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1 Introduction

The transverse momentum dependent (TMD) distributions are fundamental non-

perturbative objects that appear in many relevant processes at LHC, EIC, and e+e−

colliders, like Vector Boson Production, Higgs production, Semi-Inclusive Deep Inelastic

Scattering, e+e− → 2 hadrons. The factorization theorems which establish the definitions

of TMD distributions in QCD and/or in effective field theory have been formulated recently

in [1–4], using different regularization schemes.

The perturbative properties of unpolarized TMDs, such as evolution and operator

product expansion (OPE) in the regime of small transverse momentum separation, have

been deduced by several groups using different frameworks (see e.g. [1, 2, 4–9]). The explicit

direct calculation of the TMD evolution function D at NNLO has been provided in [10, 11]

and recently it was obtained at N3LO [12]. Therefore, nowadays the perturbative knowledge

of the unpolarized TMDs parton distribution functions (PDFs) and fragmentation functions

(FFs) is comprehensive, thanks to the results obtained by various groups [11, 13–19].

On the contrary, the study of the non-perturbative properties of TMDs has been

based mainly on phenomenological arguments which combine the perturbative information

on TMDs with their perturbatively incalculable part [4, 8, 20–25]. These works have lead

to different forms of implementation of TMDs which in general are not easy to compare.

For instance, on one hand, the well-known phenomenological considerations of Drell-Yan
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by [26] and [27] (the so-called BLNY model) implement an ansatz within the standard

CSS approach with b∗-prescription in the impact parameter space (or b-space). They

introduce a set of non-perturbative parameters g1,2,3 and all these parameters (including

the definition of b∗ prescription) are fundamental for these fits. The same model is also

the core of the RESBOS program package [28] which is widely used in applications. On

another hand, the implementation of TMDPDFs by [29] does not use b∗-prescription. They

have found that part of the non-perturbative corrections (essentially to the TMD evolution

kernel) are negligible. They were able to describe the same data with a different shape

of non-perturbative input parameterized by two parameters λ1,2. Fits by other groups

that limited themselves to the analysis of Vector Boson Production and Higgs production

are less sensitive to the non-perturbative input (although it is still necessary) [30, 31].

Additional problems arise in the consideration of TMDFFs which are known to have very

different and/or incomparable (in comparison to TMDPDFs) non-perturbative input.

This work is devoted to the study of the leading power corrections to TMD distribu-

tions. With this aim, we perform an analysis of the leading renormalon structure of TMD

distributions. A renormalon analysis of the perturbative series gives an important check

of theoretical consistency for any phenomenological ansatz, although it cannot give too

stringent restrictions on the fitting parameters. The study of renormalon poles allows to

understand the asymptotic behavior of the perturbative series and to deduce the form of

the leading non-perturbative corrections [32–35].

An explicit analysis of the renormalon structure for TMDs has never been done to our

best knowledge, although assumptions on its structure were used even before the actual

field-theoretical definition of TMDs. We refer here, for instance, to the seminal work of [33]

about the Sudakov factor in differential cross-section which is usually referred to justify

a Gaussian behavior for the non-perturbative part of the TMD evolution kernel [25]. In

order to describe this effect in the modern TMD framework, we recall that the definition

of TMDs requires the combination of the Soft Function matrix element with the transverse

momentum dependent collinear function. As we show in this work, the renormalon diver-

gences arise in the perturbative consideration of both of these functions. These renormalon

contributions have different physical meaning and should be treated independently. Firstly,

the renormalon divergence of the soft factor results to a power correction within the TMD

evolution kernel, which are strictly universal for any TMD due to the universality of the soft

factor itself. The leading power correction that we derive here is quadratic. The presence

of these corrections has been shown in [36] by the analysis of the corrections to conformal

anomaly. Secondly, the renormalon divergences naturally arise within the coefficients of

the small-b OPE. A study of those contributions gives access to the next twist corrections

of small-b matching and specifies the shape and the general scaling of TMD.

The paper is built as the following. We provide the necessary concepts and definitions

in section 2. In section 3 we perform the calculation of various TMD constituents (such

as anomalous dimensions and coefficient functions) within the large-β0 approximation.

In the end of this section we provide a collection of the main lessons, that follows from

our results. The impact of the renormalon divergences on the perturbative series and

renormalon subtracted series are studied in section 4. One of the main outcomes of the

study, namely a consistent ansatz for TMDs is presented in section (4.2).
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2 Notation and basic concepts

Throughout the paper we follow the notation for TMDs and corresponding functions in-

troduced in [14]. The quark TMDPDFs and TMDFFs are given by the following matrix

elements

Fq←N (x, b; ζ, µ) =
Zq(ζ, µ)Rq(ζ, µ)

2

×
∑
X

∫
dξ−

2π
e−ixp

+ξ−〈N |
{
T
[
q̄i W̃

T
n

]
a

(
ξ

2

)
|X〉γ+

ij 〈X|T̄
[
W̃ T †
n qj

]
a

(
−ξ

2

)}
|N〉,

∆q→N (z, b) =
Zq(ζ, µ)Rq(ζ, µ)

4zNc
(2.1)

×
∑
X

∫
dξ−

2π
e−ip

+ξ−/z〈0|T
[
W̃ T †
n qj

]
a

(
ξ

2

)
|X,N〉γ+

ij 〈X,N |T̄
[
q̄i W̃

T
n

]
a

(
−ξ

2

)
|0〉,

where Rq and Zq are rapidity and ultraviolet renormalization constants, q are quark fields

and W T are Wilson lines, and ξ = {0+, ξ−, b}. The TMDs depend on the Bjorken variables

(x for TMDPDFs and z for TMDFFs), the impact parameter b and the factorization scales

ζ and µ. The considerations of the TMDPDF and TMDFF are similar in many aspects.

Therefore, in order to keep the description transparent we mostly concentrate on the case

of the TMDPDFs, while the results for TMDFFs are presented without derivation.

The dependence on the factorization scales is given by the evolution equations, which

are the same for TMDPDF and TMDFF, namely

d

dlnµ2
Fq←N (x, b; ζ, µ) =

γq(µ, ζ)

2
Fq←N (x, b; ζ, µ), (2.2)

d

dlnζ
Fq←N (x, b; ζ, µ) = −Dq(µ, b)Fq←N (x, b; ζ, µ). (2.3)

Through the article we consider only the quark TMDs, therefore in the following we sup-

press the subscript q on the anomalous dimensions. The values for both anomalous dimen-

sions can be deduced from the renormalization constants [14]. Also γ and D are related to

each other by the cross-derivatives

dD(µ, bT )

dlnµ2
= −1

2

dγ(µ, ζ)

dlnζ
=

Γcusp
2

, (2.4)

where Γcusp is the honored cusp anomalous dimension.

