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A B  S T R  A C  T 

Northwestern Iberia preserves one of the most complete Paleozoic sequences that document the origin and development of a passive margin along the southern (Gondwanan) flank of 
the Rheic Ocean. In addition to a well preserved sedimentary record, there is widespread Ordovician volcanic activity that can be used to probe the nature of the lower crust and 
mantle lithosphere that sourced the volcanic rocks during the Rheic ocean opening. The Ordovician rift-related volcanic sequences provide first-order constraints on the early 
evolution of the Rheic Ocean. In addition to published and new lithogeochemical data, we provide Sm/Nd isotopic data which together constrain the mantle or crustal source and 
allow an assessment on the role of the basement in Rheic Ocean magmatism. The data imply that the mafic rocks are derived from a variety of sources, including juvenile mantle that 
was contaminated by subduction coeval with Early Ordovician magmatism, suggesting the importance of arc activity in northwest Iberia during the opening of the Rheic Ocean. Other 
basalts were derived from a subcontinental lithospheric mantle that was enriched at about 1.0 Ga. Basalts derived from a mantle enriched at ca. 1.0 Ga occur along other parts of the 
Gondwanan margin (Avalonia, Oaxaquia) and so the Iberian basalts may be a local representation of a regionally significant enriched mantle. The Sm–Nd isotopic characteristics permit a 
genetic connection between this mantle source and the basement rocks recently identified in northwest Iberia. Felsic magmas are predominantly intra- crustal magmas derived from melting a 
Mesoproterozoic crust, lending support to other lines of data that the Gondwanan margin of northwest Iberia was predominantly underlain by a South American (Rio Negro) source. 
Keywords: Rheic Ocean Northwest Iberia Ordovician, Crust Mantle, Sm–Nd isotopes 

1. Introduction

The Late Cambrian to Early Ordovician evolution of northern
Gondwanan margin preserves passive margin sedimentary, intrusive and 
volcanic sequences that record the origin of the Rheic Ocean and the evolution 
of its southern flank (e.g. McKerrow and Scotese, 1990; Cocks and Torsvik, 
2002). These sequences have been dispersed by the breakup of Pangea and are 
recorded from Oaxaquia (Mexico) in the west to the Bohemian Massif in the 
east (Stampfli and Borel, 2002; Keppie et al., 2003; Murphy et al., 2006; 
Fig. 1). There is general agreement that the origin of the Rheic Ocean was 
the result of the northward drift of some peri-Gondwanan terranes, such as 
Avalonia, Carolinia and Ganderia from the Gondwanan margin (McKerrow and 
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Scotese, 1990; Cocks and Fortey, 1990; Cocks and Torsvik, 2002; 
Stampfli and Borel, 2002; Murphy et al., 2002). However, various models 
have been proposed in recent years to explain this rifting event (for 
example van Staal et al., 1998; Crowley et al., 2000; Matte, 2001; Stampfli et 
al., 2002; von Raumer et al., 2002; Murphy et al., 2006). Northwestern Iberia 
preserves Late Cambrian–Early Ordovician sedimentary and igneous rocks that 
provide one of the most complete records of passive margin development 
along the southern flank of the Rheic Ocean and the effects of its subsequent 
closure during the Carboniferous Variscan orogeny (for a complete set of 
references see Gibbons and Moreno, 2002 and Vera, 2004). 

A wealth of lithostratigraphic, paleontological and paleomagnetic data 
have led to a consensus that Iberia was located adjacent to the West African 
craton during the Early Paleozoic (Fig. 1). Determination of the age and 
composition of the basement to these sequences is important for 
understanding the geodynamic evolution and to make palinspastic 
reconstructions of the northern Gondwanan margin. Until recently, the basement 
to the passive margin sequence was thought to 
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Fig. 1. Localities where the sequences documenting the evolution of northern flank of the Gondwanan margin (southern flank of the Rheic Ocean) are preserved shown in a Pangean reconstruction. Ch-Oax-Y, 
Chortis-Oaxaquia-Yucatan; F, Florida; C, Carolinia; A, Avalonia; O-M Ossa Morena; NW-I, Northwest Iberia; Arm, Armorica; BM, Bohemian massif. 

 
 

be part of a Paleoproterozoic (West African) ca 2.0 Ga craton that 
characterizes the West European Variscan Belt (Guerrot et al., 1989, Samson 
and D’Lemos, 1998). However, other basement sources in NW Iberia have been 
identified consisting mainly of Mesoproterozoic (ca. 1.1–1.4 Ga) in addition to 
some Archaean sources (detrital zircons and white micas, Fernández-Suárez et 
al., 2000, 2002a,b; Gutiérrez-Alonso et al., 2003, 2005). Also, a recently 
dated outcrop of presumably basement rocks has yielded a Mesoproterozoic 
age (Purrido amphi- bolite, 1159 ±39 Ma, U–Pb, zircon, Sánchez-Martínez 
et al., 2006). However, the Purrido amphibolite is allochthonous relative to 
the Gondwanan margin. An additional challenge is that the Neoproter- ozoic 
and Late Paleozoic tectonic events in this region may have 

involved thrusting of cover sequences relative to their basement. As a result, the 
relationship between this newly identified basement and the hidden basement 
that yielded the Ordovician volcanic rocks is unclear. In the Late 
Neoproterozoic, this region underwent a protracted (ca. 750–550 Ma) low 
grade tectonothermal evolution during the Cordilleran-type Cadomian 
orogeny along the northern Gondwanan margin (Gutiérrez-Alonso and 
Fernández-Suárez, 1996; Fernández- Suárez et al., 1998; Gutiérrez-Alonso et 
al., 2004; Cuesta et al., 2004; Díaz García, 2006) and Late Cambrian–Early 
Ordovician extreme stretching (Pérez-Estaún et al., 1990; Martínez-Catalán et 
al., 1992; Díaz García, 2002; Valverde-Vaquero et al., 2005; Díez Montes, 
2006) until the onset of the Rheic ocean lithosphere production. In the Late 

 
 
 

 
 

Fig. 2. Geologic map of northwest Iberia (after Farias et al., 1987; Martínez-Catalán et al., 2007) showing the location of samples reported in this study (large numbers) which have been analyzed for REE and 
Sm–Nd isotopes. More precise locations of samples are given in Table DR-3. 



