Egalitarian State-Transition Systems
(extended version)*

Oscar Martin, Alberto Verdejo, and Narciso Marti-Oliet

Technical Report 01/16

Departamento de Sistemas Informéticos y Computacion
Facultad de Informética, Universidad Complutense de Madrid, Spain

August 2016

{omartins, jalberto,narciso}@ucm.es

* Partially supported by MINECO Spanish project StrongSoft (TIN2012-39391—
C04-04), Comunidad de Madrid program N-GREENS Software (5S2013/ICE-2731),
and UCM-Santander grant GR3/14.

Abstract. We argue that considering transitions at the same level as
states, as first-class citizens, is advantageous in many cases. Namely, the
use of atomic propositions on transitions, as well as on states, allows tem-
poral formulas and strategy expressions to be more powerful, general, and
meaningful. We define egalitarian structures and logics, and show how
they generalize well-known state-based, event-based, and mixed ones. We
present translations from egalitarian to non-egalitarian settings that, in
particular, allow the model checking of LTLR formulas using Maude’s
LTL model checker. We have implemented these translations as a proto-
type in Maude itself.

Keywords: modular specification - state/transition structure - rewriting
logic - model checking - Kripke structure - LTS - temporal logic - strategy

Table of Contents

Egalitarian State-Transition Systems (extended version) 1
Oscar Martin, Alberto Verdejo, and Narciso Marti-Oliet
1 Introduction. 4
1.1 Related Work 7
1.2 Our Contributions in This Paper 8
2 Egalitarian Structurest 8
3 Egalitarian Semantics for Rewrite Systems 10
4 Translation to Familiar Grounds, 12
5 Temporal Logics on Egalitarian Structures 15
6 Our Implementation........ i 19
6.1 An Alternative Translation, 21
7 Future Worko 22
8 ConCIUSION .« o\ttt et 23
A Instructions on the use of our implementation 24
Al Theexample. e 24
A2 First way: LTLR ... 25

A3 Second way: LTLo 26

1 Introduction

There is a case of discrimination in computer science that favors states against
transitions (call them events or actions, if you prefer). It is not unlike the dis-
crimination by gender in some human societies. Considering transitions just as
a means to go from a state to another is as unfair as considering women just as
a means for passing genes from father to son. We want to show that this dis-
crimination (against transitions) hinders specification and programming tasks.

There exist, certainly, transition-oriented formalisms as well as state-oriented
ones. State-oriented structures (like Kripke structures) give names to states and
assert that some atomic propositions are true on each state. State-oriented tem-
poral logics (like LTL and CTL) use these propositions as basic formulas. On
the other hand, transition-oriented structures (like labeled transition systems,
LTSs) also give names to states; transitions are associated to a non-unique action
name. The only way to identify a transition is by looking at the adjacent states.
Action names are used in formulas in transition-oriented temporal logics, like
HML (Hennessy-Milner logic) [10] and ACTL* [6], but they are not formulas
by themselves. In both types of logics, formulas are evaluated on states or on
computations starting at an initial state. Even the idea of evaluating a formula
on a transition sounds odd.

The origin of this discriminating view is a model of information systems in
which indivisible and instantaneous events occur that change the system’s state.
We argue that, as successful as this model has been, it is not the whole story.

An imperative program is a sequence of instructions and it is natural to see
a state in the gap between two consecutive instructions. The evolution of (part
of) one such program can be represented like this:

x:=1 askH writel write2 relH y:=2

We used askH as an abbreviation for “ask for handle to file” and relH for “release
handle”. The s; are names for states. Suppose now that this is not the only
program or process running in the system, and the two write instructions involve
a shared resource and need to be executed in mutual exclusion. There is a critical
section, and it is natural to consider it as an unrefined composed state. This
would be a bird’s-eye view of the program:

x:=1 askH f

relH y:=2
S0 \Slj S critical section) @ @

Now, we can define the proposition in-crit; to be true in the critical section;
and in-crits for the other program. We can assert mutual exclusion by the LTL
formula

MUTEX := O(—in-crity V —in-crits)

and perform verification as needed.

There is a better way. There is no reason why states so and s, should be
considered to be in the critical section. Indeed, the very question of whether
a state belongs to the critical section is dubious: mutual exclusion is required
when doing something, not while standing still. The alternative is to consider
the critical section as an unrefined composed instruction:

x:=1 askH critical section relH y:i=2

However, mutual exclusion algorithms specified in this way are rare. In rewriting
logic, specifications in the spirit of the one on the left are way more usual than
the one on the right:

‘ rl [enter] : rem => crit . rl [crit] : entering => exiting .

rl [exit] : crit => rem . rl [rem] : exiting => entering .
The reason, or one of them, is that the formula MUTEX involves atomic proposi-
tions, and these are usually only available on states. If propositions on transitions
were available, we could define in-crit to hold true on both writing instructions
and then use the same formula MUTEX.

Another desirable property of such a program is that the shared file is not
used unless access to it has been granted previously. In a state-based setting this
could be expressed by the formula

O(in-crit — ©gotFileH)

with © meaning “at some past time”. We would declare in-crit to hold on ss,
and gotFileH to hold on s,. However, an unexpected way to go from s; to so is
discovered: through the action hackH, that gets a handle in a non-standard way,
without asking or letting the system know. So, the question is not whether the
program got access to the file, but how it did so. We need to refer to transitions
in our formula. If we had action names available as basic formulas, we could use

ASKB4USE := O(writel — ©askH)

as a more fitting formula. But note the difference between MUTEX and ASKB4USE
as written above: while the former reflects mutual exclusion by itself, and is valid
for any programs in which in-crit can be defined, the latter is only meaningful
for file-sharing programs whose actions are named exactly as they appear in the
formula. The way to go is by defining propositions on transitions using-res and
asking-for-res, making them hold, for our example system, on the transitions
labeled writel and askH, respectively, and then using the formula

D(using—res — @asking—for—res).

This is a meaningful and general formula.

