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We study the structure and stability of traversable wormholes built as (spherically symmetric) thin shells
in the context of Palatini fðRÞ gravity. Using a suitable junction formalism for these theories we find that
the effective number of degrees of freedom on the shell is reduced to a single one, which fixes the equation
of state to be that of massless stress-energy fields, contrary to the general relativistic and metric fðRÞ cases.
Another major difference is that the surface energy density threading the thin shell, needed in order to
sustain the wormhole, can take any sign and may even vanish, depending on the desired features of the
corresponding solutions. We illustrate our results by constructing thin-shell wormholes by surgically
grafting Schwarzschild space-times and show that these configurations are always linearly unstable.
However, surgically joined Reissner-Nordström space-times allow for linearly stable, traversable thin-shell
wormholes supported by a positive energy density provided that the (squared) mass-to-charge ratio, given
by y ¼ Q2=M2, satisfies the constraint 1 < y < 9=8 (corresponding to overcharged Reissner-Nordström
configurations having a photon sphere) and lies in a region bounded by specific curves defined in terms of
the (dimensionless) radius of the shell x0 ¼ R=M.
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I. INTRODUCTION

Wormholes are hypothetical objects connecting two
widely separated regions of space-time or even two differ-
ent universes. They arise as solutions of the Einstein field
equations of general relativity (GR) pretty much in the
same way as black holes do. However, as opposed to the
latter, for their physical plausibility wormholes lack two
fundamental aspects: the fulfillment of the null energy
condition [1] and the formulation of a well-behaved
collapse problem from initial conditions in physically
realistic scenarios [2] (see however [3]). The first issue
is an unavoidable feature in GR and in fact arises from the
flaring-out condition, which is a fundamental ingredient in

wormhole physics and follows from the requirement that
any wormhole throat be sustainable against spontaneous
collapse [4,5]. However, it has been shown that this aspect
can be relaxed in modified theories of gravity, where the
matter threading the wormhole throat may satisfy all of the
energy conditions, and it is the higher-order curvature
terms, which may be interpreted as a gravitational fluid,
that support these geometries [6].
Among the various solutions crafted in the literature are

the so-called thin-shell wormholes [7,8], which are of
special relevance for their applications [9–26]. These
geometries are obtained by surgically chopping and gluing
together suitable patches of the same or different space-
times at a certain hypersurface or shell in such a way that no
horizon is present, rendering a traversable wormhole. An
advantage of this cut-and-paste construction is that the
violations of the energy conditions are typically restricted
to the shell, which can subsequently be made as small as
possible to keep such violations restricted to a tiny region of
the space-time. If we focus our attention to asymptotically
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flat, spherically symmetric space-times, the simplest case is
that of joining two vacuum configurations, such as the
Schwarzschild [27] and the Reissner-Nordström configu-
rations [28], though generalizations to include the presence
of a cosmological constant [29] or other constructions are
certainly possible [30,31]. Since at the matching hypersur-
face discontinuities in several geometrical quantities can
occur, this problem requires an upgrade of the concept of
tensorial functions to that of tensorial distributions to
rigorously deal with it. The net result is that a number
of conditions on several geometrical and matter quantities
must hold at the shell and across it, together with some
additional relations from the energy conservation equa-
tions. These are known as the Darmois-Israel matching or
junction conditions [32–35].
In a recent paper, some of us [36] have found the junction

conditions of a simple and natural extension of GR, namely,
fðRÞ theories of gravity. As opposed to the analysis of [37],
where fðRÞ theories in the metric formalism were consid-
ered (with the affine connection set to be given ab initio by
the Christoffel symbols of themetric), in [36] the Palatini (or
metric-affine) formulation,1 where metric and affine con-
nection are regarded as independent entities [38], was
discussed. Restoring their freedom to these two entities
has a large impact on the properties and dynamics of the
corresponding solutions of such theories, and indeed a large
body of results has been released in the last few years in
black hole physics and cosmology; see e.g., [39–44]. The
corresponding junction conditions in the Palatini formalism
depart from those of the metric one and only coincide when
the action is given by the Einstein-Hilbert one (with a
cosmological constant term), where both formulations
recover GR solutions and junction conditions. This fact
has a nontrivial impact in the implementation of specific
applications where junction conditions are needed, such as
in stellar models, domain walls, braneworld models, etc.
The main aim of the present work is to apply these

junction conditions to build spherically symmetric thin-
shell wormholes. We shall show that their implementation
will reduce the corresponding effective degrees of freedom
on the shell from two [as in GR or metric fðRÞ gravity]
down to one, which in turn fixes the equation of state to be
that of massless stress-energy fields, something not pos-
sible within GR. As a specific example we apply this result
to build traversable wormholes from surgically joined
Schwarzschild and Reissner-Nordström space-times,
respectively. We shall show that in both these cases the
energy density needed to sustain the wormhole throat can
take any sign (and even vanish), depending on the desired
features of the corresponding solutions and, therefore, the
need for exotic sources of matter can be avoided within
these theories. However, in the Schwarzschild case there is