 
 

Paleozoic, collision between Laurussia and Gondwana (Variscan orogeny) 
is manifest in NW Iberia by significant shortening (including thrusting) and 
ophiolite obduction, which caused the exposure of part of the Rheic Ocean 
passive margin basement in the so called Basal Units of the Allochthonous 
Complexes (Martínez-Catalán et al., 1996) (Fig. 2). 

The relationship between the inferred and exposed basement and the source 
or sources of the Ordovician rift-related volcanic sequences would provide 
first-order constraints on the early evolution of the Rheic Ocean and the 
nature of the basement and the mantle lithosphere. In addition to a well 
preserved sedimentary record, there is widespread Ordovician intrusive and 
volcanic activity, which can be used to probe the nature of the lower 
crust and mantle lithosphere that provide the source for the volcanic rocks 
during the Rheic Ocean opening (Murphy et al., 2006). 

A focused study on the geochemistry of various igneous rocks 
exposed in NW Iberia can provide insights into the processes that occurred 
along this portion of the northern Gondwanan margin. Over the past 20 years, a 
wealth of geochemical data on the igneous rocks in this region has been 
published (see Table DR-1) that predominantly focuses on individual 
tectonostratigraphic zones in the region, and a synthesis of those data is 
provided here. We also report new geochemical and Sm–Nd isotopic data 
from representative samples of these igneous rocks, which, together with 
previously published data, provide constraints on the nature and age of the 
mantle lithosphere and lower crust at the time of the Rheic Ocean 
development in northwest Iberia. These data facilitate a comparison between 
these sources for the various tectonostratigraphic zones in northwest Iberia, an 
assessment of the degree to which this chemistry may be derived from exposed 
basement, and an evaluation of their significance in interpreting the evolution 
of the Rheic Ocean passive margin along the northern margin of Gondwana. 

 
2. Geological setting 

 
Although heterogeneously deformed by Late Paleozoic Variscan 

orogenesis, one of the most complete sections of the northern Gondwanan 
platform  is  exposed in northwestern  Iberia (Fig. 2) where Paleozoic rocks 
lie within an intensely  curved Variscan orogenic belt (Weil et al., 2001). In 
addition to preserving record of passive margin development, northwestern 
Iberia is characterized by several episodes of voluminous volcanic and 
intrusive igneous activity. 

If the Iberian–Armorican Arc is restored to a pre-Variscan geometry 
(Weil et al., 2001), the Iberian continental platform of Gondwana is 
shown to be extremely extensive as indicated by its stratigraphic record, 
classically represented by a thick, mostly siliciclastic sequence that includes 
the Late Cambrian–Early Ordovi- cian Armorican quartzite, related 
quartzose clastic rocks and is covered, sometimes as an unconformity by 
widespread Silurian black shales (Gutiérrez-Marco et al., 1998). These 
relationships, together with sedimentological studies are consistent with 
paleogeo- graphic reconstructions which place NW Iberia adjacent to 
West Africa along the southern flank of the Rheic Ocean during all the 
Paleozoic (e.g. Martínez-Catalán et al., 2007; Robardet, 2002, 2003). 

Paleozoic rocks in the Iberian Massif are divided into zones based on their 
Lower Paleozoic sedimentary differences, which are inter- preted to reflect 
their relative proximity to the Gondwanan margin (Fig. 2). The Cantabrian 
Zone preserves a coastal environment, whereas the West Asturian Leonese, 
Central Iberian, Galicia Tras-os- Montes (Schistose Domain) and/or Ossa 
Morena zones preserve the more outboard tectonostratigraphy (Julivert et 
al., 1972; Quesada, 1990; Ribeiro et al., 1990; Pérez-Estaún et al., 1990; 
Quesada et al., 1991; Martínez-Catalán et al., 1997, 1999; Marcos and Farias, 
1999; Gutiérrez-Marco et al., 1999; Aramburu et al., 2002; Robardet, 2002, 
2003; Robardet and Gutiérrez-Marco, 2004). Boundaries between these 
zones are major Variscan thrusts and reverse faults that are in 

some cases reactivated by extension in the aftermath of the Variscan orogeny 
(Martínez-Catalan et al., 1997, 2003). 

Lower Ordovician (Tremadoc-Arenigian) volcanism is widespread and is 
represented in all the paleotectonic zones (Valverde-Vaquero et al., 2005; 
Díez Montes 2006; Gutiérrez-Alonso et al., 2007). Coeval with this volcanism, 
ca. 4500 m of strata accumulated in sub-basins or troughs parallel to the 
northern Gondwanan margin and are interpreted to reflect a marked 
increase in subsidence related to tectonic extension and the rift–drift 
transition stage of Rheic Ocean development (Pérez-Estaún et al., 1990; 
Martínez-Catalán et al., 1992; Aramburu et al., 2002; Marcos et al., 2004). This 
extensional event is coeval with the genesis of the widespread Lower 
Ordovician intrusive granitoid and volcanic rocks which are interpreted as 
intra-crustal melts generated in response to steep geothermal gradients 
associated with the rifting event (Ribeiro and Floor, 1987; Gallastegui et al., 
1987; Pin et al., 1992; Valverde-Vaquero et al., 2005; Díez Montes, 2006). 
Although volcanic activity continues until the upper Ordovician, it is relatively 
scarce and is only locally represented (Heinz et al., 1985, Corretgé and 
Suárez, 1990, Gallastegui et al., 1992). 

