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Coherence versus interferometric resolution
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We examine the relation between second-order coherence and resolution in the interferometric detection
of phase shifts. While for classical thermal light resolution and second-order coherence are synonymous, we
show that for quantum light beams reaching optimum precision second-order coherence and resolution become
antithetical.
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I. INTRODUCTION

Coherence is a key concept in optics derived from the
statistical nature of real light beams [1–3]. Coherence is
usually understood as the principal requisite for good quality
interference fringes. In this work we show from a quantum
metrological perspective that this is not always the case, so
that optimum interference and second-order coherence may
become antithetical.

More specifically, we focus on interference as a practical
procedure to detect and measure minute phase changes. For
classical thermal-chaotic light resolution and second-order
coherence are proportional both in the classical and quantum
domains. This may be expected and traced back to some
well-known previous results [1–3]. However, we show that
increasing coherence degrades resolution for quantum field
states reaching optimum precision, such as squeezed light
[4–6]. Some previous works have also noticed differences
between quantum and classical visibility [7].

For the sake of illustration we consider the most simple
two-beam interferometric schemes, such as the Young inter-
ferometer and the 50% lossless beam splitter illustrated in
Fig. 1, producing the interference of two harmonic scalar
electromagnetic waves with complex amplitudes E1,2. In the
quantum domain E1,2 become complex amplitude operators
satisfying the commutation relations [Ej ,E

†
j ] = 1. Through-

out we consider the spatial-frequency representation. Although
the light beams examined may have large bandwidths, for
definiteness we focus on a single spectral component (of
random complex amplitude) selected by a suitable filtering.

In Sec. II we recall the definition of coherence and
resolution. These are applied then to typical classical light
in Sec. III and quantum squeezed light improving resolution
in Sec. IV. The results are further compared in Sec. V.

II. COHERENCE AND RESOLUTION

The complex second-order degree of coherence is [1]

µ = 〈E1E
†
2〉√

〈E†
1E1〉〈E†

2E2〉
, (2.1)
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where the angle brackets denote the corresponding averages.
The intensity or photon number in the interference region is

〈Iφ〉 ∝ 〈E†
1E1〉 + 〈E†

2E2〉 + 〈E1E
†
2〉eiφ + 〈E†

1E2〉e−iφ,

(2.2)

where φ is the phase difference acquired within the inter-
ferometer. To obtain simpler formulas we consider balanced
detection by the subtraction of the intensities corresponding to
relative phases φ differing by π , 〈Mφ〉 ∝ 〈Iφ〉 − 〈Iφ+π 〉 (this
naturally occurs at the two outputs of a lossless beam splitter),
so that

Mφ = E1E
†
2e

iφ + E
†
1E2e

−iφ. (2.3)

A minute change δφ � 1 of the phase difference produces
the variation of the balanced intensity from 〈Mφ〉 to 〈Mφ+δφ〉
with

〈Mφ+δφ〉 � 〈Mφ〉 + d〈Mφ〉
dφ

δφ. (2.4)

The meaningful detection of δφ depends on the relation
between the intensity change |〈Mφ+δφ〉 − 〈Mφ〉| and the noise

of the measured observable �Mφ =
√

〈M2
φ〉 − 〈Mφ〉2. This

relation can be properly assessed by the signal-to-noise (S/N)
ratio

S

N
= |〈Mφ+δφ〉 − 〈Mφ〉|

�Mφ

= 1

�Mφ

∣∣∣∣d〈Mφ〉
dφ

∣∣∣∣ δφ. (2.5)

More specifically, the unity signal-to-noise criterion defines
the minimum phase shift that can be detected δφmin as the one
producing a signal thats equals the noise

S

N
= 1 → δφmin = �Mφ∣∣ d〈Mφ〉

dφ

∣∣ . (2.6)

Optimum phase-shift detection requires that δφmin should be
as small as possible.

For definiteness, let us consider φ = 0 as our working
point, with phases defined so that 〈M0〉 = 0; this is to say
Re〈E1E

†
2〉 = 0 (for the following examples to be considered

any choice of phases leads to the same result). In such a case
|d〈Mφ〉/dφ| takes its maximum value

∣∣∣∣d〈Mφ〉
dφ

∣∣∣∣
φ=0

= 2|〈E1E
†
2〉|. (2.7)
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FIG. 1. Beam mixer and Young interferometer producing the
interference of two waves with complex amplitudes E1,2.

After computing (�M0)2 = 〈M2
0 〉 we get

(δφmin)2

= 2〈E†
1E1E

†
2E2〉 + 2Re

〈
E2

1E
†2
2

〉 + 〈E†
1E1〉 + 〈E†

2E2〉
2|〈E1E

†
2〉|2

.

(2.8)

We can appreciate that the resolution is not given exclusively
by second-order coherence, but it also depends on fourth-
order correlations. The overall result of this combination is not
trivial and strongly depends on the statistics of the light state
experiencing the phase shift. More specifically, we will show
that δφmin and µ can display either the same or fully opposite
behaviors. To this end we particularize this general approach
to two different Gaussian wave fields, thermal-chaotic and
squeezed.