a growing mode under linear perturbations for any fðRÞ
Lagrangian rendering the corresponding thin-shell worm-
hole unstable. As opposed to that result, we find that in the
Reissner-Nordström case (linearly) stable traversable thin-
shell wormholes supported by matter-energy sources with
finite and positive energy density are possible provided that
the (squared) charge-to-mass ratio, given by y ¼ Q2=M2,
satisfies 1 < y < 9=8 and that the dimensionless radius of
the matching hypersurface, x0 ¼ R=M, is constrained to a
region limited by certain curves y−ðx0Þ < y < x0

2
ð3 − x0Þ

(see below for more details). This yields a new family of
horizonless compact objects having a photon sphere (home
to their innermost circular unstable orbits), with important
potential applications.
This work is organized as follows: In Sec. II, we

introduce the junction conditions for Palatini fðRÞ gravity
and particularize them to the case of spherically symmetric
space-times. In Sec. III, we use this formalism to build thin-
shell wormholes from surgically joined Schwarzschild and
Reissner-Nordström space-times and discuss the stability
properties and positivity of the energy density of each
case. A numerical analysis on the stable configurations
of the Reissner-Nordström case is carried out in Sec. IV to
complement these results. Finally, Sec. V contains our
conclusion and a discussion of the obtained results and
future perspectives.

II. JUNCTION FORMALISM FOR
PALATINI f ðRÞ GRAVITY

A. General form of the junction conditions

Let us consider two smooth manifolds M� with boun-
daries ∂M� ≡ Σ� which are assumed to be isometric, that
is, Σþ ¼ Σ−. Let us join these two bulks to define a new
manifold M ¼ Mþ ∩ M− with no boundary but contain-
ing a timelike hypersurface Σ where Mþ and M− are
pasted at and across which the space-time metric compo-
nents of gμν must be continuous (but not necessarily their
derivatives). In order to find the conditions that the
geometrical quantities need to fulfill for this construction
to be well defined from a mathematical point of view, one
needs to call upon the theory of tensorial distributions. The
specific form of these conditions depends on the theory of
gravity under consideration, so we shall start our analysis
from this point.
The action of fðRÞ gravity is given by

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smðgμν;ψmÞ; ð1Þ

where κ2 is Newton’s constant in suitable units and g is the
determinant of the space-time metric gμν, while fðRÞ is
some function of the curvature scalar R≡ gμνRμν, defined
from the Ricci tensor as RμνðΓÞ≡Rα

αμνðΓÞ. Note that,
since we are working in the Palatini formalism, metric and

1From now on we will denote the Palatini Ricci scalar by R
and the more conventional metric one by R to avoid confusion.
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affine connection are independent entities, which implies
that the Ricci tensor is determined solely by the affine
connection Γ≡ Γλ

μν. As for the matter action Sm ¼R
d4x

ffiffiffiffiffiffi−gp
Lmðgμν;ψmÞ, it is assumed to depend only on

the space-time metric and on the matter fields ψm but not on
the connection, which can be done since in this paper we
are dealing with bosonic fields alone.
The trademark of this theory and formulation is the

particular way the matter fields source the new gravitational
dynamics. Indeed, the trace of the equation associated to
the variation of the action (1) reads

RfR − 2f ¼ κ2T; ð2Þ

where fR ≡ df=dR while T ≡ gμνTμν is the trace of the
stress-energy tensor of the matter fields, Tμν ¼ 2ffiffiffiffi−gp δSm

δgμν.

This means that, as opposed to their metric fðRÞ counter-
parts, where this equation includes derivative operators
[45–47], therefore implying the propagation of an extra
scalar degree of freedom, in the Palatini case it is instead an
algebraic equation that can be solved as R≡RðTÞ [38].
This result allows one to remove the curvature scalar in
favor of the matter fields, with the side effect that no other
propagating degrees of freedom than the two polarizations
of the gravitational field traveling at the speed of light are
introduced. In vacuum, Tμ

ν ¼ 0, or for a traceless stress-
energy tensor, T ¼ 0, this theory recovers GR dynamics
and solutions, possibly with a cosmological constant term.
The key role played by the trace of the stress-energy

tensor in the dynamics of this theory also manifests itself in
the associated junction conditions. Indeed, denoting by Sμν
the singular part of the stress-energy tensor on Σ, with
S≡ Sμμ its trace, it has been obtained in Ref. [36] that the
following junction conditions must hold:

½T� ¼ 0; S ¼ 0; ð3Þ

where from now on brackets will denote discontinuities
(“jumps”) across the hypersurface Σ of the quantity inside
them; for instance, ½T� ¼ TþjΣ − T−jΣ is the discontinuity
of the trace of the stress-energy tensor across Σ. Therefore,
these junction conditions (3) simply tell us that both this
discontinuity and the trace of the stress-energy tensor on Σ
must vanish. Note at this point that in GR the first such
condition is not present, since this comes from a new
contribution in the field equations of Palatini fðRÞ gravity.
There are further junction conditions describing the

interaction between matter and gravity on the matching
surface. By defining the pullback of the first fundamental
form to M� (that is, the projector or induced metric on Σ)
as hμν ¼ gμν − nμnν, where nμ is the unit vector normal to
Σ, and the pullback of the second fundamental form (the
extrinsic curvature) on both sides of M� as

K�
μν ≡ hρμhσν∇�

ρ nσ; ð4Þ

from the singular part of the field equations one finds the
relation [36]

−½Kμν� þ
1

3
hμν½Kρ

ρ� ¼ κ2
Sμν
fRΣ

; ð5Þ

where the subindex Σ denotes quantities evaluated on Σ and
indices are raised with hμν. This equation is consistent with
the traceless character of Sμν obtained in (3) and departs
from the GR one, which reads −½Kμν� þ hμν½Kρ

ρ� ¼ κ2Sμν,
and moreover it does not recover it smoothly in the limit
fR → 1. The reason is that in Palatini fðRÞ gravity, due to
the second constraint of the junction conditions (3),
the singular part of the Einstein equations takes one
to the result ½Kρ

ρ� ¼ − 3fRRRTb
2fR

, where b≡ nμ½∇μT� and

fRR ≡ d2f=dR2. This equation is nonvanishing as long as
fðRÞ ≠ R − 2Λ (the Einstein-Hilbert action of GR with a
cosmological constant term). In the latter case one finds
instead ½Kρ

ρ� ¼ S=2, which is nonvanishing due to the fact
that in GR the quantity S is unconstrained.
On the other hand, the conservation of energy implies

that

DρSρν ¼ −nρhσν½Tρσ�; ð6Þ

which relates the energy content on the shell with the
discontinuity in the stress-energy tensor across it [since
only its trace is constrained by (3)]. In addition, from the
Bianchi identities one also finds that

ðKþ
ρσ þ K−

ρσÞSρσ ¼ 2nρnσ½Tρσ� −
3R2

Tf
2
RR

fR
½b2�; ð7Þ

where RT ≡ dR=dT. Therefore, the junction conditions
for Palatini fðRÞ gravity are those on the matter fields (3)
across the shell and the relations between gravity and the
matter given by Eqs. (5)–(7).

B. Junction conditions for spherically
symmetric space-times

Let us now use the above junction conditions to
formulate the corresponding equations for general spheri-
cally symmetric space-times. In the hypersurface Σwe have
three independent basis vectors ei ≡ ∂=∂ξi with compo-
nents eμi ¼ ∂xμ=∂ξi, ξi being the coordinates on Σ. The
induced metric on Σ is then expressed as hij ¼ gμνe

μ
i e

ν
j , and

we note that nμe
μ
i ¼ 0. The second fundamental form (4) is

thus defined byKij ¼ eμi e
ν
j∇μnν, which is symmetric. Now,

differentiating nμe
μ
i ¼ 0 with respect to ξj, one can write

the useful formula
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K�
ij ¼ −nμ

� ∂2xμ

∂ξi∂ξj þ Γμ�
αβ

∂xα
∂ξi

∂xβ
∂ξj

�
; ð8Þ

for the computation of the second fundamental form. Let us
now introduce two spherically symmetric space-times
whose line elements on M� are

ds2� ¼ −A�ðr�Þdt2 þ
1

B�ðr�Þ
dr2� þ r2�dΩ2; ð9Þ

described by the functions A�ðr�Þ and B�ðr�Þ, respec-
tively, and where dΩ2 ¼ dθ2 þ sin2θdφ2 is the unit volume
in the two-spheres.
The induced line element on the matching hypersurface