The solution of the evolution equations eqs. (2.2), (2.3) is

F (x, b; ζf , µf ) = R(b; ζf , µf , ζi, µi)F (x, b; ζi, µi), (2.5)

where R is the evolution kernel,

R(b; ζf , µf , ζi, µi) = exp

{∫ µf

µi

dµ

µ
γ

(
αs(µ), ln

ζf
µ2

)}(
ζf
ζi

)−D(µi,b)

. (2.6)

The final values of scaling parameters is dictated by the kinematic of the TMD cross-

section. The variable ζf ∼ Q2 (with Q being a typical hard scale) is the scale of the
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rapidity factorization, and the variable µf is the scale of hard subprocess factorization. The

intriguing point is that the evolution kernel R is not entirely perturbative, but contains a

non-perturbative part. An estimate of the non-perturbative contribution to R is necessary

in order to obtain the cross section in the momentum space where it is usually measured.

The non-perturbative part of the evolution kernel is encoded in the D-function which

can be obtained from the rapidity renormalization constant Rq. The definition of the

rapidity renormalization constant differs from scheme to scheme. In this work we use the

δ-regularization scheme defined in [10, 14]. In this scheme, the δ-regularization is used to

regularize the rapidity divergences, and the dimensional regularization regularizes the rest

of divergences. Such a configuration appears to be very effective for the TMD calculus.

In particularly, the rapidity renormalization factor Rq is expressed via the soft factor S as

Rq = S−1/2 [14]. In the coordinate space the soft factor is given by the following matrix

element

S̃(bT ) =
Trc
Nc
〈0| T

[
ST †n S̃Tn̄

]
(0+, 0−, b)T̄

[
S̃T †n̄ STn

]
(0) |0〉 , (2.7)

where we explicitly denote the ordering of operators and ST are Wilson lines, as defined

in [10]. Considering the relation between renormalization constants one can show [10], that

D =
1

2

dlnS̃

dlδ

∣∣∣∣∣
ε−finite

(2.8)

where lδ = ln(µ2/|δδδ|). Eq. (2.8) can be used as the formal definition of the TMD evolution

function D. In this way, a non-perturbative calculation of the SF gives access to the

non-perturbative structure of D. The soft function is perturbatively universal for both

Semi Inclusive Deep Inelastic Scattering and Drell-Yan type processes. Therefore, the

perturbative part of the anomalous dimension D is universal for TMDPDF and TMDFF.

One can also expect its universality in the non-perturbative regime.

The TMDs are entirely non-perturbative functions. They cannot be evaluated in per-

turbative QCD, due to the non-perturbative origin of hadron states. The main subject of

the paper is the dependence of TMDs on the parameter b which is generically unrestricted

since it is a variable of Fourier transformation. However it is interesting and numerically

important to consider the range of small b (here and later b =
√
b2). In this range, the

TMDs can be matched onto corresponding integrated parton distributions. At the operator

level, the small-b matching is given by the leading term of the small-b OPE. The small-b

OPE is a formal operator relation, that relates operators with both light-like and space-like

field separation to operators with only light-like field separation. It reads

O(b) =
∑
n

Cn(b, µb)⊗On(µb), (2.9)

where Cn are Wilson coefficient functions, the µb is the scale of small-b singularities fac-

torization or the OPE matching scale (for simplicity we omit in eq. (2.9) other matching

scales included in the definitions of each component of this equation). Generally, the oper-

ators On are all possible operators with proper quantum numbers and can be organized for
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instance according to a power expansion, i.e. twists. In this case, the matching coefficients

behave as

Cn(b, µb) ∼
(
b

B

)n
f(ln(b2µ2

b)), (2.10)

where f is some function. The value of the parameter B is unknown, and its origin is

entirely non-perturbative. In other words, the unknown scale B represents some charac-

teristic transverse size of interactions inside a hadron B ' O(1 GeV). In practice it is

reasonable to consider only the leading term (n = 0) of eq. (2.9) for b � B. In this case,

f is an integrated parton distribution (or fragmentation function), and coefficient function

is called the matching coefficient. So far, the power suppressed terms in eq. (2.9) has been

not considered, to our best knowledge.

For completeness, we recall here the renormalization group properties of the TMD

Wilson coefficients that we use in the following sections. The evolution equations for the

matching coefficients (at µb = µ) with respect to ζ is

d

dlnζ
Cf←f ′(x, bT ;µ, ζ) = −Df (µ, bT )Cf←f ′(x, bT ;µ, ζ), (2.11)

where f = q, g species, Cf←f ′ are the matching coefficients on PDFs. It is practically

convenient to extract the ζ-dependence from the matching coefficient. We introduce the

notation

Cf←f ′(x, bT ;µ, ζ) = exp
(
−Df (µ, bT )L√ζ

)
Ĉf←f ′(x,Lµ). (2.12)

Here and further we use the following notation for logarithms

LX = ln

(
X2b2

4e−2γE

)
, lX = ln

(
µ2

X

)
. (2.13)

The ζ-free coefficient function Ĉ satisfies the following renormalization group equation

µ2 d

dµ2
Ĉf←f ′(x,Lµ) =

∑
r

∫ 1

x

dy

y
Ĉf←r

(
x

y
,Lµ

)
Kf
r←f ′(y,Lµ), (2.14)

where the kernel K is

Kf
r←f ′(x,Lµ) =

δrf ′δ(1− x)

2

(
ΓfcuspLµ − γ

f
V

)
− Pr←f ′(x),

and P (x) is the splitting function (DGLAP kernel). The matching coefficient for TMDFF

Cf→f ′ satisfies the same set of evolution equation with only substitution of PDF splitting

function P (x) by the FF ones, P(z)/z2 [14]. Using these equations one can find the expres-

sion for the logarithmic part of the matching coefficients at any given order, in terms of the

anomalous dimensions and the finite part of the coefficient functions. The expressions for

the anomalous dimensions, the recursive solution of the RGEs and the explicit expressions

for the coefficients C and C can be found, e.g. in [14].
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3 TMD in large-β0 approximation and renormalon divergences

The leading non-perturbative contribution to the perturbative series is commonly associ-

ated with renormalons. The renormalon contributions were intensively studied for various

matrix elements and in different regimes, for review see [37, 38]. A typical signature of

renormalons is the factorial divergence of the perturbative series. These divergences are

often discussed in terms of the corresponding singularities in the Borel plane.

The best representative and the only stable way to study the renormalon divergence

within perturbative QCD is the large-β0 approximation. The large-β0 expression can

be obtained from the large-Nf expression through the procedure of “naive Abelianiza-

tion” [39, 40]. In this section, we present the calculation of large-β0 correction to TMDs.

Since the technique of large-Nf calculus is well-known, we skip the detailed evaluation

(redirecting the reader to the related literature) and present only intermediate expressions.

3.1 The soft function in the large-β0 approximation

The soft function matrix elements is a key structure for the TMD construction and as such

it is a good starting point for the renormalon analysis. The large-β0 calculation of the soft

factor runs in parallel to the calculation of the integrated soft factor for Drell-Yan, which

is presented in [32] (see section 5.3). Here we present our results of the evaluation.