Consider now strategy languages. If, instead of verifying, we want to control
the programs so as to ensure mutual exclusion, we can impose the following
regular-expression strategy:

((askH; ; other* ; relH;) | (askHs ; other* ; relH;))x*

We have added process indices to instructions, and other is a shorthand for
the disjunction of all instructions different from askH and relH. This expression
ensures that after askH; no other instruction related to file handling is possible
until relH; is performed; in particular, askHs is forbidden in between. And vice
versa. Again, this expression can only be applied to systems that use these same
labels, and often this is not possible or reasonable.

Specifications should be written just thinking of the behavior they model.
Later, atomic propositions are defined and formulas or strategies are built on
them. This is usual in state-oriented systems. When such a system is refined or
otherwise modified, propositions are redefined if needed, but their names do not
need to change, let alone the formulas.

The approach we propose to improve the strategy is to define enter and
exit as propositions on transitions, common to both programs, representing
the entrance to and exit from the critical section, respectively. These are true,
for our example system, of askH and relH, respectively, and false otherwise. In
Maude-like syntax, we would define, for both programs:

var enter exit : Prop .

eq askH |= enter = true .
eq relH |= exit = true .
eq I:Instruction |= P:Prop = false [owise]

We can thus build the strategy:
(enter ; (= enter)* ; exit)x*

Then, if there is the need to specify a system with exclusive access to a commu-
nication channel, using instructions, say, get-channel and release-channel, the
same proposition names and the same strategy expression can be used.

In a word, the advantage of propositions on transitions (and on states) is de-
coupling: writing the system specification and writing the temporal property are
independent tasks. The definition of propositions provides an interface. Changes
in the identifiers used in the system need not be accompanied by changes in
temporal formulas, but just in the definition of propositions. Temporal formulas
and strategy expressions gain in generality.

Our proposal of giving transitions first-class citizenship is visually represented
by making a box appear in the middle of every arrow representing a transition,
with states in rounded shapes and transitions in rectangles—Petri-net style:

@ t @ t’

In this way, every element—state or transition—is explicit and can be treated
the same. The same as only states were treated before. There remains an only
source of discrimination: while a state can have several arrows going in and out,
a transition only has one of each. Monogamy for her, polygamy for him. (But
see section on future work.)

1.1 Related Work

Several temporal logics have been proposed that make joint use of actions and
propositions on states: ACTL* [6], RLTL [19], SE-LTL [4], TLR* [17], ESTL
[11]. There are also definitions of structures with mixed ingredients: LKS [4],
L2TS [5], Petri nets [18].

The best moves towards fairness we know of are the temporal logic of rewrit-
ing, TLR*, and the event-and-state-based temporal logic, ESTL, the former de-
signed for rewriting logic and the latter for Petri nets. The explanations and
examples in [17] and [11] are good arguments for an egalitarian view. In both
cases, the point is that some properties of systems can only be directly specified
if we can talk about states and transitions within the same logic. Our formula
ASKBA4USE above was inspired by an example in [11]. In another example, this
time from [17], fairness for a rule ¢ is expressed by the formula:

0 < enabled-¢ — O < taken-{

The proposition enabled-¢ is on states: it means that the current state of the
system has the form needed to apply rule £ to it. But taken-/ is on transitions:
it tells that the transition being executed is according to rule ¢. Propositions on
transitions are unavoidable. Or, rather, they are avoidable at the price of cooking
the system (in Meseguer’s terminology), making it artificially complex, so that
some information about transitions is kept in states.

In ESTL, formulas are evaluated on cuts that are composed of places and
transitions mixed together. A basic ESTL formula is a name of a place or of a
transition. This is indeed an egalitarian view. What ESTL does not achieve is
decoupling, as it uses literally names from the Petri net. We are not discussing
Petri nets, and egalitarian structures are not directly related to them, although
at least part of our work can probably be adapted to them through the imple-
mentation on rewriting logic proposed in [16].

Rewriting logic is an appropriate formalism to be egalitarian, because, as
pointed out in [16], transitions are represented by proof terms, in the same way
as states are represented by state terms. We expand on this below. But TLR*
stays a step away from our aim, because, while it uses atomic propositions on
states, it uses proof-term patterns (called spatial actions) to express properties
of transitions. These patterns are less powerful than general propositions (for
an example, a pattern cannot represent the set of proof terms in which a given
variable has been instantiated with an even integer). But the real drawback
is that a TLR* formula is only meaningful for algebraically specified systems,
and for a particular algebraic specification. Spatial actions use literally elements
from the text of the specification, so that no decoupling is achieved. In contrast,
formulas using propositions—on states, like in CTL*, or on transitions, as we
advocate—are meaningful for any system where the atomic propositions can be
defined, irrespective of the formalism used to specify it. Notably, we know of
three implementations of model checkers for (the linear-time subset of) TLR*,
and all of them propose some kind of propositions on transitions [2,1,13].

1.2 Our Contributions in This Paper

In Section 2, we propose egalitarian structures, and show how they encompass
typical state-based and event-based structures. In Section 3, we show how sys-
tems (especially rewrite ones) can be given egalitarian semantics. In Section 4,
we describe translations from egalitarian structures to state-based ones. Corre-
spondingly, we describe a way to split each rule of a rewrite system into two
halves, so that new states arise that represent the transitions of the original
system. In Section 5, we show how also temporal logics can be translated, and
how all this allows performing verification on the resulting state-based systems
to draw conclusions about the original, egalitarian systems. In Section 6, we de-
scribe our implementation, that allows the specification and model checking of
egalitarian structures in Maude. Sections on future work and conclusions com-
plete the paper.

This technical report is an extended version of [14]. The Maude code for our
implementation and some examples can be found at http://maude.sip.ucnm.
es/syncprod. The latest version of this paper can also be downloaded there.