Σ can be written as

ds2Σ ¼ −dτ2 þ R2ðτÞdΩ2; ð10Þ

which is parameterized in terms of the proper time of
an observer comoving with Σ. Here R is the radius of the
shell and 4πR2ðτÞ measures its area. This spherical three-
dimensional hypersurface has coordinates xμðτ; θ;φÞ ¼
ðtðτÞ; RðτÞ; θ;φÞ, and since the tangent vectors to it are
eμθ ¼ ð0; 0; 1; 0Þ and eμφ ¼ ð0; 0; 0; 1Þ, setting the velocity
vector as Uμ ≡ dxμ=dτ ¼ ðtτ; Rτ; 0; 0Þ (where tτ≡dt=dτ;
Rτ≡dR=dτ), it follows that the normal vector (assumed
to be oriented from M− to Mþ) must be of the form
nμ ¼ �ðnt; nr; 0; 0Þ. Now, using the fact that nμnν ¼ þ1
(spacelike character) and nμUμ ¼ 0 (orthogonality condi-
tion), one finds that the components of the normal vector, nt

and nr, are given by

nt ¼ Rτffiffiffiffiffiffiffi
AB

p ; ð11Þ

nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

q
; ð12Þ

respectively, where the metric functions A and B are the
evaluation of the functions of (9) onM� at the shell radius
r ¼ RðτÞ and which, due to the condition on the continuity
of the space-time metric across Σ, must match there. With
these formulas, it is now immediate to compute the non-
vanishing components of the second fundamental form
Ki

j ¼ diagðKτ
τ; Kθ

θ; Kθ
θÞ, which from (8) and (9) turn out

to be

Kτ
τ
� ¼ �B2AR þ ðBAR − ABRÞR2

τ þ 2ABRττ

2AB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p ; ð13Þ

Kθ
θ
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p
R

; ð14Þ

where AR ≡ dA=dR and so on.

The matter stress-energy tensor on Σ can also be written
as a diagonal matrix Sμν ¼ diagðSττ; Sθθ; SθθÞ with com-
ponents Sττ ¼ −σ and Sθθ ¼ P, where σ is the surface
energy density and P is the tangential surface pressure.
Recall that via the second condition of Eq. (3) this is subject
to the constraint S ¼ −σ þ 2P ¼ 0, which implies that the
pressure P ¼ σ=2 is completely determined by the energy
density σ, thus reducing the effective fðRÞ number of
degrees of freedom just to one. This is a strong departure
from the results in both GR and in the metric formulation of
fðRÞ gravity, where one typically needs an equation of
state of the form P ¼ PðσÞ to close the system. This
condition actually describes a massless stress-energy
source confined to the hypersurface, and it is commonly
found in the Casimir effect involving massless fields [7,48].
It is worth pointing out that in GR it is not possible to find
any solution of the Einstein field equations for this matter
source, since it would render both σ and P complex. As
opposed to that no-go result, here we have no constraints
forbidding us to build thin-shell wormholes upon these
conditions, as we shall see below.
Under this setting, the field equations on the shell (5) can

thus be combined into a single equation of the form

½Kτ
τ� − ½Kθ

θ� ¼
3κ2

2fRΣ

σ; ð15Þ

which reduces the problem of computing the energy
density of the system to the substraction of the disconti-
nuity of the second fundamental forms. Note that, since the
trace of Tμν in the bulk must be continuous, thanks to (2),
then fRΣ

is also a continuous function evaluated at Σ
[because fðRÞ≡ fðRðTÞÞ]. We finally need to consider the
energy conservation equation (6), which in the spherically
symmetric case studied here implies that

−DρSρν ¼ _σ þ 2 _R
R

ðσ þ PÞ: ð16Þ

Taking into account that P ¼ σ=2, this quantity can be
written as

−DρSρν ¼
1

R3

dðσR3Þ
dτ

; ð17Þ

which via the junction condition (6) allows us to find
specific solutions once the discontinuity in the stress-
energy tensor across the shell is set. In the simplest possible
scenario, where nρhσν½Tρσ� vanishes, this equations admits
the simple solution (with C an integration constant)

σ ¼ C
R3

; ð18Þ

which relates the energy density with the radius of the shell.
This is the case, in particular, of the vacuum and electro-
vacuum scenarios we will be considering in this paper.
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Since in this scenario the pressure inherits the sign of σ
(recall that P ¼ σ=2), this means that the positivity of the
constant C entails the fulfillment of all pointwise energy
conditions. This concludes our analysis of the junction
conditions for general spherically symmetric space-times.
In the next section we shall study specific examples of this
setting.

III. TRAVERSABLE WORMHOLES FROM
SURGICALLY JOINED SPACE-TIMES

In this section we will proceed to study the existence and
stability of thin-shell wormholes which are constructed by
matching two identical spherically symmetric space-times
at a given hypersurface. In particular, we will join two
Schwarzschild space-times and two Reissner-Nordström
space-times, respectively.