To begin with, we evaluate the large-Nf contribution to the soft factor, which is given

by the “bubble” resummed diagram, shown in figure 1.A. The expression for the (renor-

malized) diagram with n-bubble insertion is

SFn = −4CF

βf0

(
asβ

f
0

−ε

)n+1 n∑
k=0

n!

k!(n− k)!
(3.1)

(−1)k

n− k + 1
G(−ε,−(n+ 1− k)ε) (Lδ − ψ(−(n− k + 1)ε)− γE) ,

where βf0 = 4
3TrNf , as = g2/(4π)2, ε is the parameter of dimension regularization (d =

4− 2ε), δδδ = |2δ+δ−| with δ+(−) the being parameters of rapidity regularization for Wilson

lines pointing in n(n̄)-direction [14]. The function G is a standard function that appears

in the large-β0 calculation [32, 37, 39, 40], and is given by the expression

G(ε, s) = esγEBBB−sµ A
s/ε−1
−ε

Γ(1 + s)

Γ(1− s+ ε)
, (3.2)

with

Aε =
6Γ(1 + ε)Γ2(2− ε)

Γ(4− 2ε)
, BBBµ =

b2µ2

4e−2γE
.

Here, the Euler-Mascheroni constant is a result of the MS scheme. For n = 1, 2 this

expression agrees with the direct calculation of the soft factor in δ-regularization [10]. We

also introduce an additional function for the double-pole part

G̃(ε, s) = −G(ε, s)(ψ(s) + γE). (3.3)

– 6 –
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Figure 1. Diagrams contributing to the leading order of large-Nf limit. The diagram A is the

contribution to the soft factor. Diagrams B and C are contribution to the matching coefficient.

The counter term diagrams are not shown.

The functions G and G̃ have the following Taylor series

G(ε, s) =

∞∑
j=0

Gj(ε)s
j =

∞∑
j=0

sj
∞∑
k=0

g
[j]
k ε

k, (3.4)

G̃(ε, s) =
∞∑
j=0

G̃j(ε)s
j−1 =

∞∑
j=0

sj−1
∞∑
k=0

g̃
[j]
k ε

k. (3.5)

These expressions define the coefficients g
[j]
k and Gj . Note, that g

[0]
k = g̃

[0]
k and g

[1]
k = g̃

[1]
k .

The procedure of “naive Abelianization” consists in the replacement of Nf by the

corresponding β0 expression [39], i.e.

βf0 =
4

3
TrNf −→ −β0 = −11

3
CA +

4

3
TrNf . (3.6)

In this way, we obtain the large-β0 expression for the soft factor

SF = −
∞∑
n=0

4CF c
n+1
s

β0

[
(−1)nn!

(
LδδδGn+1(−ε) + G̃n+2(−ε)

)
(3.7)

+
(−1)n

n+ 1

(
−Lδδδ

G0(−ε)
εn+1

+
G̃0(−ε)
εn+2

(ψ(n+ 2) + γE)− G̃1(−ε)
εn+1

)]
,

where we have introduced the large-β0 coupling constant

cs = β0as > 0.

Note, that in eq. (3.7) the terms suppressed in ε are dropped.

Eq. (3.7) gives access to the anomalous dimension D, which we study in section 3.3,

and to the rapidity renormalization factor Rq. The factor Rq (we recall that it is equal to

Rq = S−1/2 in the δ-regularization [14]) from the perspective of the large-β0 approximation

has the same perturbative combinatorics as the one-loop-truncated pertrubation series. It

is given by

Rq = 1− SF

2
(3.8)

at δ− = ζ/p+ and SF given in eq. (3.7). This expression is used in the next section to

extract the large-β0 expression of the Wilson coefficients of small-b OPE.
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3.2 The TMD in the large-β0 approximation

To obtain the TMD matching coefficient one should evaluate the diagrams B and C, which

are shown in figure 1. The result for the sum of these diagrams and their Hermitian

conjugations is

Φq←q =
2CF

βf0

∞∑
n=0

(asβ
f
0 )n+1

(−ε)n+1

n∑
k=0

n!

k!(n− k)!

(−1)kG(−ε,−(n− k + 1)ε)

n− k + 1
(3.9)[

x̄x(n−k)ε(1− ε)(1 + (n− k)ε) + 2
x1+(n−k)ε

(1− x)+
− 2δ(x̄)ln

(
δ+

p+

)]
,

where we have used the same notation as in eq. (3.1) and x̄ = 1 − x. The last term in

square brackets represents the rapidity divergence which appears in the diagram C. For

n = 0, 1 this expression reproduces the result of explicit calculation made in [13].

Using eq. (3.8) and eq. (3.9) we can complete the result for the large-Nf expression of

the TMDPDF,

RqΦ = Φq←q −
SF

2
=

2CF

βf0

∞∑
n=0

(asβ
f
0 )n+1

(−ε)n+1

n∑
k=0

n!

k!(n− k)!

(−1)kG(−ε,−(n− k + 1)ε)

n− k + 1
(3.10)[

x̄x(n−k)ε(1−ε)(1+(n−k)ε) + 2
x1+(n−k)ε

(1− x)+
+ δ(x̄) (Lµ−lζ−ψ(−(n−k+1)ε)− γE)

]
.

Here, we observe the cancellation of the rapidity divergences that leaves the residual lζ
dependence.

In order to extract the matching coefficient of the TMDPDF onto the PDF one

has to proceed to the renormalization of eq. (3.10). This is greatly simplified in the δ-

regularization scheme, where all virtual graphs and integrated graphs are zero. The only

non-zero contribution is the UV counterterm which is a pure ε-singularity. The accounting

of this part eliminates terms singular in ε, leaving the finite part unchanged. The latter

provides the coefficient function. Performing the “naive Abelianization” as in eq. (3.6) we

obtain the large-β0 result

Cq←q =
2CF
β0

∞∑
n=0

cn+1
s

{[
x̄+ 2

x

(1− x)+

][
γn+1(x)

n+ 1
+ (−1)nn!g

[n+1]
0 [BBB√xµ]

]
(3.11)

+
x̄

n+ 1
(2γn(x) + γn−1(x))− x̄(−1)nn!g

[n]
0 [BBB√xµ]

+δ(x̄) (Lµ − lζ)

[
g

[0]
n+1

n+ 1
+ (−1)nn!g

[n+1]
0

]

+δ(x̄)

[
g̃

[0]
n+2

ψ(n+ 2) + γE
n+ 1

+
g̃

[1]
n+1

(n+ 1)
+ (−1)nn!g̃

[n+2]
0

]}
,

where BBB√xµ = xBBBµ, and

xεG0(ε) =

∞∑
k=0

γkε
k.
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The additional variable in the square brackets for the functions g indicates the modified

value of BBBµ to be substituted.