2 Egalitarian Structures

Let us recall the usual definitions of labeled transition system (LTS) and Kripke
structure. An LTS is given by a tuple (5, 4, d), where S is the set of states, A the
alphabet of actions, and ¢ : Sx A — 25 the non-deterministic transition function.
A Kripke structure is given by a tuple (S, R, AP, L), where S is again the set
of states, R C S2 the transition relation, AP the set of atomic propositions,
and L : S — 227 the labeling function, that assigns to each state the set of
propositions that hold true on it. Graphically:

LTS Kripke structure
a P Q
(9, () (—()
a PQ

() ()

In some cases, both action names and atomic propositions on states are used
in a mixed structure. We propose egalitarian structures as a generalization of all
these cases. An egalitarian structure is given by a tuple (S, T, R, AP, L), where:

— S is the set of states;

— T is the set of transitions;

— RC (SxT)U(T x S) is the bipartite accessibility relation that is functional
on T, that is, for each t € T there are exactly one s € S and exactly one
s’ € S such that (s,t) € R and (t,s') € R;

http://maude.sip.ucm.es/syncprod
http://maude.sip.ucm.es/syncprod

— AP is the set of atomic propositions on both states and transitions;
— L:SUT — 2P is the labeling function for both states and transitions.

The same atomic proposition can be defined on states and on transitions in
the same structure. Indeed, it is plausible that a proposition that is satisfied on
several consecutive states also holds on the transitions between them. As pointed
out in the introduction, the functionality of R on T is the only discriminatory
requirement we allow.

Egalitarian structures generalize LTSs and Kripke structures. An LTS £ =
(Sg, Ag,0r) can readily be made into an equivalent egalitarian structure £(L£) =
(Se,Te, Re, APg, Lg) by defining:

- Sg = SL;

— Te:= {(s,)\,s’) €Sr x Ap x Sg: s’ e 55(8,)\)};
— Rg is given by s Re (s, A\, ') and (s, A\, s') Rg §';
- APg = AL;

— Le((s,\,8)) :={A}, and Lg(s) := 0.

Graphically:

a

a (31,(1,82)*
ol o

e (Sl,b, 82) —/4

@ (8172,83) —»@

Atomic propositions in £(L) represent actions in £, so it seems fitting that
states are assigned no label. The equivalence between these two structures is left
at the intuitive level and we do not care to make it formal in this paper.

A Kripke structure K = (S, Rx, APx, Li) can be made into an equivalent
egalitarian structure £(K) = (Sg, Te, Re, APg, Lg) by defining:

— Sg = Sk;
— T¢ := R (considered as a subset of S;CQ);
— Rg is given by s Re (s,¢') and (s,s’) Re §';

— APg := APg;
— Lg(s) := Li(s), and Lg((s, ")) := Lic(s) N L (s').
Graphically:
p Q p Q
—G)

PQ
o ()

10

The choice Lg((s,8")) := Lic(s) N L (s") allows the continuity of satisfaction,
that is, that a proposition true on two consecutive states is also true while
traveling between them. Whether this is appropriate depends on the precise
concept of equivalence between K and £(K), but, again, we do not care to make
it formal. We will have something more to say on this below when dealing with
rewriting logic.

3 Egalitarian Semantics for Rewrite Systems

The embedding of Kripke structures in egalitarian ones given above implies that
any specification that is interpretable on the former can use the latter instead.
The definition of transitions as pairs of states can be improved in some cases,
because we can produce objects (read terms, if you prefer) that properly identify
transitions without explicitly relying on the states around. In [3], for instance,
it is shown how transitions in CCS can be represented by proof terms derived
from the system of rules that implement the semantics of the language. These
proof terms, however, are not CCS terms—they are built according to a different
syntax.

Rewriting logic provides a better example. A transition in a rewrite system
is represented by a proof term [16], just as a state is represented by a term of
the appropriate sort. Proof terms need some extra symbols in the signature,
but they are still terms, and structural information can be drawn from them.
Consider this toy example system:

ops £ g : Nat -> SomeSort .

op _+_ : SomeSort SomeSort -> State .

var N : Nat .

rl [a] : N=>N+1.

rl [b] : £(N) => £(3)
From the initial state g(1) + £(2) the three possible transitions are shown here,
with their respective proof terms:

g(1) + £(a(2)) ——

g(1) + £(2) g(1) + £(3)

g(1) + b(2)

;

ga(1)) + £(2) g(2) + £(2)

i

Each proof term includes the rule label in the context in which it is being
applied, and with the values that instantiate the variables in the rule. Seen in this
way, rewrite systems are naturally egalitarian, and are easily interpretable on
egalitarian structures. (Indeed, as rewriting logic is well suited for implementing
language syntax and semantics, proof terms become available for any language,
if only in this indirect way.)

We propose a definition of rewrite system slightly different from the usual
one, in order to make its egalitarian nature clearer, and also so that our ensuing

11

exposition gets easier. Namely, we include in its signature the declaration of rule
labels. It is not the definition of a more egalitarian kind of rewrite system, but
a more egalitarian definition of the same concept.

In the setting of rewriting logic, the standard definition of a rewrite system
(or rewrite theory) is given by a tuple (5,0, E U Az, R), where S is a set of
declarations of sorts (sometimes with a subsort relation among them), O is a set
of declarations of function symbols (operators), E is a set of equations, Az is a
set of equational attributes, and R is a set of rewrite rules. Sometimes, S and O
are denoted together by Y and called the signature.

The egalitarian definition of a rewrite system is a tuple (5,0, L, E U Az, R),
where L, the only novelty, is a set of declarations of rule labels. As rule labels
are used to identify transitions (by building proof terms), it is fair that they are
declared, as operators are. Each rule-label declaration has the same form as an
operator declaration, that is, it contains argument sorts and a result sort. For
the example above, the rule label declarations would be:

1b a : Nat -> Nat .
1b b : Nat -> SomeSort .

The argument sorts are the ones of the variables that appear in the rule with
that label (in their textual order if there are several variables, or the empty list
of sorts if there are none). It is a requirement for any valid rewrite rule that both
sides are terms of the same kind. We add to this that the result sort of the rule
label has to be of the same kind as well. In a simple but typical case, both sides
of the rule would be terms of the same sort State, and so will be the result sort
of its label.