Finally, we note that δφmin provides a widely used simple
performance criterion. However, its theoretical support is
rather fragile and in some meaningful occasions it may fail.
Because of this, all conclusions will be tested by more sound
and complete criteria based on Fisher information as recalled
in the Appendix.

III. COHERENCE VERSUS RESOLUTION FOR
THERMAL-CHAOTIC LIGHT

This is typical classical light where E1,2 are Gaussian
statistically circular variables of zero mean. By using the
Gaussian moment and optical equivalence theorems [1] and
taking into account Re〈E1E

†
2〉 = 0 we get

(δφmin)2 = (1 − |µ|2)n̄1n̄2 + n̄1 + n̄2

2n̄1n̄2|µ|2 , (3.1)

where n̄j = 〈E†
jEj 〉. Thus, for thermal light we get that

second-order coherence and resolution are synonymous so that
increasing coherence implies increasing resolution. This is no
longer true for other field states as revealed in Sec. IV.

The result in Eq. (3.1) is confirmed by the quantum Fisher
information, and also by the Fisher information, because of
Eq. (A4). For simplicity we consider the case of equal mean
photon numbers n̄1 = n̄2 = n̄. In order to use Eq. (A2) we
perform the mode transformation A± = (E1 ± iE2)/

√
2, so

that 〈A+A
†
−〉 = 0 and the field state in modes A± factorizes as

the product of two thermal states ρ+ρ− with mean photon num-
bers 〈A†

±A±〉 = n̄(1 ± |µ|). The eigenvectors of ρ± are the
number states |n±〉 in modes A± with eigenvalues (1 − ξ±)ξn±

± ,
where ξ± = n̄(1 ± |µ|)/[1 + n̄(1 ± |µ|)]. The generator of the
phase shift in Eq. (A2) is G = (E†

1E1 − E
†
2E2)/2 = (A†

+A− +

A
†
−A+)/2. All this leads to the following quantum Fisher

information and phase uncertainty:

FQ = 2n̄|µ|2
1 + n̄(1 − |µ|2)

, (�φ)2 � n̄(1 − |µ|2) + 1

2n̄|µ|2 . (3.2)

It can be appreciated that �φ is fully equivalent to the
result obtained with the signal-to-noise ratio in Eq. (3.1) for
n̄1 = n̄2 = n̄. After Eq. (A4) we get also that the measurement
is close to optimum in the sense of approaching the limit
established by the quantum Fisher information. Maximum
resolution is obtained for |µ| = 1 with �φ � 1/

√
2n̄. This

is essentially the standard quantum limit, or shot-noise limit,
which is the maximum signal-to-noise ratio that can be
achieved with classical light [5,6,8].

IV. COHERENCE VERSUS RESOLUTION
FOR SQUEEZED LIGHT

Next we consider two examples that show second-order
coherence and resolution become antithetical for typical
examples of quantum light that improve the resolution beyond
the standard quantum limit.

A. Single-mode approximation

To simplify formulas let us assume that E1 = α is a real,
deterministic nonfluctuating variable. In such a case we have
simply

〈M0〉 = α〈X〉, 〈
M2

0

〉 = α2〈X2〉, d〈Mφ〉
dφ

∣∣∣∣
φ=0

= α〈Y 〉,

(4.1)

where X,Y are twice the real and imaginary parts of E2

X = E2 + E
†
2, Y = i(E†

2 − E2), (4.2)

and 〈X〉 = 0 so that 〈M0〉 = 0. Thus we get

δφmin = �X

|〈Y 〉| , (4.3)

while the second-order coherence is

|µ|2 = 〈Y 〉2

〈X2〉 + 〈Y 2〉 − 2
= 〈Y 〉2

〈Y 〉2 + (�X)2 + (�Y )2 − 2
.

(4.4)

The factor −2 in the denominator is of quantum origin because
of the commutator [X,Y ] = 2i involved in the computation of
〈E†

2E2〉 [1,4].
These relations show that µ and δφmin depend on the amount

of fluctuations �X, �Y , in agreement with the statistical
nature of these parameters. The fluctuations of X and Y are
not independent, but related by the Heisenberg uncertainty
relations [4]

�X�Y � 1, (�X)2 + (�Y )2 � 2, (4.5)

derived from the commutator [X,Y ] = 2i [1,4]. From now on
we assume that the light is in a minimum uncertainty state,
�X�Y = 1, so that quantum fluctuations are reduced to a
minimum.
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FIG. 2. Plot of δφmin as a function of |µ|2 for n̄ = 103.

The goal is to express δφmin in terms of µ and the mean
number of photons in mode E2,

n̄ = 〈E†
2E2〉 = 1

4 (〈X2〉 + 〈Y 2〉 − 2)

= 1
4 [〈Y 〉2 + (�X)2 + (�Y )2 − 2]. (4.6)

Thus from Eqs. (4.4), (4.5), and (4.6) we have

(�X)2 = 2(1 − |µ|2)n̄ + 1 − 2
√

(1 − |µ|2)2n̄2 + (1 − |µ|2)n̄,

(4.7)
〈Y 〉2 = 4|µ|2n̄.