The Cantabrian Zone is characterized by voluminous and wide- spread 
volcanism, and includes several Lower Paleozoic volcanic events that are 
mostly Lower Ordovician in age although some younger volcanic rocks 
also occur (Fig. 2; (Loeschke and Zeidler, 1982; Heinz et al., 1985; Gallastegui et 
al., 1992; Barrero and Corretgé, 2002). Volcanic rocks in the West Asturian 
Leonese zone (WALZ) are widely distributed but, compared to the Cantabrian 
Zone are volumetrically minor and their emplacement is thought to have been 
accompanied by a greater basin subsidence. The northern portion of the 
Central Iberian Zone (CIZ) preserves the most volumetrically significant Early 
Ordovician volcanic event in NW Iberia, including the “Ollo de Sapo” belt 
where voluminous felsic volcanics crop out along a continuous NW- to N-
trending belt (Fig. 2). Detailed studies on the age (ca. 495– 480 Ma) origin 
and geochemistry of these volcanic rocks can be found in Valverde-Vaquero 
and Dunning (2000), Castro et al. (1999, 2003), Díez Montes (2006) and 
Montero et al. (2007). Felsic intrusive bodies in the northern CIZ have U–Pb 
(zircon) ages ranging from the Late Cambrian–Early Ordovician  (Miranda 
de Douro  body, 483 ± 3 Ma according to Bea et al., 2006 or 496 ± 3 after 
Zeck et al., 2007) to 465 ± 10 Ma (Covelo and San Sebastián bodies; Lancelot 
et al., 1985). In addition to the “Ollo de Sapo belt”, in the southern CIZ, mafic 
sills with tholeiitic chemistry yield a Sm/Nd isochron age of 436 ± 17 Ma 
(López- Moro et al., 2007). 

The Schistose Galicia Tras-os-Montes Domain (SGTMD) (Farias et al., 1987; 
Martínez-Catalán et al., 1996; Marcos et al., 2002) rests tectonically above 
the CIZ and consists of a thick siliciclastic sequence with interbedded volcanic 
rocks. Some of the volcanic rocks yield Lower Ordovician (475 ± 2 Ma, Valverde-
Vaquero et al., 2005) ages and have been interpreted as the most outboard 
parts of the passive margin sedimentary wedge of Gondwana. 

On top of the most external parts of the Gondwana sedimentary wedge in 
the Rheic passive margin, the SGTMD, allochthonous complexes consist 
of (from bottom to top) the Gondwana basement (known as Basal Units, Fig. 2) 
structurally overlain by two ophiolitic units of Early Ordovician and Devonian 
age that are interpreted to be the remnants of the Rheic Ocean or subsidiary 
oceans closed during the Variscan Orogeny (Martínez-Catalán et al., 1997; Arenas 
et al., 2007a,b). On top of the ophiolites, the upper units are interpreted to be part of 
the rocks that constitute the northern (Laurussian) margin of the Rheic Ocean 
(Martínez-Catalán et al., 1997; Arenas et al., 2007a,b). 

Underlying the ophiolites, the Basal Units have a continental affinity 
and are considered to represent the most external part of the Gondwanan 
margin (Martínez-Catalán et al., 1996). This margin was subducted below the 
ophiolitic units during the earliest stages of the Variscan Orogeny and was 
affected by high-pressure and low- to intermediate temperature 
metamorphism (Arenas et al., 1995; Rodríguez et al., 2003; Rodríguez Aller, 
2005). Extensive geochemical 



 
 

data on these rocks can be found in (Marquínez, 1984; Arenas, 1988; Díaz 
García, 1990; Pin et al., 1992; Rodríguez Aller, 2005). Despite their complex 
tectonothermal history, the igneous protoliths have been found to be Lower 
Ordovician in age (ca. 480 Ma; Santos Zalduegui et al., 1995 and references 
therein). 

Finally, ophiolites within the allochthonous complexes are pri- marily 
either Lower Ordovician or Devonian in age (e.g. Arenas et al., 2007a,b). The 
Lower Ordovician ophiolites occur in several structural slices and may 
represent the vestiges of the first oceanic crust to be formed in the Rheic 
Ocean. 

 
3. Geochemistry 

 
We combine results from our own samples, with an analysis of 

geochemical data from the literature to provide an overview of the 
geochemical and isotopic signatures of the Early Ordovician igneous rocks. 
The locations of our samples are tabulated (Table DR-3), and their position 
within the tectonostratigraphic framework of northwest Iberia is shown on a 
summary map (Fig. 2). In order to facilitate the comparison between rock 
types, the location of the samples is restored on a schematic cross-section 
showing their approximate relative positions along the ancient Gondwanan 
margin (Fig. 3). 

 
4. Sampling and analytical methods 

 
In order to deduce the effects of mantle and crustal sources on 

Ordovician volcanic rocks along the NW Iberian margin of Gondwana, twenty-
two samples from various tectonic zones were analyzed for 

major and trace elements. In the Cantabrian Zone, the oldest volcanic units were 
sampled (late Cambrian–Early Ordovician Puente Tuña and Farandón volcanics, 
samples 32 and 33 respectively), as well as the overlying K-bentonites 
(sample 34) which are of volcanic origin, and yield a Lower Ordovician age 
(477.5 ± 1 Ma, U–Pb, zircon; Gutiérrez- Alonso et al., 2007). In addition we 
sampled volcanic rocks that crop out around the Peñas Cape (Samples 1, 2 and 
3, Fig. 2; Suárez et al., 1993). Although there are no precise geochronogical 
or fossil age constraints, these volcanic rocks are widely interpreted to be 
Upper Arenig in age (e.g. Gutiérrez-Marco et al., 1999), although they have 
also been interpreted to be lowermost Upper Ordovician (Dobrotvian, Truyols et 
al., 1996). 

In the northern part of the WALZ, we sampled Middle Ordovician 
subvolcanic and volcanic rocks within the Luarca Formation (Samples 4 and 5; 
González Menéndez and Suárez, 2004; Villa et al., 2004) and samples 30 and 
31 are representative of the abundant volcanic rocks that crop out in the 
southern WALZ. There are no published detailed petrologic or geochemical 
studies available from these rocks. In the CIZ, we present data from several 
samples taken in the “Ollo de Sapo” region (Samples 6, 7, 27, 28 and 29). In 
the SGTMD, we selected representative samples of ca. 475 Ma (Valverde-
Vaquero et al., 2005) volcanic rocks to represent magmatism located at the 
most outboard part of the para-autochthonous Gondwanan passive margin 
(Fig. 3; Samples 11, 12, 13 and 26). 