For verification and other purposes, one often assumes, in the standard set-
ting, that S includes declarations for sorts State and Prop, and that O includes
the infix symbol |= : State X Prop — Bool. For the egalitarian setting we assume
the sort Elem to represent both states and proof terms. We also still need Prop.
Thus, the operator = is declared as |= : Elem X Prop — Bool. Any sort can include
terms built using symbols from O and from L, but with either one or no symbol
from L. (This reflects the remaining discrimination pointed out in the intro-
duction.) States are represented by terms of sort Elem with no symbol from L;
transitions are terms of sort Elem with exactly one occurrence of a symbol from L
(so-called one-step proof terms). When needed, we assume the existence of sorts
State and Trans, defined as subsorts of Elem as described; or, equivalently, we
assume the existence and definition of predicates isState, isTrans : Elem — Bool.
No particular sort is needed for other proof terms, that is, £(2) and b(2) are both
of sort SomeSort. (More precise, though slightly different, algebraic definitions are
given in [13].)

The semantic function, that we denote as &', is now easy. For a rewrite
system R = (Sg,ORr, Lr, Er U Azgr, Rr), its semantics are given by £'(R) =
(Sg, Tg, R57 APg7 Lé), where:

— Sg :=T$,00x / ErUAzr,State (terms of sort State modulo equations);
— Te :=T3,00xULx / ExUAzx, Trans (terms of sort Trans modulo equations);

12

— Rg is given by s Re¢ t and t Rg s’ for each ¢ that is a proof term for a one-step
derivation from s to s’;

APg :=Ts, 1,0,) ExUAzr, Prop (terms of sort Prop modulo equations);

— L:(s) :=={p € AP¢ : s = p = true modulo Exr U Azg}, for s € Sg;

Ly (t) == Le(s) N Lg(s') for t € Tg, and s, s’ such that s Ret and t Re s'.

The definition of the labeling, in particular, reflects the one for the embedding
of Kripke structures in egalitarian ones given in the previous section to guarantee
continuity of satisfaction. Thus, we have that this diagram commutes:

Se1m K3
EgS

In it, we denote as RwS the class of rewrite systems, as KS the class of Kripke
structures, and as EgS the class of egalitarian structures. Also, “sem” is the
semantics based on term algebras described in [7], £ is the embedding of Kripke
structures in egalitarian ones from Section 2, and £’ is the semantics just defined.
The labeling deserves a deeper thought. In a rewrite system, seen in an egal-
itarian way, atomic propositions and the equations defining them apply equally
to states and to transitions. Often, a state and a neighboring transition have
similar algebraic shapes, and that eases a continuous definition of satisfaction
for them. In the simple example above, consider this proposition has-gi:
op has-gl : Prop .
var E : Elem .
eq g(1) + E |= has-gl = true .
eq E |= has-gl = false [owise]
This equational definition makes at once the proposition true for the transi-
tion g(1) + b(2) and for the state g(1) + £(2), and false for the transition
g(a(1)) + £(2) and for the state g(2) + £(2).
Considering this, a better, more egalitarian, and more flexible definition of
the labeling for any Elem e is:

— Le(e) :={p € AP¢ : e = p = true modulo Er U Azg}.

The semantics of rewrite systems as egalitarian structures according to this la-
beling is denoted as £ (instead of the previous £’) from now on.

4 Translation to Familiar Grounds

We define now functions K and “split” so that the following diagram commutes:

EgRwS EgS
split l IC
RwS KS

sem

13

EgRwS is the class of rewrite systems defined in the egalitarian way. (More pre-
cisely, the diagram commutes only when monogamy of transitions is guaranteed;
more on this below.)

Our aim is to benefit from tools and concepts available for the lower half
of the diagram, and use them in the egalitarian systems and structures on the
upper half. For instance, in Section 5 we define the satisfaction of a temporal
formula on an egalitarian structure based on the standard satisfaction on a
Kripke structure, and in Section 6 we use existing model checkers with a new
mission.

Also note that, although rewriting logic is egalitarian in nature, as discussed
above, because states and transitions are represented as like terms, Maude is not
s0, as proof terms are not Maude objects. The function “split”, as we describe
below, makes transitions appear as new states, allowing thus to be egalitarian
in an indirect way. Our implementation, described in Section 6, is based on this
idea.

Sometimes we call split systems or structures the ones that result from ap-
plying K or “split”. Also, the states of a split system or structure that were
originally a transition are called t¢-states; the others are s-states.

Transforming an egalitarian structure into a Kripke one is accomplished in
this simple way:

(S,T,R,AP,L) —~— (SUT,R,AP,L).
That is, we make old states and transitions into new states. Visually, this is
reflected by changing square shapes into rounded ones:

(Note that this is not the inverse of the embedding £ : KS — RwS given above.)

The transformation “split” on rewrite systems, designed to reflect K, is more
involved. The idea is removing each rule
| crl [: I(Z) — r(@) if C(Y)
and adding in its place
| crl [] : I(Z) — L(z,y) if C(7) and rl [6] : 4(Z,y) — r(T)
with the straightforward simplification for non-conditional rules. The condition
applies to the firing of the rule, not to its continuation. The variables in the tuple
7 are the new ones, not in Z, that appear in matching and rewriting conditions
in C.

This splitting of a rule into two produces new states in the split rewrite
system that correspond to the new states produced by /. With rules a and b
(from the beginning of Section 3) split in the way described, we get a rewrite
system

rl [al]l : N => a(N)

rl [a2] : a(N) => N + 1 .
rl [b1] : £(N) => b(N) .
rl [b2] : b(N) => £(3) .

14

whose standard Kripke semantics includes this:

g(1) + £(@a(2))
g(1) + £(2) g(1) + £(3)

g(1) + b(2)

ga(1)) + £(2) g(2) + £(2)

This is exactly I applied to the egalitarian structure for the original system, as
drawn in Section 3.

More formally now, given R = (S1, 01, L1, E1UAx1, Ry), we build split(R) =
(S, 09, Eo U Azo, Ro) by this series of steps:

1. S5 is produced by renaming sorts State to SState, Trans to TState and Elem
to State in Sp (so SState and TState are subsorts of State); this renaming
must be propagated all through the specification;

2. letting Oy := O71 U Ly (that is, rule labels are transformed into operators);

. letting Fs := E1, and Azs := Axq;

4. splitting rules in R; to produce the ones in Ry, as explained above.

w

There is still a difficulty with the resulting system. For it to be equivalent
to the original one, we need to ensure that half-rule ¢; is always immediately
followed by /s, for each original rule ¢. Otherwise, another half-rule ¢} could
take place in between, a behavior not possible in the original system. Again, this
reflects the discrimination of monogamy for transitions, polygamy for states.