The calculation of TMDFFs matching coefficient proceeds in the same way as for

TMDPDFs. The result of the calculation is

z2Cq←q =
2CF
β0

∞∑
n=0

cn+1
s

{[
z̄ + 2

z

(1− z)+

][
γn+1(z−1)

n+ 1
+ (−1)nn!g

[n+1]
0 [BBBµ/

√
z]

]
(3.12)

+
z̄

n+ 1

(
2γn(z−1) + γn−1(z−1)

)
− z̄(−1)nn!g

[n]
0 [BBBµ/

√
z]

+δ(z̄) (Lµ − lζ)

[
g

[0]
n+1

n+ 1
+ (−1)nn!g

[n+1]
0

]

+δ(z̄)

[
g̃

[0]
n+2

ψ(n+ 2) + γE
n+ 1

+
g̃

[1]
n+1

(n+ 1)
+ (−1)nn!g̃

[n+2]
0

]

−
n+1∑
r=1

((
z̄ +

2z

1− z

)
γn−r+1(z) + z̄(2γn−r(z) + γn−r−1(z)

)
(−1)rlnr(z2)

(n+ 1)r!

}
.

One can see that the expression for TMDPDF eq. (3.11) is related to the first four lines

of the expression for TMDFF eq. (3.12) by the crossing relation x→ z−1. The last line of

eq. (3.12) is specific for TMDFF and it is an effect of the expansion of the normalization

factor z−2ε.

One can check that at n = 0, 1 the expressions (3.11) and (3.12) coincide with the one

calculated in [14].

3.3 The TMD anomalous dimensions at large-β0 and renormalon singularities

of D

In the articles [10, 14] it was shown that in the δ-regularization scheme the anomalous

dimension D can be obtained from the rapidity singular part of the soft factor as in (2.8).

Considering the eq. (3.7) we obtain the anomalous dimension D in the large-β0 approxi-

mation

D = −2CF
β0

∞∑
n=0

cn+1
s

(
(−1)nn!g

[n+1]
0 +

g
[0]
n+1

n+ 1

)
. (3.13)

The first term in the brackets of eq. (3.13) behaves ∼ n! at large n, and represents the

renormalon singularity.

At this point it is convenient to consider the Borel transformation of the result. We

define the Borel transformation of a perturbative series in the usual way

f(cs) =
∞∑
n=0

fnc
n+1
s =⇒ B[f ](u) =

∞∑
n=0

fn
un

n!
. (3.14)

A perturbative series is Borel summable if an integral

f̃ =

∫ ∞
0

due−u/csB[f ](u), (3.15)
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exists. Performing the Borel transformation on the D function and applying eq. (3.15),

we find

D = −2CF
β0

(∫ cs

0
dx
G(x, 0)− 1

x
−
∫ ∞

0
du
G(0,−u)− 1

u
e−u/cs

)
. (3.16)

The first term is analytical and reproduces the cusp-anomalous dimension at large-β0 [32]

Γcusp(cs) =
4CF cs
β0

Γ(4 + 2cs)

6Γ2(2 + cs)Γ(1 + cs)Γ(1− cs)
=

4CF cs
β0

G(cs, 0). (3.17)

The function which appears in the second term

G(0,−u) = BBBu
µe

( 5
3
−2γE)uΓ(1− u)

Γ(1 + u)
, (3.18)

contains a series of poles at u = 1, 2, . . . which correspond to infrared renormalons. One can

check explicitly that the relation eq. (2.4) holds for large-β0 expression, due to cancellation

of the renormalon divergences in the second term of eq. (3.16) between derivative of coupling

constant (in the Borel exponent) and derivative of BBBµ (in the function G(0,−u)).

There are multiple possibilities to define the sum eq. (3.13), e.g. one can slightly shift

the integration contour for eq. (3.16) into the complex plane. The difference between

integrals passing from the lower and upper sides of poles is called infrared (IR)-ambiguity

and is given by a (−π) times the residue at the pole. For the anomalous dimension D
it reads

δIR{D} = cb2Λ2, (3.19)

where

c =
πCF
2β0

e
5
3 ' 1.2. (3.20)

The IR-ambiguity represents the typical scale of the error for perturbative series.

The same conclusion, namely the presence of a b2-correction for D, was made in ref. [36]

using different argumentation. In ref. [36] the factorized cross-section has been considered

within the soft collinear effective field theory (SCET). It has been shown that the power

correction to the soft factor which arises in the next-to-leading term of large-Q2 OPE,

is proportional to the soft factor matrix element. Exponentiating the power correction

one obtains the same result as presented here. It is an expected agreement because the

renormalon calculation is equivalent to the calculation of the correction term of OPE.

The anomalous dimension γV can be extracted from the coefficient function eq. (3.11).

We consider the derivative of coefficient function at lζ = Lµ

µ2 d

dµ2
Ĉq←q(x,Lµ) =

∫ 1

x

dy

y
Ĉq→q

(
x

y
,Lµ

)(
1

2
(ΓcuspLµ − γV ) δ(ȳ)− Pq←q(y)

)
, (3.21)

where we have dropped the mixing among flavors. The DGLAP kernel at large-β0 is given

by the expression

Pq←q(x) =
2CF
β0

∞∑
n=0

cn+1
s

{
1 + x2

1− x
γn(x) + x̄(2γn−1(x) + γn−2(x))

}
+

. (3.22)
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Considering the derivative of eq. (3.11) and comparing right and left hand sides of eq. (3.21)

we obtain

γV = −4CF
β0

{
cs

(
ψ(1 + cs) + 2γE +

3− c2
s

(1 + cs)(2 + cs)

)
G(cs, 0) (3.23)

+ln (G(cs, 0)Γ(1 + cs))G(cs, 0) +

∫ 1

0

G(xcs, 0)−G(cs, 0)

1− x
dx

}
.

This expression contains no singularity, and hence it is renormalon-free, as it is usually

expected for an ultraviolet anomalous dimension.

3.4 TMD matching coefficient at large-β0

Before the evaluation of the sums in eqs. (3.11)–(3.12) we extract the part related to the

anomalous dimension D to obtain the coefficients Ĉ defined in eq. (2.12). This procedure

is important since the function D contains its own renormalon singularities, as described

in eq. (3.19). The contribution of D is easily recognized in the third lines of (3.11)–(3.12)

(compare with eq. (3.13)).

The result of the Borel transform for the coefficient Ĉ, eq. (3.11) is

Ĉ =
2CF
β0

∫ ∞
0

due−u/cs

{(
x̄+

2x

(1− x)+

)
γγγ(u)− 1

u
+ x̄

∫ 1

0
dy(2 + uȳ)γγγ(yu)

+δ(x̄)

(
GGG1(u)− 1

u
+

∫ 1

0
dy
GGG′0(u)−GGG′0(yu)

u(1− y)

)
+

(
x̄+

2x

(1− x)+

)(
1−G[BBB√xµ](0,−u)

u

)
− x̄G[BBB√xµ](0,−u)

+δ(x̄)

(
G(0,−u)(ψ(−u) + γE)

u
− 1

u2
−
LLLµ + 5

3

u

)}
, (3.24)

where by bold font we denote the Borel transformed functions,

Gi(u) =

∞∑
n=0

g[i]
n

un

n!
, GGG′0(x) =

d

dx
GGG0(x), γ0(u) =

∞∑
n=0

γn(x)
un

n!
. (3.25)

The terms in eq. (3.24) are collected such that every bracket is finite at u→ 0. The expres-

sion for TMDFF coefficient function Ĉ can be obtained using the crossing transformation

(x→ z−1) and the addition of the normalization contribution (the last line in eq. (3.12)).