From the allochthonous complexes, we selected samples from the Basal 
Units (samples 8 and 10) which have 480 Ma protolith ages and represent the 
most external part of the Gondwanan margin (Fig. 3; Martínez-Catalán et al., 
1996). 

 
 

 
 

Fig. 3. Location of the analyzed samples restored relative to the northern Gondwanan margin on a schematic cross-section and a summary of the results of our Sm/Nd isotopic data. 
TDM for the Ediacaran Granitoids from Fernández-Suárez et al. (1998) and for the Ollo de Sapo belt from Castro et al. (1999, 2003), and Montero et al. (2007). 



 
 

Finally, we sampled the Lower Ordovician ophiolites (Samples 14 and 15) 
from the Moeche unit in the Ortegal Complex. These rocks have an oceanic 
signature (e.g. Arenas et al., 2007a,b) and correlate with the better known 
Vila de Cruces ophiolite in the Ordenes Complex, dated at 497 ± 4 Ma, and 
both are thought to be the remnant of the earliest Rheic Ocean (Arenas et al., 
2007a,b). 

Details of analytical methods are given in Supplementary File DR-2. Major 
and trace element (Rb, Sr, Ba, Ga, Zr, Y, Nb, Co, Cu, Pb, Zn, V, Cr and Ni) 
geochemistry was determined by X-ray fluorescence spectro- metry in the 
Nova Scotia Regional Geochemical Centre at Saint Mary's University, Halifax. 
Rare earth element and Sm–Nd isotopic analyses were determined by ICP-MS 
at Memorial University, Newfoundland. 

Detailed of analytical methods along with all analyses are in given in 
Supplementary File DR-2 and all analyses are given in Supplementary File DR-3. 
Analytical procedures, precision and accuracy are described by Dostal et al. 
(1986) for the X-ray data, by Jenner et al. (1990) for the REE data and by Kerr et 
al. (1995) for the Sm–Nd isotopic data. 

Three samples, ORV 4 (mafic volcaniclastic), 9 (serpentinite) and 34 (K-
bentonite) display anomalous geochemical characteristics and are not plotted 
on geochemical diagrams. ORV 4 has 26.9% SiO2 very high iron oxide and 
alumina (38.8 and 19.1 wt.%, respectively) and is clearly highly altered. The 
probable cumulate nature of the protolith to the serpentinite is indicated by its 
very high MgO (36.5 wt.%) and Cr (N 2000 ppm) and low Zr (b 5 ppm). 
Extensive alteration of the K- 

 
 

 
 

Fig. 4. FeOt/MgO vs SiO2 (after Miyashiro, 1974) for (A) Cantabrian Zone, (B) Central Iberian Zone (CIZ), (C) Galicia Tras os-Montes (Schistose Domain), (SGTMD), (D) West Asturian Leonese Zone 
(WALZ), (E) Ophiolitic units, (F) Basal Units. Sk = Skaergaard trend, CC = continental crust (Tatsumi, 2005). Mafic rocks, squares; intermediate rocks, triangles; felsic rocks, circles. Open symbols = published 
data; filled symbols, our data. 



 
 

 
 

Fig. 5. Zr/Ti vs Nb/Y discrimination diagram (after Winchester and Floyd, 1977; Pearce, 1996) for mafic rocks (A) Cantabrian Zone, (B) Central Iberian Zone (CIZ), (C) Galicia Tras os- Montes (Schistose 
Domain), (SGTMD), (D) West Asturian Leonese Zone (WALZ), (E) Ophiolitic units, (F) Basal Units. Open symbols = published data; filled symbols, our data. 

 
 
 

bentonite is indicated by its very high Al2O3 (37.1 wt.%). The remaining 
19 samples were selected for REE analysis and 11 of those were selected 
for Sm–Nd isotopic analysis. The entire lithogeochemical and isotopic dataset 
and details on the analytical methods are available on-line (Supplementary 
File DR-2). 

A wealth of geochemical data on the igneous rocks of this region (Table 
DR-1) has been published over the past twenty years. However, many of these 
data sets do not include a full complement of trace element analyses 
required to probe the nature of their mantle or crustal sources. In addition, 
they have been produced by different analytical methods using different 
standards and analytical proce- dures that have evolved over this time period. 
Nevertheless, the data are consistent enough to provide a broad overview 
and some first- order constraints and a summary of these data are shown in 
Figs. 4 to 7. For comparative purpose, we also show our data on these plots 

and we categorize and organize them and their description from the described 
paleogeographic zones. 

 
5. Results 

 
The complex tectonic evolution of this region has resulted in 

secondary processes, as evidenced by the high loss on ignition (LOI) in several 
samples, which have affected the primary concentrations of many major and 
several trace elements. This alteration has obscured many of the primary 
igneous trends. As a result, we describe the major element abundances only in 
very general terms, and we focus on the abundances of trace elements such as 
high field strength (HFS) and rare earth (REE) elements, which are both 
considered to be “relatively” immobile during hydrous alteration (e.g. 
Winchester and Floyd, 1977; Pearce, 1996). 

 



 

 
 

Fig. 6. Ti/Y vs Nb/Y discrimination diagram (after Pearce, 1982, 1996) for mafic rocks (A) 
Cantabrian zone, (B) Ophiolitic units, (C) West Asturian Leonese Zone (WALZ), (D) Basal Unit. Open 
symbols = published data; filled symbols, our data. CIZ and WALZ are not included in this plot 
because of the lack of mafic rocks in these zones. 