A solution is restricting our attention to topmost rewrite systems. Many
interesting rewrite systems are topmost or can be easily transformed into an
equivalent one that is topmost and formally similar [9]. A topmost rewrite system
is one in which all rewrites happen on the whole state term—not on its subterms.
Formally, this is guaranteed by requiring that all rule labels have result sort Elem
(or its subsort Trans), and that the sort Elem does not appear as argument in
any constructor or rule label, so that no term of sort Elem can be subterm of
another term of the same sort. In particular, this prevents that the left-hand
side of a rule is a variable (of sort State). If this happened, the resulting proof
term would have shape £(8), for s of sort State, so the split system would not
be topmost even though the original one was.

In a topmost system, the term £(¢1, ..., t,), resulting from applying the half-
rule ¢, can only be rewritten using half-rule ¢35, as we need. Or, this is so if
there are no two rules with the same label and the same argument sorts. We
assume that our systems fulfill this mild requirement. This is the same reasonable
requirement made to overloaded function symbols.

We assume from now on that transition monogamy is guaranteed in split
systems in some way. Thus, the diagram at the beginning of this section is
commutative. The definitions have been chosen so that the proof of that result
is straightforward.

15

5 Temporal Logics on Egalitarian Structures

As LTSs and Kripke structures can be seen as particular cases of egalitarian
structures, any temporal logic designed for the former ones can also be inter-
preted on the latter. This includes HML [10] and the p-calculus [12], and all the
CTL* family [8]. More interestingly, mixed logics like ACTL* [6] that use at the
same time action identifiers and atomic propositions on states, are interpretable
on egalitarian structures.

As introduced above, we would like to define and verify the satisfaction of
temporal formulas on egalitarian structures by translating the problem to well-
known non-egalitarian settings. That is, we want temporal logics TL; and TL,
and a translation o to complete the previous diagram to this one:

EgRwS EgS TL,
split l K t o
RwS KS TL,

sem

TL, is any state-based logic, like LTL. In Meseguer’s terminology [17], the maps

(’C,O’) : EgS x TL; — KS x TLo
(split, o) : EgRwS x TL; — RwS x TLy

must be faithful maps of tandems, that is, the satisfaction relation must be
preserved. Indeed, instead of giving a new, independent definition for semantics,
we consider they are given by ¢ and define satisfaction on the upper half of the
diagram as satisfaction of translations on the lower half:

R,efeg v iff split(R),e = o(p).

Here, = is the egalitarian satisfaction relation, R is an egalitarian rewrite
system, e a state or transition, and ¢ a temporal formula. Remember that, for
this definition of |=.s to work as expected, we need monogamous transitions in
split(R).

Raw LTL. The perfect temporal logic to play the role of TL; would also be
egalitarian, to exploit the full potential of egalitarian structures. By that we
mean a logic able to use propositions both on states and on transitions as its
basic formulas, and to evaluate formulas on transitions. In a different way: we
want ¢ to be onto. To the best of our knowledge, no such logic has been proposed,
although TLR* [17] and SE-LTL [4] come close.

The obvious onto transformation is the identity: TL; = TLy = LTL and
o = id. Thus, for example, the next operator O has to be interpreted on an
egalitarian structure as “in all outgoing transitions” when on a state, and “in the
destination state” when on a transition. That gives the specifier full power. This

16

is equally valid for state-based temporal logics other than LTL. The moral is:
instead of (or in addition to) looking for new state-and-transition-based temporal
logics, use well-known state-based logics on split systems.

From LTL¢, to LTL. Consider a Kripke structure X and an LTL formula ¢
interpreted on K. We can interpret ¢ on £(K), the embedding of K as egalitarian
structure, by pretending that transitions are not present and jumping from state
to state. Let us refer to LTL with these semantics on egalitarian structures as
LTLcg. We want to find the o that makes faithful the map of tandems (K, o) :
EgS x LTLeg — KS x LTL. From a practical point of view this is pointless, as it
amounts to translating a problem (X, ¢) on KS x LTL to the more complex one
(K(E(K)),0(¢)) on the same setting; but it is an interesting exercise.

The next operator O is originally only interested in states, so it must skip
t-states. The translation o must duplicate this operator: o(Og) = O O o(¢p).
The at all future times operator 0O, being an LTL operator, must rather be
understood as on all future states. The translation ¢ must make it skip every
second state, which is known to be non-doable in LTL [20]. We have to use
the atomic proposition isTrans, true for t-states and false otherwise, and define
o(O) := O(isTrans V o(y)).

However, intuitively, something is wrong in the specification of a system if
a property that is supposed to hold at all future times does not hold while
transitions are being executed. If I am feeling sleepy until lunch and also after
lunch, so would I be while having lunch. Remember the discussion at the end of
Section 3 about the proposition has-gi. For another example, think of a system
whose states are given as soups of objects, that is, independent objects tied by
a commutative and associative operator (often represented by empty syntax).
This could be such a state:

‘ <clientl, waiting, infol> <client2, running, info2> <server, client2>
We are interested in knowing whether some client is waiting. The proposition
some-waiting can be defined like this:

eq <C, waiting, I> Rest |= some-waiting = true .
eq Conf |= some-waiting = false [owise]

When client2 finishes its communication with the server, the system executes
the rule

rl [finish] : <C, running, I> <server, C>
=> <C, finished, I> <server, noclient> .
and goes to state

‘ <clientl, waiting, infol> <client2, finished, info2> <server, noclient>

by means of the transition

‘ <clientl, waiting, infol> finish(client2, info2)

The point to note is that some-waiting is true, as defined, in both states and in
the transition.

17

From TLR* to CTL*. The approach to propositions on transitions in TLR*
is through the use of so-called spatial actions, that is, patterns for proof terms. A
single rule label ¢, for instance, is a valid spatial action. Variable instantiations
and contexts for rewriting can also be specified. For each of these patterns,
an equivalent atomic proposition on t-states can be defined. Equivalent in the
sense that a t-state satisfies the proposition iff it matches the pattern. This was
implemented in [1] and in [13]. We assume this equivalence, so that any spatial
action appearing in a TLR* formula can appear as a proposition in a CTL*
formula. (Defining a proposition equivalent to a single rule-label pattern involves
exploring the proof term to search for the label at any nesting level. However,
rules tend to be applied at particular spots in the term. Compare to operators:
it is rare that we are interested in whether a particular operator appears at any
nesting level on a state term, and then define atomic propositions according to
it.)