A. Schwarzschild space-times

FollowingVisser [4,8,27], we consider a traversableworm-
hole constructed by joining two exterior Schwarzschild
solutions at a spherical hypersurface of radius R ¼
R0 > 2M (the throat) to avoid the presence (on both sides)
of a horizon. This type of surgically grafted space-time is
particularly interesting because it restores geodesic com-
pleteness and implies a vanishing stress-energy tensor
everywhere except at the matching hypersurface and,
therefore, the energy density in such a case is described
by (18). As for the throat of the wormhole, located at Σ, it
can be viewed as a (planar) domain wall interpolating
between the two regions M�. On the other hand, the field
equations (15) will provide another relation between RðτÞ
and σðRÞ, which will allow us to find a complete solution to
the problem. Note that since Tμν vanishes in M�, by
the first condition of Eq. (3) we must have that T ¼ 0
everywhere, even on Σ. This means that, regardless of the
form of the (nonlinear) Lagrangian fðRÞ, we must have
κ2=fRΣ

jT¼0
¼ κ̃2 ¼ const, which is a remarkable universal

property. Given that for the Schwarzschild geometry we
have A¼B−1¼ 1–2M=r, then we find that ½Kμ

ν� ¼ 2Kμ
ν
þ,

while Eq. (7) vanishes identically.
By inserting the expressions (13) and (14) into the left-

hand side of Eq. (15) and taking into account the discussion
above, we get

3M − Rð1þ R2
τÞ þ R2Rττ

3R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ R2
τ

q ¼ κ̃2

4
σ ¼ κ̃2C

4R3
; ð19Þ

which can be manipulated to obtain

Rττ ¼
R2
τ

R
þ 1

R

�
1 −

3M
R

�
þ γ

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þ R2
τ

r
; ð20Þ

where we have introduced the constant γ ≡ 3κ̃2C
4
. This

equation is particularly useful to study static configurations
and their perturbations. In fact, assuming that there is an
equilibrium point with Rτ ¼ 0 at the shell, R0 > 2M, we
can expand the right-hand side of (20) in a series of powers
of ðR − R0Þ to explore the conditions which lead to small,
stable (oscillatory) perturbations about this equilibrium
point [49–51]. This way we find

Rττ ≈
�
R0 − 3M

R2
0

þ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − 2M

p

R7=2
0

�

þ
�
6M − R0

R3
0

− γ
3R0 − 7M

R9=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − 2M

p
�
ðR − R0Þ

þOðR − R0Þ2: ð21Þ

Any equilibrium points can be found by determining
the values of γ for which the zeroth-order term in this
expansion vanishes and such that the resulting equation for
the perturbations has bounded amplitude. Taking into
account the expansion above, we have

γe ¼
R3=2
0 ð3M − R0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R0 − 2M
p ; ð22Þ

which indicates that, if 2M < R0 ≤ 3M, equilibrium con-
figurations supported by positive energy density are pos-
sible [recall Eq. (18) and that γ ≡ 3κ̃2C

4
]. Inserting this result

back in Eq. (21) we get (at linear order in the expansion)

δττ þ ω2
SchδðτÞ ¼ 0; ð23Þ

where δ≡ R − R0 and

ω2
Sch ¼

−2R2
0 þ 8MR0 − 9M2

ðR0 − 2MÞR3
0

: ð24Þ

As can be easily verified, for a matching surface Σ beyond
the Schwarzschild radius, R0 > 2M, this coefficient is
always negative, thus yielding a growing mode. This means
that pure thin-shell Schwarzschild wormholes in Palatini
fðRÞ gravity are always unstable under linear perturbations
regardless of the form of the fðRÞ Lagrangian chosen.

B. Reissner-Nordström space-times

Let us now consider two Reissner-Nordström geometries
cut and pasted at a spherical hypersurface of radius R.
Since we have again nρhσν½Tρσ� ¼ 0, then Eq. (18) still
holds. Moreover, since for a Maxwell field T ¼ 0, then it
follows again that R ¼ const and that both of the junction
conditions (3) automatically hold, which implies that
we can use pretty much the same expressions as in the
Schwarzschild case above. Indeed, setting A ¼ B−1 ¼
1–2M=rþQ2=r2, one finds that (19) generalizes to
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3MR − 2Q2 − R2ð1þ R2
τÞ þ R3Rττ

3R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

R þ Q2

R2 þ R2
τ

q ¼ κ̃2C
4R3

; ð25Þ

which can be recast as

Rττ ¼
R2
τ

R
þ 1

R

�
1 −

3M
R

þ 2Q2

R2

�

þ γ

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þQ2

R2
þ R2

τ

r
: ð26Þ

We can then follow the same procedure as in the
Schwarzschild case. It is convenient, though, to use
dimensionless variables of the form

R → Mx;

τ → Mt;

Q2 → M2y;

γ → M2γ̃:

In terms of these variables the horizons of the Reissner-
Nordström configurations are located at x�¼1�

ffiffiffiffiffiffiffiffiffiffiffi
1−y2

p
if

the (squared) charge-to-mass ratio satisfies 0 < y < 1,
while no horizons are present when y > 1 (with y ¼ 1
corresponding to extremal configurations). On the other
hand, using these variables the differential equation (26)
becomes

xtt ¼
x2t
x
þ 1

x

�
1−

3

x
þ 2y
x2

�
þ γ̃

x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2

x
þ y
x2

þ x2t

r
: ð27Þ

The equilibrium points follow by imposing x ¼ x0 (setting
the throat) with xt ¼ xtt ¼ 0, which requires one to tune the
free parameter γ̃ to the particular value

γ̃e ¼
x0ð3x0 − x20 − 2yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x20 − 2x0 þ y
p ; ð28Þ

which is the natural extension of (22) for the Reissner-
Nordström configurations. This condition has a clear impact
on the kind of matter source able to produce equilibrium
configurations. In fact, from the definition γ̃ ≡ 3κ̃2C

4M2 , it is
immediate to see that the sign of γ̃e determines the sign of
the energy density of the thin shell, as follows from Eq. (18).
The possibility of having positive energy density configu-
rations is thus not ruled out a priori. Other equilibrium
configurations correspond to the point ðx0; yÞ ¼ ð1; 1Þ for
any γ̃e and the curve y ¼ x0ð3 − x0Þ=2 for γ̃ ¼ 0 (see the
blue curve in Fig. 1).
Analyzing this expression, we see that for 0 < y < 1

we have γ̃e > 0 if x0 > 1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
[equivalently y >

1−ðx0−1Þ2]; i.e., only when the shell is located outside
the would-be external horizon. This means, in particular,

that in the Schwarzschild limit, y → 0, we must have
x0 > 2, whereas in the extremal limit y → 1 we must have
x0 > 1. Beyond extremality, we also have γ̃e > 0 when
1 < y < 9=8 if the radius of the shell is located within the
interval

3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8y

p
2

< x0 <
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 8y
p
2

ð29Þ

or, equivalently, x0ð2 − x0Þ < y < x0ð3 − x0Þ=2, as shown
in Fig. 1. Note that the parabola y ¼ x0ð3 − x0Þ=2 repre-
sents equilibrium points with γ̃e ¼ 0 and that the point
ðx0; yÞ ¼ ð1; 1Þ is also an equilibrium point for arbitrary γ̃e.
Let us now focus on the stability of the solutions.

Expanding the field equation (27) around an equilibrium
point x0, to linear order in δðtÞ≡ xðtÞ − x0 one finds

δtt þ ω2
RNδðτÞ ¼ 0 ð30Þ

so that the stability condition translates into

ω2
RN ¼ −

½ð2ðx0 − 4Þx0 þ 9Þx20 þ ð3x0 − 8Þx0yþ 2y2�
x40½ðx0 − 2Þx0 þ y� > 0:

ð31Þ

It turns out that this condition can only be satisfied either
(i) when 0 < y < 1 if

1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
< x0 < 1þ

ffiffiffiffiffiffiffiffiffiffiffi
y − 1

p
ð32Þ

[equivalently, y < x0ð2 − x0Þ], which corresponds to the
region between the two horizons, or (ii) when 1 < y <
81=49 if

FIG. 1. The blue region enclosed between the curves y ¼
x0ð3 − x0Þ=2 and y ¼ x0ð2 − x0Þ represents the allowed values of
x0 ≡ R0=M as a function of the squared charge-to-mass ratio y≡
Q2=M2 for which equilibrium configurations with positive
energy density (γ̃e > 0) are possible in thin-shell wormholes
of surgically joined Reissner-Nordström space-times. For x0 > 2
the band 0 < y < 1 always has positive energy density.
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y−ðx0Þ < y < yþðx0Þ; ð33Þ

where we have defined the two curves

y�ðx0Þ ¼
x0
4

�
8 − 3x0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7ðxþ − x0Þðx0 − x−Þ

p �
ð34Þ

and x� ¼ 2ð4� ffiffiffi
2

p Þ=7. These two regions are plotted in
Fig. 2 (filled in orange) together with the domain corre-
sponding to positive energy density configurations (filled in
blue). As it can be seen there, there is a nonzero subset of
overlapping points (filled in gray) such that

1 < y < 9=8 ð35Þ

and bounded by the curves

y−ðx0Þ < y <
x0
2
ð3 − x0Þ ð36Þ

and resembling an egg-shaped domain (see Fig. 3). It
should be pointed out that the condition (35) exactly
coincides with the condition for having a photon
sphere in the full geometry of the overcharged Reissner-
Nordström solution. The existence of this overlapping
region puts forward that, unlike in GR, within the fðRÞ

FIG. 2. Representation of the domain where ω2
RN > 0 in the

Reissner-Nordström scenario outside its horizons [as given by the
condition (33)] and its overlap (gray shadowed region) with
γ̃e > 0. The region enclosed by the big parabola with vertex at
(1,1) [given by Eq. (32)] is contained within the horizons and,
therefore, is not of physical interest.