 
 
 
 

The Cantabrian Zone volcanic rocks are bimodal, with a gap in SiO2 from 
about 52 to 60 wt.%. Both mafic and intermediate rocks have a wide range in 
FeOt/MgO which may, in part, be due to secondary alteration. Felsic rocks 
have FeOt and FeOt/MgO that straddle the calc- alkalic tholeiitic boundary (Fig. 
4A). The Zr/Ti vs. Nb/Y plot (Fig. 5) is a proxy for the total alkalies vs. silica 
classification diagram, where Nb/Y measures the degree of alkalinity and Zr/Ti is 
an index of fractionation (Winchester and Floyd, 1977; Pearce, 1996). 
Cantabrian zone mafic volcanic rocks are characterized by high Nb/Y (Fig. 
5A), varying from alkalic basalt-foidite to tephri-phonolite in composition. 
The alkalic affinity of the mafic rocks is also indicated on the Ti/Y vs Nb/Y 
plot (Fig. 6A) whereas the high Zr/Y, Ti and Zr are typical of within plate 
volcanic rocks (Fig. 7A). 

The  CIZ  and  the  Galicia  Schistose  Zone  are  dominated  by 

 
basalts (Figs. 5B, 6B) and the high Zr/Y is typical of within plate basalts 
(Fig. 7B). Mafic rocks from the ophiolite bodies also have a wide range 
in FeOt/MgO (Fig. 4E) and appear to be composed of two different 
suites. Although they contain similar Zr/Ti, one suite has very low Nb/ 
Y (b 0.02) and a relatively narrow range in Ti/Y (c. 150–350) and is 
subalkalic (Figs. 5C, 6C). The other suite has much higher Nb/Y (0.3 to 
2.0) and a wider range in Ti/Y (c. 150–1000) and their compositions 
straddle the subalkalic–transitional–alkalic boundaries. These differ- 
ences are highlighted on the Zr/Y vs Zr diagram (after Pearce and Norry, 
1979) in which the subalkalic rocks plot in the island arc basalt field, 
whereas subalkalic–alkalic rocks plot as within plate basalts (Fig. 7B). 
The subalkalic rocks have characteristics similar to the coeval Vila de 
Cruces ophiolite. Recent data from this ophiolite indicate that its 
geochemical signature is typical of island arc tholeiite and the ophiolite is 
interpreted to have been generated in a back arc basin (Arenas et al., 
2007a). 

 
6. Mafic rocks 

 
Mafic rocks analyzed in this study facilitate a comparison between 

the Cantabrian Zone (ORV 1, 2), the Central Iberian Zone (ORV 7) of the 
inner Gondwanan margin and mafic rocks of the Basal Units (the 
probable Gondwanan basement; ORV 8, 10) and the ophiolites from 
the Galicia Tras-os-Montes (ORV 14, 15) of the outer margin (Fig. 3). 
ORV 1, 2 are Early Ordovician basalts characterized by high FeOt, TiO2, 
and FeOt/MgO. On Zr–Ti–Y discrimination diagrams, they plot in the 
within plate field, and according to the high Nb/Y, they are clearly 
alkalic (Figs. 4 to 7). Thus their chemistry is broadly similar to 
previously published data from the Cantabrian Zone. On Ta/Yb vs Ce/ 
Yb and Th/Yb diagrams, they plot just above the enriched mantle array 
suggesting only minor crustal contamination (Fig. 8A,B). This same 
characteristic is also evident on the Th–Hf–Ta diagram (Fig. 8C) and is 
consistent with their high Nb/Y (1.25 and 1.3, respectively). They 
display strong LREE enrichment, with high La/Ybn ∼ 20–30, which, 
together with the high Nb/Y, suggests derivation from a garnet 
lherzolite mantle (Fig. 9A). Trace element abundances are more 
enriched than typical EMORB, and spidergram plots show that they 
most closely resemble basalts derived from an OIB-type mantle source 
(Fig. 9B). The basalts display no Nb–Ta anomaly (Fig. 10), consistent 
with other evidence for lack of contamination either by crustal or 
subduction components. These characteristics are broadly similar to 
coeval rocks in the Ossa Morena Zone described by Sánchez-García 
et al. (2003). ORV 1 and 2 have very similar Sm–Nd isotopic 
characteristics with εNd (t = 500) values of + 1.0 and + 1.1, respectively 
and TDM values of ca. 0.93 to 0.99 Ga (Fig. 11A, Table 1). The lack of 
trace element evidence for crustal contamination suggests that these 
values reflect derivation from a mantle source that was enriched in 
LREE and Nd relative to Sm at about 1.0 Ga. Similar trace element and 
Sm–Nd isotopic characteristics have been identified in other regions 
that were located along the northern margin of Gondwana at that 
time (e.g. Acatlan Complex of Oaxaquia, Mexico and the Antigonish 
Highlands of Nova Scotia; Murphy and Dostal, 2007, 2008). 

Sample ORV 7 is a rare example of a mafic volcanic rock within CIZ 
(Ollo de Sapo zone). This sample has significantly lower TiO2, Zr, P2O5, 
Nb/Y and higher Zr/P2O5 than the Cantabrian Zone mafic rocks, features 
consistent with subalkalic tholeiitic rocks. However, on Ti–Y–Zr 
diagrams (Figs. 6, 7), the sample plots in the arc field and the influence of 
a subduction or crustal component is also indicated on Th–Hf–Ta and 
Ta/Yb vs Ce/Yb and Th/Yb plots. ORV 7 has LREE enrichment, a 
intermediate to felsic rocks. Many of the samples have FeOt/MgO 
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values similar to those of the average continental crust but on average 
are richer in SiO2 (Fig. 4B, C). The majority of the samples plot in the calk-
alkalic field of Miyashiro (1974). 

Basalts from the WALZ show a wide range in FeOt/MgO (Fig. 4D) and 
similar ranges in Nb/Y and Zr/Ti to the basalts of the Cantabrian Zone (Fig. 
5B). Their high Nb/Y is typical of transitional to alkalic 

On spidergrams (Fig. 9A, B), ORV 7 has a pronounced Nb–Ta anomaly,  
typical of subduction or crustal influence.  