In TLR*, propositions on states and spatial actions are clearly separate en-
tities: the former are only tested on states, the latter only on transitions. But
when interpreted on KC(R) both are propositions on states. In order to be able
to define o, we need that (R) includes two subsorts of Prop: SProp and TProp.

From TLR*’s point of view, a transition is tied to its origin state. Thus, if
P, is a TProp and P; is an SProp, the formula O(P; A Ps) means “P; must hold
on the next state, and P; must hold on the transition going out from that next
state”. Likewise, the formula O P, means “P; must hold in all future transitions”.

This deserves formalization. Taking as primitive constructs for TLR* nega-
tion, disjunction, next, until, and existential quantification on paths, we define
o : TLR* — CTL* by:

— o(P) = P, if P has sort SProp;
— o(P) = OP, if P has sort TProp;
— o(—¢) = —0(p);

(
(
(
,0—(
(
(
(

J

— 0
— O

The proposition isState, as explained in Section 3, needs to be defined in (&)
as true on s-states and false on t-states.

The previous two examples defined new semantics for raw LTL and LTLcg
through the translations o. This case is different, because TLR* already has
semantics [17]. The following result is in order.

Proposition 1. The map
(K,0) : EgS x TLR* — KS x CTL*
s a faithful map of tandems, that is,

E sy == K(€) s Falp).

18

Proof. The satisfaction symbol on the right is the usual one for Kripke struc-
tures and CTL*. The one on the left is defined in [17]. But these semantics of
Meseguer are defined on a structure that is not a pure Kripke structure and
not an egalitarian one, but something in between. For a proper statement and a
proof to be possible we should formally define satisfaction of TLR* formulas on
egalitarian systems. We do it now, adapting [17].

First, a run on an egalitarian structure is a sequence of states and transitions
S0, t1, S2,t3 ... such that (s;,t;41) € R for all even i and (¢;, s;41) € R for all odd
i. We are particularly interested in infinite runs. We denote by Run(&)s the set
of infinite runs of £ starting at state s. (We are already being non-egalitarian:
it cannot be avoided, as the statement mentions satisfaction on states, not on
transitions, and also because, as already mentioned, the semantics in [17] ties
transitions to their origin states.)

We use the following syntax for TLR*, slightly adapted from [17]. We use
as primitive symbols negation, disjunction, next, until, and existential quantifi-
cation on paths, as above. The two categories defined are formulas on states,
s, and formulas on paths (starting at states), ¢,. The symbol ps represents
an atomic proposition on states, and p; on transitions. (Remember that here
we do not follow Meseguer, who uses spatial actions instead of propositions on
transitions.)

— s =T | 2ps | s V@, | Eopp,
—op =T s [Pt | ~0p | 0p Vol | Xop | 0p U,

Our choice of syntax entails that a proposition on states ps is not a formula
on states. Instead, it is Ep, that expresses the property that ps holds at the
initial state. We admit this is odd, but it is more symmetrical and clean. It is
always possible to introduce shortcuts or syntactic sugar afterwards. Anyway,
usual definitions of syntax for TLR* or CTL* entail that E ¢, is a formula on
paths, which is equally odd.

We need to define two satisfaction relations. Some notation is needed: if p
is an infinite run, p(¢) denotes the i-th element of the run (starting at 0) and
p(i,00) the infinite run that results from p by removing the i first elements. The
cases for negation, disjunction, and constant truth are defined as usual and we
omit them.

- &,s=Eyp, <= there exists p € Run(€), such that £, p = p;

- & pEps = ps € L(p(0));

- & pEp = p € L(p(l));

—EpEXpp = &,p(2,0) = wp;

— & pkF ¢y Uy, <= there exists k € N such that &, p(2k, o) |= ¢}, and for
alli € {0,...,k — 1} we have &, p(2i,00) = pp.

Now, checking that these semantics agree with the ones given in [17] and
completing the real proof of the proposition are both straightforward tasks. O

19
6 Our Implementation

We have implemented in Maude the translation just defined, but restricted to
the linear-time subset of TLR*, called LTLR, and to topmost systems. That is:

(split, o) : EgRwS x LTLR — RwS x LTL.

The implementation and some examples are available for download from our
website: http://maude.sip.ucm.es/syncprod. Appendix A contains detailed
instructions for using the implementation.

The function “split” is implemented by a module operator SPLIT[ModName].
It produces a module with each original rule split into two, and with the original
rule labels added as operators to the signature. Users, after coding a system
module, say Orig, can import the split module by using protecting SPLIT[Orig].
Then, they have available sorts StateOrig (a renaming of the original State) and
TransOrig, and also a new sort State, which is a supersort of the other two.

In the exposition in Section 3 we proposed the name Elem to include states
and transitions. However, we want to be ready for our future developments in
which we anticipate that nested module operators will be used. That is why we
always assume that the input system has a sort named State, and we guarantee
that the same is true for the produced system. Module operators observing this
convention can be combined. For instance, SPLIT[SPLIT[0rig]] is a valid module
expression.

If model checking is the aim, atomic propositions on s-states and t-states
can be declared and their satisfaction defined by the usual means. The model-
checking function, modelCheck, expects an LTL formula, that it interprets in the
split module (without any consideration to the fact that it is a split module).
We have implemented the syntax of LTLR and the translation o described at
the end of the previous section (except that we do not need quantification on
paths, as we restrict to linear time). The function that performs the translation
is called LTLR. We have not included in this implementation spatial actions, so
our flavor of LTLR uses propositions on transitions and no spatial actions. The
syntax for LTLR formulas has been defined with a symbol “@” attached to each
logical symbol, to avoid clashes with LTL syntax: @True, @->, and so on. Not a
beautiful choice, but acceptable for a prototype. The formula LTLR(@~ P @-> Q),
for example, can be used in the model checker, assuming propositions P and Q
have been properly declared and defined, each one either of sort SProp or TProp.

