

Sketch of the proof. For each n ∈ N, let

Un =

{
f ∈ C[0, 1] : for some x ∈ [0, 1], f(x) > max

|t−x|≥ 1

n

f(t)

}
.

Notice that Un is open. Indeed, if f ∈ Un and g ∈ C[0, 1] is “very close” to f , then

g(x) > max
|t−x|≥ 1

n

g(t).

Also, if h ∈ C[0, 1] is arbitrary and h(x0) = maxt∈[0,1] h(t), then (by slightly increas-
ing h near x0) we shall get a function k ∈ C[0, 1] such that h ≈ k and k ∈ Un. In other
words, each Un is dense in C[0, 1]. Furthermore, M =

⋂∞
n=1 Un. Indeed, suppose that

f ∈ Un for each n and that f(x0) = f(x1) = max[0,1] f for some 0 ≤ x0 < x1 ≤ 1.
For large enough n, this means that

f(x0) = max
[0,1]

f > max
|t−x|≥ 1

n

f(t) ≥ f(x1) = max
[0,1]

f,

which is a contradiction. Therefore,
⋂

n Un ⊂ M. The converse inclusion is easy.
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Universidade Federal de Uberlândia,

38.400-902 Uberlândia, Brazil.

E-mail address : botelho@ufu.br, dcariello@famat.ufu.br, vvfavaro@gmail.com

Departamento de Matemática,
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