The difference in the geochemical and isotopic signatures of 
mafic rocks (Gondwanan basement and ophiolite) that were located 
along the outer margin of Gondwana apparent from the analysis 
of the previously published data (Figs. 5 to 7) is clearly visible in 
our data. 



 
 

 
 

Fig. 7. Zr/Y vs Zr discrimination diagram (after Pearce and Norry, 1979) for mafic rocks (A) Cantabrian zone, (B) Ophiolitic units, (C) West Asturian Leonese Zone (WALZ), (D) basal unit. Open symbols = published 
data; filled symbols, our data. CIZ and WALZ are not included in this plot because of the lack of mafic rocks in these zones. 

 
 

Gondwanan basement (ORV 8 and 10) and ophiolitic (ORV 14 and 15) mafic 
rocks plot in two distinct fields both of which are different from mafic rocks 
from the inner margin. Sample ORV 10 has low TiO2, Zr, and P2O5, elevated 
Zr/P2O5, and low Nb/Y, features consistent with relatively undifferentiated 
subalkalic tholeiitic rocks.  On Ti–Y–Zr plots, ORV-10 plots in the field of 
overlap between MORB and WPB (Figs. 6, 7). ORV 8 is intermediate in 
composition with SiO2 of 64.1 wt.%. Trace element plots such as Ta/Yb vs Ce/Yb and 
Th/Yb and Th–Hf–Ta show that these rocks are probably generated by partial 
melting of a depleted mantle with only minor influence of either subduction or  
crustal components (Fig. 8A–C). ORV 8 and 10 have flat NMORB-like profiles 
with slight LREE depletion (Fig. 10A,B) and ORV-8 has a pronounced Eu anomaly. 
The negative Nb anomaly exhibited by ORV-8 relative to NMORB (Fig. 
10B) identifies contamination by a subduction zone component that is not 
apparent on the other plots. Both samples have a Sm/Nd ratio similar to CHUR, 
are characterized by high 147Sm/144Nd (0.196 and 0.205, respectively) and by εNd 

values are similar to those of depleted mantle suggesting that both samples were 
derived from a juvenile mantle source. Although the high 147Sm/144Nd 
precludes a meaningful calculation of TDM, the similarity of the εNd values to that 
of depleted mantle suggests that the TDM age is similar to its crystallization age. The 
isotopic data also indicate that the contamination by subduction exhibited by ORV-8 
probably occurred at about the same time as magma generation, consistent with 
published geochemical data that many of the ophiolites were formed in a supra-
subduction zone environment (e.g. Arenas et al., 2007a, and references therein). 

Samples ORV 14 and 15 are from the lower ophiolite unit (Moeche Unit, 
equivalent to the better known Vila de Cruces Unit) which is 

interpreted to be a vestige of Ordovician oceanic crust from the Rheic Ocean 
(Arenas et al., 2007a,b). Trace element diagrams (Fig. 8A–C) indicate that 
these rocks contain high Ta/Yb and Ta/Hf that are typical of an enriched mantle. 
However, the rocks also do not plot along the mantle array indicating that they 
have been contaminated by either a subduction or crustal component. ORV 
14 shows moderate LREE enrichment (La/Ybn  ∼ 6.5) whereas ORV 15 has 
lower ΣREE, more subdued LREE enrichment (La/Ybn ∼ 2.5) and flat  HREE  
Gd/Lun ∼ 0.8–1.2 (Fig. 10A). Trace element abundances most closely resemble 
basalts derived from an enriched mantle source although Th enrichment and 
Nb depletion are consistent with other plots suggesting contamina- tion. (Fig. 
10C). Their Sm–Nd characteristics are similar to one another, although these 
characteristics are very different from ORV 8 and 10. 
They have much lower εNd (t = 500) values of + 2.2 and + 2.6, much lower 
147Sm/144Nd (0.141 and 0.157, respectively) and TDM values of ca.0.96 to 1.1 Ga. 
Given the evidence for contamination, the geological meaning of these TDM 
ages is uncertain. Although the data plot close to calculated assimilation–
fractional crystallization  curves between depleted mantle and typical 
upper crust (Fig. 11B and C), their apparent similarity with crustal values 
would imply a high percentage of assimilation that is not evident in other 
geochemical features. Alternatively, these values could reflect a combination 
of influences including derivation from an enriched subcontinental 
lithospheric mantle (similar to the source of ORV 1 and 2) and 
contamination either by Mesoproterozoic crust or by a crust enriched in LIL by 
fluids derived from a subduction zone. 

Taken together, these data indicate mafic complexes located along the  
Gondwanan  margin  in  Ordovician  times  are  isotopically 



 
 

 
 

Fig. 8. Discrimination plots to identify subduction or crustal components: (A) Th/Yb and (B) Ce/Yb vs Ta/Yb (after Pearce, 1982), (C) Hf-Ta-Th (after Wood et al., 1979). In Fig. 8C: A = NMORB; B = 
EMORB; C = alkaline within plate basalt; D1 = Island arc tholeiite; D2 = calc-alkaline basalt. PM = primoidial mantle; MM = NMORB mantle source; UC = Upper crust; LC = Lower Crust; SZ = Subduction 
Component. 

 
 

heterogeneous. Gondwanan basement complexes have compositions typical 
of juvenile depleted mantle at 480 Ma that was affected by coeval 
subduction. Ophiolite samples, on the other hand, have compositions typical 
of derivation from an enriched mantle. 