To test the performance of our tool, we have found useful an example sys-
tem about a communication channel described in [17]. The system contains a
parameter, maxFaults, that limits the number of duplications and losses of mes-
sages the communication can suffer. This single number allows tuning the size of
the state space and drawing some conclusions on the performance of the model
checker.

For a quick reminder, these are the rules of the system:

crl [tick] : {X | T} => {next(X) | s(T)} if not other-rule-enabled(X) .
rl [req]l : {X [C, S, Q, N, true, noAnswer] | T}

http://maude.sip.ucm.es/syncprod

20

=> {X [C, S, Q, N, false, noAnswer] (N copies S <| C, @ | T} .

rl [reply]l : {X [8] (S<I C, Q) | T}
=> {X [S] (C<I| S, f(S, C, @) | T} .

rl [rec] : {X [C, S, Q, N, B, A’] (C<| S, A) | T}

=> {X [C, S, Q, N, B, A] | T} .
rl [dupl] : {X Msg dupl(s(N)) | T} => {X Msg Msg dupl(N) | T} .
rl [dupl-quit] : {X dupl(s(N)) | T} => {X dupl(0) | T} .
rl [loss] : {X Msg loss(s(N)) | T} => {X loss(N) | T} .
rl [loss-quit] : {X loss(s(N)) | T} => {X loss(0) | T} .

We have chosen a pure LTL formula and have model checked it in the stan-
dard way. Then, we have split the system specification and translated the formula
(considering it is in LTLR) and have model checked it again. In short, we are
performing an equivalent model checking in a more involved and costly way.
The aim is to get an idea of how much is lost in performance to pay for being
egalitarian, for being interested in transitions.

The data is in this table:

standard LTL split

maxFaults states secs states secs
1 287 0 1,321 0
2 1,007 0 5,489 0
3 2,455 0 14,870 0
4 5,025 0 32,988 0
5 9,283 0 65,088 0
6 15,978 1 118,420 1
7 26,077 1 202,686 2
8 40,803 1 330,534 3
9 61,676 1 518,097 4
10 90,557 2 785,577 6
11 | 129,695 3| 1,157,874 10
12 | 181,777 5| 1,665,260 18
13 | 249,981 8 | 2,344,098 30
14 | 338,032 17 | 3,237,606 63
15 | 450,261 33 | 4,396,666 105

(It must be noted that this system has an infinite number of reachable states.
It is a surprise that Maude’s model checker behaves gracefully on it. The reason
must be that the system is finitely branching and that the property we try to
verify is indeed satisfied in finite time in every computation.)

According to the table, the transitions in the original system seem to out-
number the states, and this results in large split systems. Each state on the split
system needs less mean time to be processed than each state on the original,
presumably because t-states have unique in and out arrows.

Note that this extra complexity is not introduced by our splitting translation,
but by our egalitarian view. Transitions have to be explored, either as such
transitions or as new states after the translation.

21

6.1 An Alternative Translation

Already in [17], Meseguer proposed a different translation from TLR* to CTL*,
with a corresponding translation of rewrite systems. It was later implemented
in Maude by Bae for LTLR in [2], with the explicit aim of using Maude’s LTL
model checker. Both their translation and their implementation differ from ours.

They include in each state the information about the transition that took
to it. If a given state has several transitions leading to it, the resulting system
has a copy of the state for each such transition. The number of states added is
usually much larger in our translation, but each state is more complex in theirs.
This is a different way to pay for being interested in transitions.

The translation of temporal formulas is based on the replacement of each
occurrence of a proposition on transitions P by OP: what was a property of a
transition associated to the current state, becomes a property of the transition
part of the next state.

Their implementation does not require the system to be topmost. Our own
translation, on the other hand, seems more intuitive, because it just adds new
states in each arrow, without really changing the structure. Consider this simple
system (on the left), our translation (in the middle), and theirs (on the right):

ty

C ()

Oaliy @\

The implementation in [2] works at the metalevel, as does the theoretical
description in [17]. Basically, they emulate the original rewrite system with a
single rule r1 ¢ — next(t), with the function next doing all the work and the term
t including all the information about the original module, the current state, and
some bookkeeping needed for the emulation. In contrast, we use the metalevel
to produce a new object-level module, which we then model check. Obtaining
modules at the object level is important for us because, as noted above, we
foresee we will be using nested module operators in the future.

Our method’s performance is better on the systems we have tested. This is
most probably due to the fact that we work at the object level, with simpler
terms being rewritten. The following data comes from model checking the same
communication-channel system cited above, this time with a formula containing
a proposition on transitions (resp., a spatial action):

our method | [2]’s method

maxFaults states secs states secs

2 3,886 0 2,406 2

35,459 1 20,281 25

77,804 2| 42,937 57

332,256 12 | 172,510 278
568,066 30 not run

S O W

22

It has to be noted that Bae and Meseguer took one more step and modified
Maude’s model checker at the C++ level to allow for model checking LTLR
directly.

7 Future Work

We want to point out three directions in which our proposals could be profitable.
We intend to pursue some of them in the near future.

Concurrent Proof Terms. The persistence of a discrimination in the defi-
nition of egalitarian systems is a hint that we are midway to somewhere. Re-
member the discrimination: transitions have unique in and out arrows. Bipartite
alternating automata—or any bipartite structures—can be seen as extensions
of egalitarian structures where the discrimination has been dropped in a partic-
ular way. In a different spirit, Petri nets also represent a generalization of our
egalitarian structures, allowing several arrows in and out of a transition.

Removing the topmost requirement seems more interesting, thus allowing
several rules to be erecuting simultaneously. For instance, the toy system we
used above, with the rule r1 [a] : N => N + 1, allows the derivation

() +g(1) — £@M) +g) — £(a)) + glall))

This last term represents two concurrent executions of rule a. Suppose £ and
g represent two components of a software system, and the argument is their
version number. Rule a is version updating for each component. It happens,
however, that version 2 of each component is only compatible with version 2
of the other. Any sequential, interleaved execution (like the ones performed by
Maude’s engine) necessarily visits a state with incompatibility. This same engine
will find the right way on a split system.