FIG. 3. Representation of ω2
RN > 0 in the egg-shaped domain

(33) shown in Fig. 2.

FIG. 4. A different view of the surface ω2
RN > 0 in the domain

(33) shown in Fig. 2 including the projection of the curve y ¼
x0
2
ð3 − x0Þ (dashed black curve) on this surface to highlight the

region with positive energy density.

FIG. 5. Phase portrait of positive energy configurations located
at x0 ¼ 5=4 with y ¼ 1.05. The red curves represent numerical
integrations with initial velocity _x0 ¼ 0.07 (unstable solution),
_x0 ¼ 0.05 (stable inner solution), and _x0 ≈ 0.06586 (limiting
stable solution). A locator is placed at the initial point of each
integration.
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Palatini framework it is possible to have stable, traversable
thin-shell wormhole solutions supported by sources with
positive energy density. Though the negative energy
density region is much larger than the positive one, it is
remarkable that stable solutions of this type [satisfying all
the energy conditions regardless of the form of the fðRÞ
Lagrangian] can exist.

Particular attention should be paid to the parabolic
segment y ¼ x0ð3 − x0Þ=2 between x0 ¼ 1 and x0 ¼ 3=2
(plotted in Fig. 4 as a black dashed curve) that represents
the upper bound of the overlapping region because it
corresponds to the curve of equilibrium points with
γ̃ ¼ 0, which have vanishing energy density. Our analysis
indicates that such a curve must represent stable equilib-
rium points.

FIG. 6. Time evolution of xðtÞ around x0 ¼ 5=4 with y ¼ 1.05
for the two stable solutions of Fig. 5. The case _x0 ¼ 0.05 (blue
curve) has a higher oscillation frequency. As one approaches the
limiting stable solution the period grows and the maximum
amplitude flattens.

x’

1.0 1.2 1.4 1.6 1.8 2.0

0.05

-0.05

0.00

FIG. 7. Phase portrait of negative energy configurations located
at x0 ¼ 5=4 with y ¼ 1.5. The red curves represent numerical
integrations with initial velocity _x0 ¼ 0.08 (unstable solution),
_x0 ¼ 0.05 (stable inner solution), and _x0 ≈ 0.07282 (limiting
stable solution). A locator is placed at the initial point of each
integration.

20 40 60 80 1001.1

1.2

1.3

1.4

1.5

1.6

1.7

FIG. 8. Time evolution of xðtÞ around x0 ¼ 5=4 with y ¼ 1.5
for the two stable solutions of Fig. 7. The case _x0 ¼ 0.05 (blue
curve) has a higher oscillation frequency. As one approaches the
limiting stable solution the period grows and the maximum
amplitude flattens much like in the positive energy case.
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–0.10
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0.00

0.05
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FIG. 9. Phase portrait of zero energy configurations located at
x0 ¼ 5=4 with y ¼ 35=32 ≈ 1.09375. The red curves represent
numerical integrations with initial velocity _x0 ¼ 0.1 (unstable
solution), _x0 ¼ 0.05 (stable inner solution), and _x0 ≈ 0.09658
(limiting stable solution). A locator is placed at the initial point of
each integration.
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IV. NUMERICAL ANALYSIS

We will now present some numerical results for the
various possible thin-shell wormhole configurations of the
Reissner-Nordström type studied before, where stable
equilibrium points may arise. From our previous analysis,
we concluded that one can find stable configurations
with positive, negative, and zero energy density. We
also identified a peculiar point at ðx0; yÞ ¼ ð1; 1Þ, an
extremal configuration, which deserves special attention.

For simplicity and generality, we will present portrait
diagrams of the system for different choices of the
parameters x0 and y to highlight the regions of stability.
Positive energy stable solutions are shown in Figs. 5 and

6, negative energy solutions in Figs. 7 and 8, and zero
energy solutions in Figs. 9 and 10. The extremal case is
presented in Figs. 11 and 12. As one can see, in all four
cases the qualitative features of the various plots are similar.
Nonetheless, it is important to note that the domain of
stability in the extremal case is much larger than in the
overextremal configurations. The amplitude of the oscil-
lations of the limiting stable curve is also larger in the
extremal case, being smaller in the positive energy
configuration.