In the last two lines of eq. (3.24) we have the infrared renormalon poles in u = 1, 2, . . ..

One can see that the third line contains only first order poles, while the last line contains

second order poles at G(0,−u)ψ(−u). Considering the infrared ambiguity at u = 1 we

obtain

δIR{Ĉ} = −c(xb2Λ2)

{
2x̄+

2x

(1− x)+
− δ(x̄)

(
LΛ +

2

3

)}
, (3.26)
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where constant c is given in eq. (3.20). The x−dependence of this expression exactly

reproduces the x−dependence of the leading terms of the next power correction in small-b

OPE, see detailed description in [41]. The consideration of ambiguites of higher renormalon

poles gives access to the higher-power corrections. We obtain

δu=n
IR {Ĉ} =

πCF
β0

(
−xb2Λ2e

5
3

)n
n!n!

(
2x

(1− x)+
+ (n+ 1)x̄− δ(x̄)

(
LΛ − ψn+1 − γE +

5

3

))
.

(3.27)

However, these expressions can be modified by the infrared renormalon contributions of

the higher-twist terms. The most important information of the higher-power corrections

is that the renormalons scale as xb2, but not as b2 which is a naive assumption. The

consequences of this fact are discussed in the next sessions.

The corresponding calculation for TMDFF gives

δIR{z2Ĉ} = −c
(
b2Λ2

z

){
2z̄ +

2z

(1− z)+
− δ(z̄)

(
LΛ +

2

3

)}
. (3.28)

which is the same as eq. (3.26) with the crossing change x → 1/z. One can see that the

difference in normalization which spoils the crossing between TMDPDFs and TMDFFs,

disappears in the renormalon contribution. The higher poles ambiguites are provided using

the crossing relation x→ 1/z in eq. (3.27).

3.5 Lessons from large-β0

The eqs. (3.19), (3.26), (3.28) are one of the main results of this work. These expressions

represent the leading power correction to the small-b regime, where all perturbative prop-

erties of TMDs are derived. These expressions give access to a general structure of the

next-to-small-b regime. The practical implementation of results eqs. (3.19), (3.26), (3.28)

is given in the next section, while here we collect the most important observation that

follows from the large-β0 calculation and which should be taken into account for TMD

phenomenology.

The first, and the most obvious, observation is that the leading power corrections are

∼ b2. It implies that an exponential decay of the TMDs that is sometimes suggested in

phenomenological studies (e.g. [42, 43]) can in no way affect the small-b region. Indeed, it

would imply the corrections ∼
√
b2 to the small-b OPE, that cannot appear without extra

scaling parameter. Nonetheless, exponential corrections can occur in the large-b regime,

which is inaccessible by perturbative considerations.

Second, one can see that the renormalon corrections to TMDPDFs matching coef-

ficient scales like xb2, and not as simply b2 (as it is usually assumed), nor as x2b2 (as

suggested by Laguerre polynomial decomposition [9]). Therefore, the contributions of

higher-twist terms in small-b OPE for TMDPDF are largely functions of xb2. Correspond-

ingly, TMDFFs matching coefficients are a function of b2/z. This is important in respect

of the phenomenological implementation of the TMDs. For instance, the b∗-prescription

– 12 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
2

which is often adopted does not respect this scaling and so, in this sense, it is not fully

consistent with the estimated higher twist effects.

Third, the renormalon contributions to the anomalous dimension D and to matching

coefficients have different physical origins and do not mix with each other. In fact, the

anomalous dimension D is an universal object that is the same for all regimes of b and for

TMDs of different quantum numbers [25]. Thus, the renormalon contribution to D rep-

resents a generic universal non-perturbative contribution, alike in the case of heavy quark

masses. On the other hand, the (infrared) renormalon divergences within the matching co-

efficients are to be canceled by the corresponding (ultraviolet) renormalon contributions of

higher twists. Therefore, while eq. (3.19) represents a size of a universal non-perturbative

contribution, eqs. (3.26), (3.28) give the form of the twist-four contribution to small-b OPE.

In other words, eqs. (3.26), (3.28) estimate very accurately the x-behavior of subleading

correction to small-b OPE.

The consideration of the anomalous dimension D for gluon distributions is identical to

those of quarks (apart of trivial replacing of the common factor CF by CA). Contrary, the

calculation of the renormalon contribution for gluon and quark-gluon matching coefficient

is much more complicated than the one presented here and is beyond the scope of this

paper. In general, we can expect a non-trivial dependence of the renormalon contribution

on the Bjorken variables. At present, we cannot find arguments which suggest a location

for the renormalon poles and an xb2 scaling different from that of quarks.

4 Renormalon substraction and power corrections

Our analysis is limited to the quark TMDs only. Nonetheless, we can advance some con-

siderations on possible inputs, which are consistent with our findings and evaluate their

impact on the non-perturbative structure of TMDs. The suggested ansatz for TMDs does

not pretend to be unique and moreover is inspired by other popular models. We postpone

to a future publication a more dedicated study on the subject.

We recall here the form of the TMDPDFs which emerges at small-b is

F pertq←N (x, b; ζf , µf ) = R(b, ζf , µf ; ζb, µ)
∑
j

∫ 1

x

dy

y
Ĉq←j

(
x

y
, b;µ

)
fj←N (y, µ), (4.1)

where the evolution kernel R is given in eq. (2.6). The argument ζb of R is collected from

the combination of two exponents: the original factor R (2.6) and the exponential prefactor

of Ĉ (2.12), and it takes the value

ζb =
4e−2γE

b2
.

The analogue equation for TMDFFs is obtained replacing consistently the PDF fj←N by

the fragmentation function dj→N and the coefficient function Cq←j by Cq→j , while the

evolution kernel remains the same. This expression is usually taken as an initial ansatz for

TMD phenomenology.
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As we pointed earlier there are two places where the non-perturbative effects arise. The

first one is the evolution kernel D which is a part of the evolution prefactor R, and it is

common for all TMDs (TMDPDFs and TMDFFs of various polarizations). The second one

is the higher twist corrections to the small-b OPE. These non-perturbative contributions

are of essentially different origin and should not be mixed. In particular it is important to

realize that the non-perturbative contribution of D enters eq. (4.1) as a prefactor, while the

higher order terms of OPE are added to the convolution integral. Therefore, the structure

of non-perturbative corrections to TMD that we keep in mind is the following

Fq←N (x, b; ζf , µf ) = exp

{∫ µf

µ

dµ′

µ′
γ
(
µ′, ζf

)}(ζf
ζb

)−D(µ,b)−DNP (b)

× (4.2)∑
j

∫ 1

x

dy

y
Ĉq←j

(
x

y
, b;µ

)
fj←N (y, µ) + fNPq←N (x, b;µ)

 .