 
7. Felsic rocks 

 
A geochemical comparison between the felsic rocks of various 

tectonostratigraphic zones offers the opportunity to characterize the sources of 
crustally-derived melts along this portion of the Gondwa- nan margin. Most 
felsic rocks from the Cantabrian Zone (3, 30, 32), the SGTMD (12, 13, 26) 
and CIZ (27, 28, 29, 31) display very similar major element chemistry and are 
characterized by FeO and FeO/MgO that plot either in the calc-alkalic field or 
straddle the calc-alkalic- tholeiitic boundary line (Fig. 3). There is no 
obvious geochemical or isotopic distinction between the felsic rocks of 
these various tectonostratigraphic zones, and for simplicity of presentation, 
they are grouped together on geochemical and isotopic plots. They have a 
wide range in Nb/Y and Zr/Ti ratios, and straddle intermediate to felsic 
compositions and the alkalic-subalkalic boundary (Figs. 4–6). Other than 
ORV 30 and 33, which have elevated Nb, Y, Ta and Yb values that are 
typical of within plate granites, most samples plot in the Volcanic Arc Granite 
field (Fig. 12A,B), suggesting either an origin in an ensialic arc, or recycling of 
older crust that was itself formed in an arc environment. 

With the exception of ORV 33, the felsic samples display moderate 
LREE enrichment (Fig. 13A), a moderate to pronounced Eu anomaly (Eu⁎ 
∼ 0.1 to 0.6) and flat HREE profiles (Gd/YbnYbn 

∼ 1.5). On an NMORB-normalized plot, all rocks display a pronounced 
negative Nb anomaly (Fig. 13B). Such REE and spidergram profiles are typical of 
crustal melts that have undergone plagioclase fractionation. The overall 
compositional similarity to upper continental crustal (UCC) rocks is shown 
on the UCC normalized plot (Fig. 13C). Sample ORV 33, a trachyte, has very 
high ΣREE, La/Ybn of 12.5, and Gd/ Ybn = 3.5 and high Nb and Ta (Figs. 12, 
13) and REE profiles typical of felsic rocks generated by fractional 
crystallization from a more mafic magma. 

Geochemical analyses of CIZ (Montero et al., 2007) shows very similar 
characteristics to the dominant features described above. These rocks have 
Nb–Ta–Yb and REE abundances that are indis- tinguishable from those 
shown in Figs. 12 and 13. 

Sm–Nd analyses of the felsic rocks display more negative εNd (t = 500) 
values than the mafic rocks (− 1.1 to − 5.6). Plots of εNd versus normalized Nb/La 
and 147Sm/144Nd (Fig. 11B,C) show that the felsic 
rocks have isotopic and trace element characteristics that are distinct from the 
mafic rocks and support other geochemical evidence that they are not 
derived from the mafic rocks by fractionation or assi- milation fractionation 
mechanisms. Although one sample (ORV 32) has similar TDM (1.1 Ga) to 
spatially-related mafic rocks (ORV 1 and 2) in the Cantabrian Zone (Figs. 2 and 
3), it has significantly lower εNd. 



 
 

 
 

Fig. 9. REE and trace element values of Cantabrian Zone mafic rocks normalized to 
(A) chondrite, (B) Ocean Island Basalts. Normalizing values from Sun and McDonough (1989). 

 
 
 
 

Although a lithospheric mantle component cannot be ruled out for this 
sample, these characteristics together with their overall geo- chemical 
similarity with the composition of the upper continental crust (Fig. 13C) 
indicate that the sample is dominated by a component derived from a source 
rock with lower Sm/Nd values that are more typical of crustal rocks. The 
low εNd and the high TDM of the other felsic samples ranges from 1.43 to 1.61 
Ga suggesting that these rocks are crustal melts primarily derived from a 
Mesoproterozoic crustal basement. Therefore, the apparent arc affinity evident 
in Fig. 12 could have been inherited from an older continental crust that was 
itself formed in an arc environment. In comparison to typical Avalonian 
crust, the εNd values are lower and the TDM ages are older. 

Comparable Sm–Nd isotopic results have been obtained from the 
CIZ by Castro et al. (1999, 2003) and Montero et al. (2007). These samples 
have εNd (t = 500) ranging from − 2.4 to − 5.0, and eleven of twelve samples 
have TDM ranging from 1.2 to 1.8 Ga, and the remaining sample has a TDM of 
2.2 Ga. 

 
8. Summary and discussion 

 
Geochemical and isotopic analyses indicate that Ordovician mafic rocks in 

NW Iberia are derived from variable mantle sources in- cluding ophiolites 
with mafic volcanics derived from a subcontinental lithospheric mantle and a 
juvenile mantle basement that was contaminated by a subduction 
component at the time of magma generation. This mixed signature is 
consistent with a transitional oceanic-continental crustal setting proximal to the 
northern Gondwanan margin. 

 
Some of the analyzed samples are typical of rift-related basalts derived 

from garnet lherzolite mantle, with little or no chemical modification due 
to subduction or crustal contamination. These features are compatible with 
their proposed genetic relationship to the opening of the Rheic Ocean 
(Martínez-Catalán et al., 1997; van Staal et al., 1998; Murphy et al., 2006; 
Arenas et al., 2007a,b). The calculated TDM ages, however, are significantly 
older than that of the Late Cambrian–Early Ordovician opening of the Rheic 
(or Iapetus) Oceans. These ages are interpreted to reflect derivation from  a 
subcontinental lithospheric mantle that was heterogeneously meta- somatized, 
probably at ca. 1.0 to 1.1 Ga. Such features have also been interpreted in the 
mantle lithosphere beneath Avalonia, the terrane 

 
 
 

 
 

Fig. 10. REE and trace element values of ophiolitic rocks normalized to (A) chondrite. ORV 8 
and 10 are shown normalized to NMORB (B), whereas ORV 14 and 15 are show normalized to 
EMORB (C). Normalizing values from Sun and McDonough (1989). 