V. CONCLUSION

In this work we have employed the recently developed
formalism of the junction conditions for Palatini fðRÞ
theories of gravity in order to study spherically symmetric
traversable thin-shell wormholes. We have found the
relations between curvature and matter fields at the shell,
whose main highlight is the fact that the effective number of
degrees of freedom is reduced from two [which are the ones
found in GR and in metric fðRÞ gravity] down to one. This
scenario actually describes the dynamics of massless stress-
energy fields on the shell, something which cannot be
found in GR. Moreover, in the simplest possible scenario,
namely, the one where the (normal) discontinuity of the
stress-energy tensor across the shell is vanishing, the
energy density can be resolved as an inverse cubic power
of the radius of the shell, without any a priori restrictions
on its sign and, therefore, on the fulfillment of the energy
conditions.
Subsequently we have used this result to build

traversable thin-shell wormholes from surgically grafted

20 40 60 80
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1.4

1.5

1.6

1.7

FIG. 10. Time evolution of xðtÞ around x0 ¼ 5=4 and y ¼
35=32 ≈ 1.09375 for the two stable solutions. The qualitative
behavior is very similar to the positive and negative energy cases.

0.5 1.0 1.5 2.0

–0.4

–0.2

0.0

0.2

0.4

FIG. 11. Phase portrait of the extremal configuration with
x ¼ 1 and y ¼ 1. The red curves represent numerical integrations
with initial velocity _x0 ¼ 0.33 (unstable solution), _x0 ¼ 0.1
(stable inner solution), and _x0 ≈ 0.02209 (limiting stable sol-
ution). A locator is placed at the initial point of each integration.
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FIG. 12. Time evolution of xðtÞ around x0 ¼ 1 with y ¼ 1 for
the two stable solutions of Fig. 11. Though the qualitative
features are similar to the previous cases, the stability domain
is bigger and the amplitude of the limiting stable configuration is
also larger.
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spherically symmetric vacuum space-times. We have
shown that, no matter the shape of the Palatini fðRÞ
theory chosen [except for the trivial choice fðRÞ¼R−2Λ,
corresponding to the Einstein-Hilbert action with a cos-
mological constant term], such wormholes can arise from
two vacuum space-times joined at a certain shell radius
beyond its Schwarzschild radius (in order to avoid the
presence of horizons). However, the thin-shell wormholes
built this way have a growing mode under linear perturba-
tions no matter the shape of the fðRÞ chosen, which
renders the corresponding solutions linearly unstable. Thus
we turned our attention to thin-shell wormholes from
surgically joined Reissner-Nordström space-times (sup-
ported by electrovacuum fields), studying the regions
with positive energy density, γ̃e > 0, and, separately, the
regions with stable configurations, ω2

RN > 0. It turns out
that there exists a nonvanishing overlapping region
where both conditions can be met at the same time, as
given by a constraint on the (squared) mass-to-charged
ratio, 1 < y < 9=8 (corresponding to the overcharged
Reissner-Nordström solution having a photon sphere),
and on the radius of the shell bounded by certain curves,
as defined by Eq. (36). Therefore, traversable thin-shell
wormholes supported by matter sources fulfilling the
energy conditions are actually possible within these surgi-
cally joined Reissner-Nordström geometries of Palatini
fðRÞ gravity. Remarkably, we also find a subset of stable
solutions which lies between the positive energy and
negative energy solutions, thus representing thin shells
with vanishing energy density. Such configurations can
thus only be supported by the topological electric flux and
are a peculiar feature of the Palatini fðRÞ framework.
It is worth mentioning that, though in this work we only

considered symmetric thin-shell wormhole space-times
(which means that the solutions on M� are the same),
nothing in our construction prevents us to generalize them
to two distinct surgically joined space-times, as long as
Eq. (17) is satisfied. Such a kind of asymmetric thin-shell
wormholes has been recently explored in the literature [52].
Interestingly, in such solutions a novel shadow may
emerge, related to the existence of different photon spheres
on each side, such that an observer on the side of the
wormhole with lower mass would see, in addition to the
images of its own photon sphere, also those photons

bouncing back from the photon sphere on the other side
across the shell [53,54]. The observations of such double
shadows could be a hint on the existence of new physics
beyond the canonical compact objects of GR.
To conclude, the results obtained in this paper prove that

the modifications in the junction conditions when consid-
ering fðRÞ gravity in the Palatini formulation yield non-
trivial novelties in the analysis of traversable thin-shell
wormholes as compared to their GR or metric fðRÞ
counterparts. Moreover, this puts forward the new pos-
sibilities offered by these theories in any scenarios requir-
ing a matching between two regions, such as in cosmic
strings, domain walls, and stellar models, or within the
membrane paradigm [55], topics which are of both astro-
physical and cosmological interest. We hope to further
report on these issues soon.
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