Here, DNP is the non-perturbative addition to the anomalous dimension D, and fNP is the

cumulative effect of the higher twist corrections to the small-b OPE. At small (perturbative)

b, the non-perturbative parts should turn to zero, such that eq. (4.2) reproduces eq. (4.1).

In the following subsections we construct a minimal non-contradicting anzatz for TMD

distributions that respect the study of large-β0 approximation.

4.1 Non-perturbative corrections to the anomalous dimension D

The non-perturbative part of the anomalous dimension D is one of the most studied in the

literature and the one for which a general consensus is achieved. Usually, the anomalous

dimension D is assumed to have quadratic behavior in the non-perturbative region. As we

show in eq. (3.19) the quadratic behavior is also suggested by the large-β0 approximation.

A more subtle issue concerns the amount of non-perturbative correction to D, which can be

very different depending on the implementation of the TMDs. A check of the renormalon

contribution, as provided in this section, gives an estimate of such correction and it is so

useful for practical implementations.

Let us present the perturbative series for D in the form

D(µ, b) =
CF
β0

∞∑
n=1

(β0as(µ))n (dn(Lµ) + δn(Lµ)) , (4.3)

where dn ∼ n!g
[n+1]
0 can be obtained from eq. (3.13) and δn is the large-β0 suppressed part.

The numerical comparison of the large-β0 expression eq. (3.16) and the exact expression for

D is given in the table 1. One can see that generally the large-β0 expression overestimates

the exact numbers, which is typical for this approximation.

In order to study the properties of the large-β0 series we introduce a function for its

partial sum

MN (µ, b) =
1

β0

N∑
n=1

(β0as(µ))ndn(Lµ). (4.4)
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n dn + δn dn δn

1 2Lµ 2Lµ 0

2 L2
µ + 2.03L2

µ − 1.31 L2
µ + 3.33Lµ + 3.11 −1.30Lµ − 4.42

3
0.67L3

µ + 2.82L2
µ + 0.24Lµ

−2.41

0.67L3
µ + 3.33L2

µ + 5.56Lµ
+7.67

−0.51L2
µ − 5.32Lµ − 10.

Table 1. Numerical comparison of the large-β0 component of the anomalous dimension D to the

exact expression. The coefficients dn and δn are defined in eq. (4.3).

µ=10 GeV b = 0.2 b = 1.5 b = 3.0

M1 0.032 0.145 0.184

M2 0.047 0.228 0.304

M3 0.051 0.277 0.388

M4 0.053 0.310 0.455

M5 0.054 0.223 0.513

M6 0.054 0.354 0.567

M7 0.055 0.372 0.622

M∞ ± δM 0.055± 0.001 0.376± 0.072 0.577± 0.267

Table 2. The values of partial sums MN at several values of b. The estimate converge value M∞
and its error band δM are obtained as described in the text.

For N → ∞ the sum is divergent, as discussed in section 3.3. In order to define M∞
we consider the Borel transform of MN as in section 3.3. To define the Borel integral in

eq. (3.16), we shift the integration contour, slightly above the real axis. The real part of the

integral (i.e. the principal value integral) gives M∞, while the imaginary part represents

the errorband for this estimation. The explicit expression for the latter is

δM(µ, b) =
2π

β0

[
J0

(√
µ2b2e

5
6
− 1

2β0as(µ)

)
− 1
]
, (4.5)

and the leading behavior at small-b for δM is given by the infrared ambiguity eq. (3.19).

We investigate the convergence of the partial sums of MN to its Borel resummed value

M∞, in order to find the scale at which the non-perturbative corrections associated with

renormalons become important. The numerical values of partial sums at µ = 10 GeV and

at several values of b are presented in table 2. The graphical representation of these values

is shown in figure 2. The convergence of the series is perfect (in the sense that it converges

at M7 that is far beyond the scope of modern perturbative calculations) for the range of

b . 2 GeV−1, it becomes weaker at b ∼ 3 GeV−1, and it is completely lost at b & 4 GeV−1.

These are the characteristic scales for switching the perturbative and non-perturbative

regimes in D. In other words, the perturbative series can be trustful at b . 2 GeV−1, but

completely loses its prediction power for b & 4 GeV−1. The number N at which convergence

is lost depends on the value of µ, however the interval of convergence in b is µ-independent,

e.g. at µ = 50 GeV the series converges to M8 in the region b . 2 GeV−1, but again loses

stability at ∼ 4 GeV−1.
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bT

-0.2

0.2

0.4

0.6

0.8

MN

Figure 2. The dependence of partial sums MN on b (in GeV−1). The dashed lines represent MN

from N = 1 (bottom line) till N = 7 (top line). The bold line is the value of M∞. The shaded area

is the error band of M∞ given by δM .

In order to proceed to an estimate of the non-perturbative part of D we write it in

the form

D(µ, b) =

∫ µ

µ0

dµ′

µ′
Γcusp(µ) +DPT (µ0, b) +DNP (µ0, b), (4.6)

where DPT is given by the perturbative expression at µ0 scale, DNP encodes the non-

perturbative part. The parameter µ0 depends on b and should be selected such that as(µ0)

is a reasonably small number. The non-perturbative part DNP is independent on µ (since

the evolution part of D is renormalon-free) but depends on the choice of µ0.

In principle, the best value of the parameter µ0 can be extracted from the large-β0

calculation. Indeed, the resummation of bubble-diagrams modifies the coupling in the

interaction vertex, such that a loop integral appears to be naturally regularized in the

infrared region. Practically, the effect of such resummation can be presented as a freezing

of the coupling constant at large b. Particularly popular is the b∗ prescription [44] defined as

µ0 = µb =
C0

b∗(b)
, b∗(b) =

√
b2√

1 + b2/b2max

, C0 = 2e−γ . (4.7)

At large b the parameter µ0 approaches C0/bmax, which should be chosen much less then

Λ, i.e. bmax � C0/Λ ∼ 4 GeV−1.

For large-b (say b & 3 GeV) the non-perturbative part of D dominates the perturbative

one. The large-β0 calculation allows to estimate the leading contribution (from the side of

small-b’s) to DNP from the infrared ambiguity eq. (3.19),

DNP (b, µ0) =cΛ2b2gD(b, µ0), (4.8)

the function gD should be of order of unity at small-b and it depends on the choice of

the scale µ0. Here Λ2 is the position of Landau pole and it is expected to be of order

O(ΛQCD) ∼ 250 MeV, which implies

cΛ2 =
πCF e

5/3

2β0
Λ2 ∼ 0.075 GeV2 . (4.9)
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Since the large-β0 approximation overestimates the exact values this number can be con-

sidered as an upper bound for non-perturbative input.