 
 

 
 

Fig. 11. Sm–Nd isotopic data for representative Ordovician volcanic rocks of northwest Iberia (A) εNd versus time plot. Depleted-mantle model ages are calculated using a modern depleted-mantle 
composition of 143Nd/144Nd = 0.513114 and a 147Sm/l44Nd = 0.213 (see DePaolo, 1988). The field for Mesoproterozoic source rocks is compiled from the data of Patchett and Ruiz (1989), Dickin et al. 
(1990), Daly and McLelland (1991), Dickin (2000). The field for Avalonian felsic rocks is from Murphy et al. (2000). (B) εNd versus Nb/Lacn (chondrite-normalized) and (C) 147Sm/l44Nd basalts. For means 
of comparison εNd data for all suites are shown at t = 500 Ma. Arrows indicate trends for pure fractional crystallization: long arrows for hornblende, clinopyroxene, apatite, and olivine; short arrow for K-
feldspar. Curves indicate assimilation–fractional crystallization (AFC; DePaolo, 1988) trends for 
crust (C) assimilated by basalt magma (B). Values of r (mass assimilated/mass crystallized) indicated adjacent to curves. For curves with r N 1, curves extend to values of F (mass magma/mass magma 
initial) ∼ 4, whereas for curves where r b 1, curves end at F ∼ 0.1. Data for CIZ from Montero et al. (2007). 



 

 
 

Nd (ppm) Sm (ppm) 147Sm/144Nd 143Nd/144Nd 2σ ε(0) ε(500) T(DM) 

Cantabrian Zone 

Felsic 

t 

 
Table 1 
Sm–Nd Isotopic data for Ordovician igneous rocks formed along the Iberian passive margin of Gondwana 

 
 

ORV 1 39.65 7.87 0.1200 0.512440 5 − 3.9 1.0 986 Mafic 
ORV 2 46.40 9.04 0.1177 0.51 4 − 3.9 1.1 934 Mafic 

 
ORV 3 18.43 3.57 0.1170 0.51 7 − 10.3 − 5.2 1433 Rhyolite 
ORV 13 21.22 4.67 0.1329 0.51 5 − 9.2 − 5.1 1609 Rhyolite 
ORV 26 29.82 6.41 0.1300 0.51 4 − 7.9 − 3.7 1436 Rhyolite 
ORV 32 56.12 11.35 0.1223 0.51 5 − 5.9 − 1.1 1140 Rhyolite 

Gondwanan basement 
ORV 8 8.29 2.82 0.21 0.51 4 6.9 6.4 – Amphibolite 
ORV 10 11.96 3.88 0.2 0.51 4 8.7 8.7 – Mafic 

Ophiolite          ORV 14 18.8 4.4 0.14 0.51 5 − 0.9 2.6 957 Ophiolite 
ORV 15 5.210 1.350 0.16 0.51 5 − 0.3 2.2 1128 Ophiolite 

Analyses performed at the Atlantic Universities Regional Isotopic Facility, Memorial University of Newfoundland. Errors on 143Nd/144Nd are generally less than 0.002%, and on 147Sm/ 144Nd, less than 0.1. The 
εNd  values are calculated using a 147Sm/144Nd = 0.1967 and 143Nd/144Nd = 0.512638 values for the present day chondrite uniform reservoir (CHUR) and for t = 500 Ma. 147Sm decay constant is 6.54 10− 12 y− 1 

(Steiger and Jäger, 1977), TDM were calculated with respect to the De Paolo mantle model (DePaolo, 1981, 1988). The TDM age for ORV 8 and ORV 10 was not calculated because of the high 147Sm/144Nd, but 
they are clearly juvenile. For data on the CIZ, see Castro et al. (1999, 2003) and Montero et al. (2007). 

 
 

which probably migrated away from the Gondwanan margin when the Rheic 
Ocean formed and beneath Oaxaquia which remained along the Gondwanan 
margin (Murphy et al., 2006; Murphy and Dostal, 2007). The data are also 
compatible with a mantle source similar to that which yielded the 
Mesoproterozoic (1.159 ± 39 Ma, Purrido Unit) metagabbro exposed in NW 
Iberia (Sánchez-Martínez et al., 2006). If 

 
 
 

 
 

Fig. 12. (A) Nb–Yand (B) Ta–Tb relationships for the felsic rocks (after Pearce et al., 1984). 

so, the younger (e.g. 0.95 Ga) TDM ages of some of the mafic samples can be 
attributed to a minor juvenile component. 

Some of the felsic rocks are alkalic, and are probably related to the within 
plate basalts by fractionation. The remaining felsic rocks, with flat HREE, 
negative εNd isotopic values and TDM ages between 1.1 and 
1.6  Ga  are  probably  crustal  melts,  suggesting  derivation  from 
Mesoproterozoic crust. These TDM ages are older than those of Avalonian 
lower crust (e.g. Murphy et al., 2000). Sánchez-Martínez et al. (2006) 
identified a 1.6 Ga inherited component in Purrido amphibolite, and it is 
possible that these model ages reflect that Mesoproterozoic component. 
Mesoproterozoic basement is also atypical of the West African Craton and 
is more typical of a South American affinity. The presence of a 
Mesoproterozoic lower crustal basement in NW Iberia is compatible with 
the interpretation of Gutiérrez-Alonso et al. (2005) for detrital mica data 
from Early Paleozoic platformal rocks in the NW Iberia which indicate 
proximity to Mesoproterozoic South American (Rio Negro) basement. 
These authors attribute the presence of Mesoproterozoic basement in this 
region to strike-slip transport along the northern Gondwanan margin of a sliver 
of South American crust into the West African realm during the Ediacarin-Early 
Cambrian (Fernández-Suárez et al., 2000, 2002a,b; Gutiérrez-Alonso et al., 2003, 
2005). 

Taken together, these data suggest that the lower crust in NW Iberia 
included a significant Mesoproterozoic (ca. 1.4–1.6 Ga) compo- nent which 
overlay a ca. 1.0–1.1 Ga subcontinental mantle lithosphere in Early Ordovician 
times. This geometry had a significant influence on the geochemistry of the 
basalts that erupted during the opening of the Rheic Ocean. The data also 
indicate the juxtaposition of older crust above younger mantle lithosphere by 
Late Cambrian–Early Ordovician times. The origin of this relationship 
requires further study. It may reflect an allochthonous relationship between the 
Rio Negro crust and the underlying mantle that was generated before, 
during or final delivery of the Rio Negro crust into the West African realm. 
Alternatively, it may reflect a delamination event between crust and mantle in 
the Neoproterozoic, i.e. prior to transportation from the South American to 
the West African realm. 
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