In Fig. 2 we have represented δφmin as a function of |µ|2 for
n̄ = 103. For n̄(1 − |µ|2) � 1 the following approximation
holds:

δφmin � 1

4n̄|µ|
√

1 − |µ|2
. (4.8)

Figure 2 and Eq. (4.8) show that the optimum signal-
to-noise ratio is obtained for rather low second-order co-
herence |µ|2 � 1/2 with δφmin = 1/(2n̄) so that increasing
coherence beyond this point degrades resolution. Optimum
performance arises provided that 〈Y 〉 � �Y � 1 � �X. This
is quadrature squeezed light. On the other hand, for unsqueezed
light �X = �Y = 1, the second-order coherence reaches its
maximum value |µ|2 = 1 and δφmin = 1/(2

√
n̄), which is

consistent since these are the coherent states [1,4].
These conclusions are supported by the quantum Fisher

information. Since the probe is in a pure state FQ = 4(�G)2

and G = E
†
2E2 we get for �Y � 1

FQ � 8n̄2(1 − |µ|4), (4.9)

so that the maximum resolution is obtained for minimum
coherence |µ| = 0, which holds for the squeezed vacuum
〈E2〉 = 0. This case has been extensively studied [9]. After
Eq. (A4) we get that the measurement is close to be optimum
since Eqs. (4.8) and (4.9) provide similar results for |µ|2 �
1/2. Moreover, for φ → 0 the Fisher information and the
signal-to-noise ratio coincide because the statistics is Gaussian
and d(�X)/dφ|φ=0.

B. Two-mode example

For the sake of completeness we consider a truly two-mode
scheme where both modes are treated quantum mechanically.

The paradigmatic example is provided by the Caves arrange-
ment [5], where the field in modes E1,2 is the output state of
a symmetric beam splitter illuminated by a coherent state of
a mean number of photons n̄c and a squeezed vacuum with
mean number of photons n̄s . In this case it holds that

|µ| = |n̄c − n̄s |
n̄c + n̄s

. (4.10)

On the other hand, since the field state is pure and the generator
is G = (E†

1E1 − E
†
2E2)/2, the quantum Fisher information

becomes, for large squeezing,

FQ = 1
2 n̄(1 − |µ|) + n̄2(1 − |µ|2), (4.11)

where n̄ = n̄c + n̄s . This agrees with the Fisher information in
Ref. [10]. Therefore, replacing vacuum by squeezed vacuum
unavoidably degrades the coherence at the same time that
resolution is improved. Maximum resolution is obtained again
for minimum coherence |µ| = 0.

V. CONCLUSIONS

We have shown that second-order coherence and resolu-
tion are synonymous for classical thermal light, while they
become antonymous for quantum light reaching maximum
interferometric resolution. This paradox is relevant since it
arises for the states allowing the most precise interferometric
measurements. For example, we have shown that squeezing
improves resolution but degrades second-order coherence.
This agrees with previous results showing that squeezing
reduces the degree of polarization [11] and that µ = 0 holds
for most light states leading to optimum resolution [12,13].
This suggests suitable generalizations of coherence beyond
second order reconciling coherence and resolution [13].
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APPENDIX: FISHER INFORMATION

A key point of quantum metrology is to estimate the
phase uncertainty �φ of a phase-shift detection arrangement,
since this allows us to compare the performance of different
schemes. A powerful approach considers a Bayesian strategy
to get a probability distribution P (φ|m) representing our
knowledge about φ after the outcome m in the measurement of
M . This is proportional to the probability P (m|φ) of obtaining
m when the phase is φ [14–17]. In particular, the minimum
variance of any unbiased and efficient estimator is given by
the Cramér-Rao lower bound [14–16]

�φ � 1√
F

, F =
∑
m

1

P (m|φ)

(
∂P (m|φ)

∂φ

)2

, (A1)

where F is the Fisher information. The Cramér-Rao lower
bound coincides with the signal-to-noise ratio (2.6) when
P (m|φ) is Gaussian and d(�M)/dφ = 0.
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It can be also interesting to use assessments of �φ

independent of M , representing the optimum results that may
be obtained with any measurement. This can be conveniently
given by the quantum Fisher information

FQ = 2
∑
k,	

(pk − p	)2

pk + p	

|〈ψk|G|ψ	〉|2, (A2)

where pk , |ψk〉 are the eigenvalues and eigenvectors, respec-
tively, of the probe state ρ, and G is the generator of the
transformation imprinting the phase shift φ on the probe state
ρφ = exp(iφG)ρ exp(−iφG). We have FQ � 4(�G)2, where
the equality holds for pure states. Since FQ is the maximum

F over all possible measurements F � FQ there is a quantum
Cramér-Rao bound [14,16]

�φ � 1√
FQ

. (A3)

The above performance measures satisfy the following chain
of inequalities [18]:

�M∣∣ ∂〈M〉φ
∂φ

∣∣ � 1√
F

� 1√
FQ

� 1

2�G
. (A4)

In particular this implies that when the signal-to-noise ratio
and the quantum Fisher information coincide we get F = FQ

and the measurement is optimum.
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