In order to estimate the parameters of the D more accurately, we consider a kind of

renormalon subtraction scheme for the anomalous dimension D. We construct a renormalon

subtracted expression D(µ, b) = DRS(µ, b) by explicitly summing the large-β0 contribution

in eq. (4.3)

DRS(µ, b) = M∞(µ, b) +
CF
β0

∞∑
n=1

(β0as)
nδn(Lµ). (4.10)

The scale µ here should be chosen such that the logarithm Lµ is reasonably small, otherwise

the large-β0 expansion is significantly violated. Using the model eq. (4.10) we fit the

parameters of eq. (4.6) at µ = 10 GeV in the range b < 3 GeV, with gD = constant≡ gK ,

at all known perturbative orders. It appears that the result is very stable with respect to

bmax whose best value we find to be

bmax ' (1.2± 0.1) GeV−1. (4.11)

Concerning the non-perturbative part, it appears to be lower then the crude estimation

eq. (4.9) and actually consistent with 0,

gK ' (0.01± 0.03) GeV2. (4.12)

This value is generally smaller then the typical values presented in the literature, e.g. ref. [8]

quotes gK ' 0.17 GeV2, ref. [45] quotes gK ' 0.045 ± 0.005 GeV2. But ref. [29] finds gK
consistent with 0, which agrees with the present findings. However, one should take into

account that contrary to standard fits, the present considerations are purely theoretical.

Moreover in fits with experimental data, one should consider the extra non-perturbative

part of the TMD distribution itself (which is discussed in the next section).

Finally, we comment on the possibility of a more sophisticated renormalon subtraction

scheme as in the MSR scheme of [46]. In this scheme, one provides a subtraction of the

renormalon from a perturbative series which depend on an additional scale µR. The new

renormalon subtraction scale can result into large logarithms which, in turn, should be

resummed. Such a consideration can result in more accurate restrictions on parameters.

4.2 Renormalon consistent ansatz for TMDs

The non-perturbative corrections to the matching coefficients are necessary for all analysis

which include low energy data. These corrections have not been deeply studied in QCD

theory and up to now, only a phenomenological treatment has been provided. In this

section, we present a consistent ansatz that interpolates the perturbative small-b part

of a TMD distribution with an entirely Gaussian exponent at large-b. The presented

ansatz takes into account the lessons learned from the study of renormalon singularities

and formulated in section 3.5.

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
0
0
2

The renormalon contribution accounts the leading power correction (see detailed ex-

planation e.g. in [38, 41, 49]). Thus, the small-b expansion of the TMD distribution, that

includes this power correction, has a form

F̂q←N (x, b;µ) =
∑
j

∫ 1

x

dy

y

(
Ĉq←j(y, b;µ) + ygin

q b
2Cren

q←j(y, b)
)
fj←N

(
x

y
, µ

)
+O(b4),

(4.13)

D̂q→N (z, b;µ) =
∑
j

∫ 1

z

dy

y

(
Ĉq→j(y, b;µ) +

gout
q b2

y
Cren
q→j(y, b)

)
dj→N

(
z

y
, µ

)
+O(b4),

(4.14)

where the LO coefficient function of the renormalon contribution was calculated in sec-

tion 3.4 and reads

Cren
q←q(x, b) = Cren

q→q(x, b) = 2x̄+
2x

(1− x)+
− δ(x̄)

(
LΛ +

2

3

)
. (4.15)

The constants gin,out
q are of order cΛ2 within the large-β0 approximation, however the actual

value should be estimated from data. The non-perturbative scale Λ is the same as in the

case of the evolution kernel. The contribution presented here is at LO, and as such has

not µ-dependence. The µ-dependence of higher perturbative orders can in principle be

calculated, using the evolution equation for TMD and the related integrated distribution.

At larger values of b eq. (4.14) is corrected by the higher orders of the OPE, and at

a particular scale B (which defines the convergence radius of small-b OPE eq. (2.10)) it

is replaced by a single and entirely non-perturbative function. It is commonly assumed

that at large-b the TMD distribution has Gaussian behavior. This is also supported by

the phenomenological studies of low-energy data (see e.g. ref. [50] for a study dedicated to

this issue). The interpolation of a Gaussian with the small-b matching eqs. (4.13)–(4.14)

should take into account the previously formulated demands on the power corrections. In

particular, we have the following two guidelines:

(i) In order to be consistent with the general structure of OPE, the interpolation should

be done under the convolution integral.

(ii) According to the structure of renomalon singularities, the powers of b2 should be

always supplemented by x (for PDF) and z−1 (for FF).

A viable model, which takes into account both these points, can have the form

F̂q←N (x, b;µ) = (4.16)∑
j

∫ 1

x

dy

y
e−gbyb

2

(
Ĉq←j(y, b;µ) + ygqb

2

(
Cren
q←j(y, b) + δ(ȳ)

gb
gq

))
fj←N

(
x

y
, µ

)
,

D̂q→N (z, b;µ) = (4.17)∑
j

∫ 1

z

dy

y
e−gbb

2/y

(
Ĉq→j(y, b;µ) +

gqb
2

y

(
Cren
q→j(y, b) + δ(ȳ)

gb
gq

))
dj→N

(
z

y
, µ

)
.
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Figure 3. The TMDPDF F̂u←p(x,Lµ) as in the model of eq. (4.16) (the up-quark PDF is taken from

MSTW [47, 48], at x = 0.1, Λ = 0.25 GeV, Nf = 3, gb = .2 GeV−2, gq = 0.01 GeV−2, µ = C0/b
∗)

as a function of the parameter b in GeV−1 units. On the left panel we show consequently curves

for LO, NLO and NNLO matching coefficients (bmax = 1.5 GeV−1 is used). On the right panel we

present NNLO curve at several values of bmax in units of GeV−1.
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Figure 4. The TMDPDF F̂u←p(x,Lµ) as in the model of eq. (4.16) at NNLO (PDF from

MSTW [47, 48], and with x = 0.1, Λ = 0.25 GeV, Nf = 3, µ = C0/b
∗ with bmax = 1.5 GeV−1) as

a function of the impact parameter b in GeV−1 units. On the left panel we show several possible

choices of gq in GeV2 at fixed gb = .2 GeV2. On the right panel we show several possible choices of

gb in GeV2 at fixed gq = .01 GeV2. All curves are at NNLO.

The inclusion of the perturbative and power corrections modifies the Gaussian shape dif-

ferently for PDF and FF kinematics.

In the figures 3–5 we illustrate several features of the renormalon consistent ansatz that

we propose. In all the plots we fix the µ scale at the value µ = µ∗ = C0/b
∗. In figure 3-left

we show that the change of F̂ with respect to the perturbative order of matching coefficient.

On the right hand side of figure 3 we show the dependence on the choice of the scale bmax,

which we find very mild for 1 GeV−1 . bmax . 2 GeV−1.

The shape of the TMDs can strongly depend of the values of the non-perturbative

constants gb,q for b ≥ 2 GeV−1 as shown in figure 4–5. The values used in plots parameters

are inspired by the fit in [29]. However, they can also change in a real fit with the present

model. For b ≤ 1 GeV−1 the non-perturbative model does not really affect the x−behavior

of the TMD. In figure 5 we show instead that for instance at b ∼ 1.5 GeV−1 the model

parameter can start to have their impact.
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Figure 5. The function xF̂u←p(x,Lµ) as in the model of eq. (4.16) at NNLO (PDF from

MSTW [47, 48], as a function of x. The other inputs are fixed as Λ = 0.25 GeV, Nf = 3, µ = C0/b
∗,

b = bmax = 1.5 GeV−1 and gb = 0.2 GeV2. We show the curves at different values of gq.

The cross-section built from TMDs in the form (4.16)–(4.17) and the evolution ker-

nel (4.6) is dependent on the parameters gK , gb and gq. While, the parameter gK is

strongly universal, the parameters gb and gq are separate for TMDPDFs and TMDFFs,

as well as, different for different flavors. Within the cross-section the dependence on these

parameters is smoothed to a more-or-less similar shape (especially for parameters gb and

gK). However, the dependence on these parameters is clearly distinguishable at different

energies. As an example, we show the Drell-Yan cross-section in figure 6 and the Z-boson

cross section in figure 7 with some typical values of the experimental energies. While the

corrections to the Z-boson production are dominated by gK , at low energies all parameters

can compete. In actual experiments the Z-boson production is only minimally affected by

non-perturbative effects, so in actual fits it may happen that the value of gK is compatible

with zero, while the other parameters provide the expected minimal correction (this is for

instance the case of the fit in ref. [29]). This yields that an estimate of the nature of the

TMDs non-perturbative part cannot be done just using the Z-boson production, but needs

also data from low energy physics. We postpone to a future work a comparison with data

of the model that we have presented here.

To conclude this section, we observe that in the literature we have not found any

non-perturbative input for TMDs fully consistent with the demands dictated by the power

analysis presented here. For instance the b∗-prescription which is used in many phenomeno-

logical analysis [8, 25, 28] is inconsistent with eq. (4.13). Within the b∗-prescription the

higher-twist corrections are simulated by replacing b → b∗, and including an additional

non-perturbative factor as

F̂ b
∗-presc.
q←N (x, b;µ) =

∑
j

egj/N (x,b)

∫ 1

x

dy

y
Ĉq←j(y, b

∗;µ)fj←N

(
x

y
, µ

)
, (4.18)

and similarly for TMDFF. This expression violates both guidelines formulated before
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Figure 6. The plots of Drell-Yan cross-section p + p → γ + X dσ/dQ2dydq2T at
√
s = 100 GeV,

Q = 10 GeV and y = 0, evaluated using the renormalon ansatz. The impact of different parameters

is demonstrated. The black line is the reference curve with all parameters set to 0. The other inputs

are fixed as Λ = 0.25 GeV, Nf = 3, µ0 = C0/b
∗, bmax = 1.5 GeV−1. All curves are at NNLO.

eq. (4.16). Considering the small-b expansion of Ĉ(b∗) in eq. (4.18),

F̂ b
∗-presc.
q←N (x, b;µ)|small−b '

∑
j

∫ 1

x

dy

y

[
Ĉq←j(y, b;µ) (4.19)

+
as(µ)CFb

2

b2max

(
2y

(1− y)+
+ ȳ − δ(ȳ)

(
Lµ −

3

2

))
+ δ(ȳ)b2g′′j/N (x, 0)

]
fj←N

(
x

y
, µ

)
,

one does not reproduce eq. (4.13). The main difference comes from the general power

scaling, xb2 vs. b2, see point (ii). The point (i) is violated by the non-perturbative exponent

that is generally x-dependent and positioned outside of convolution integral (although, we

should appreciate that in most application it is taken x-independent).

5 Conclusion

In this work, we have studied the non-perturbative properties associated with renormalons

for the soft function and unintegrated matrix elements. With this aim, we have evaluated

all constituents of TMD distributions (soft factor, matching coefficient and anomalous

dimensions) within the large-β0 approximation. The (factorial) divergences of the large-β0

series are associated with the renormalon contribution and allow to estimate the leading

non-perturbative contributions. We have found two independent renormalon structures in

the perturbative description of TMD: the soft function and small-b matching coefficients.
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Figure 7. The plots of Z-boson production cross-section p + p → γ + X dσ/dQ2dydq2T at
√
s =

1.96TeV, Q = MZ = 91.18 GeV and y = 0, evaluated using the renormalon ansatz. The impact of

different parameters is demonstrated. The black line is the reference curve with all parameters set

to 0. The other inputs are fixed as Λ = 0.25 GeV, Nf = 3, µ0 = C0/b
∗, bmax = 1.5 GeV−1. All

curves are at NNLO.

The consideration of the soft function allows to fix the power behavior of the evolution

kernel of TMDs. We show the evidence of infrared renormalons at u = 1, 2, . . . (u being

the Borel parameter). Our results agree with the analysis of the power corrections to

factorized cross-section made in [36]. It also supports the popular assumption about a

quadratic power correction to the TMD evolution kernel. However, the impact of the non-

perturbative corrections is estimated to be not very significative for experiments where

TMDs are evaluated at scales higher than a few GeV.

The nature of the renormalon contribution to the evolution kernel is peculiar, in the

sense that it is generated by the non-perturbative part of a matrix element. In some

aspects, this is very similar to the renormalon contribution to heavy quark masses. We

have discussed also an ansatz which implements a consistent renormalon subtraction for

the TMD evolution kernel, which can be useful for phenomenology.

The most promising conclusion of the paper comes from the analysis of the renormalon

contribution to the small-b expansion of TMDs. The discussion of these results can be

found in section 3.5. We demonstrate that the power corrections to small-b behave as a

function of xb2 for TMDPDFs and as b2/z for TMDFFs. This observation should have

a significant impact on the joined TMDPDF–TMDFF phenomenology. Additionally, the

large-β0 computation unveils the form of x−dependence for the leading power correction

to the small-b matching. This behavior should be incorporated in realistic and consistent

models for TMDs.
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We have discussed and formulated the demands on a phenomenological ansatz to in-

corporate all collected information. We find that typical models for the non-perturbative

part of TMDs, discussed in the literature, are inconsistent with our conclusions, mainly,

due to the naive assumption that the combined powers corrections are largely functions of

b2 (contrary to xb2). In eqs. (4.16)–(4.17) we construct a simple ansatz that interpolates

the Gaussian low-energy model for TMDs with the perturbative small-b regime accounting

formulated demands. We postpone to a future work the fit of available data using the

presented results.
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