Synchronization and Strategies. In [15], we study the possibility of syn-
chronized execution of several Maude systems. In principle, the synchronization
happens on states by agreement on their propositions, but on transitions only
by identity of rule labels. This is often not enough, and having propositions on
transitions opens interesting possibilities.

A use of such synchronized execution will be the implementation of strategic
control. Strategy languages for rewrite systems usually include rule labels to
denote actions, but more general tests (or propositions) on states. The use of
propositions on transitions, as already pointed, would allow decoupling the tasks
of system specification and strategy design. If, for example, the system is refined,
or modified in some way, the definition of the propositions can also be modified
correspondingly, with no change in the name or meaning of the propositions, let
alone in the formulas to be verified.

23

Shrinking the Size of Systems. Several methods for shrinking the size of
systems, especially with model checking in mind, are in common use: invisible-
transition collapse, partial order reduction, equational abstraction, folding ab-
stractions, well-structured transition systems. Some of them focus only on states
and others only on transitions. An egalitarian view could result in new insights.

8 Conclusion

We have tried to convince the reader that granting to transitions all the privileges
enjoyed by states can help in specification and verification tasks. In particular,
we advocate for the free use of atomic propositions on transitions, as well as
on states. Mixing both kinds of propositions helps make specifications, both of
systems and of their temporal properties, more powerful and intuitive. Indeed,
it allows to definitely decouple specification tasks from verification ones: entities
from the system specification are not used literally in formulas, because propo-
sitions provide an interface. For strategy languages, propositions on transitions
make it possible to give general meaning to strategies, independent from the
particular formalization of the system to be controlled.

Structures that allow general propositions on transitions are not common.
Egalitarian structures are designed to play this role, and labeled transition sys-
tems and Kripke structures can be embedded in them. Rewriting logic is par-
ticularly well suited for an egalitarian view, that is, there are natural semantics
from rewrite systems as egalitarian structures.

There are ways to apply existing tools and concepts to egalitarian structures.
Faithful maps of tandems can be given from egalitarian structures and logics
to better-known settings. This paper presents a prototype implementation in
Maude, allowing the specification of egalitarian systems and their verification
using the available LTL model checker.

Acknowledgements. It is comforting to realize how much a paper can improve
with the help of capable referees. We are most grateful to ours.

24

A Instructions on the use of our implementation

This appendix contains instructions (through an example) on how to specify
and verify egalitarian systems in Maude using our implementation of the SPLIT
module operator. The Maude system is available for download at http://maude.
cs.illinois.edu. Our implementation is available at http://maude.sip.ucm.
es/syncprod. It has been developed and tested using Maude version 2.7 on
Linux, and Full Maude version 2.7. It consists of the following files:

— split.maude: Code for the meta-level function split : Module -> Module.
— 1tlr.maude: Syntax for LTLR and translation to LTL.

— mod-expr.maude: Implementation of module operator SPLIT.

— fm-extension.maude: Extends Full Maude to make it understand splits.
— loads.maude: Loads all needed to work in Full Maude with split systems.

The user only needs to issue the command

| load loads.maude

to the Maude interpreter to get it ready to work in an egalitarian way.

A.1 The example

The rest of the appendix contains an example of how to specify and model check
a very simple system. The first step is coding the system the same well-known
way it is always done in Maude:

(mod EXAMPLE is
pr NAT .
sort State .
op a : Nat -> State .
var N : Nat .
crl [forth] : a(N) => a(N + 1) if N < 100 .
rl [back] : a(3) => a(2)
endm)

As we are working in Full Maude, we enclose the whole module in parentheses.
The system can be represented as a line with a loop back:

()])}) [

The bound N < 100 is only to ensure the system is finite.

Below, we need to use and extend the splitting of this system. It is produced
by the module expression SPLIT[EXAMPLE]. We don’t need to know how it looks
like in the inside, but just make things clearer, the split system is this one (rather,
it is equivalent and formally quite similar to this one):

(mod SPLIT[EXAMPLE] is

pr NAT .
sorts StateEXAMPLE TransEXAMPLE State .

http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
http://maude.sip.ucm.es/syncprod
http://maude.sip.ucm.es/syncprod

25

subsorts StateEXAMPLE TransEXAMPLE < State .
op a : Nat -> StateEXAMPLE .
op forth : Nat -> TransEXAMPLE .
op back : -> TransEXAMPLE .
var N : Nat .
crl [forthl] : a(N) => forth(N) if N < 100 .
rl [forth2] : forth() => a(N + 1)
rl [backl] : a(3) => back .
rl [back2] : back => a(2)
endm)

We are interested in finding out whether, for any computation starting at
state a(0), the only way to arrive to states a(N) with N < 2 is through the
repeated use of rule forth, with no rule back in between. This is clearly true,
but we want to ask the model checker anyway. Using future-time operators, we
can express this property by the LTLR formula

D(going—back — D‘ﬂat—Nth)

The formula mixes a proposition on states (at-N1t2: the system is at a state
a(N) with N < 2) with one on transitions (going-back: the system is running rule
back). We propose next two different ways to accomplish our aim. We declare
our preference for the second one.

A.2 First way: LTLR

We give meaning to the propositions by extending SPLIT[EXAMPLE]. This is the
code (remarks below):

(mod EXAMPLE-PROPS-LTLR is
pr SPLIT[EXAMPLE]
inc MODEL-CHECKER .
inc LTLR .

op going-back : -> TProp .
eq back |= going-back = true .
eq T:TransEXAMPLE |= going-back = false [owise]

var N : Nat .

op at-N1t2 : -> SProp .

eq a(N) |= at-N1t2 = (N < 2)

eq S:StateEXAMPLE |= at-N1t2 = false [owise]

eq S:StateEXAMPLE |= isState = true .
eq T:TransEXAMPLE |= isState = false .
endm)

The temporal logic LTLR considers propositions on states and on transitions
as different objects. So, we have defined going-back as a proposition on transi-
tions (TProp) true only of back. And at-N1t2 is a proposition on states (SProp).
The proposition isState is declared and used in file 1tlr.maude, but must be
defined in the module where it is used, as we have done. It must be defined to

26

be true on proper states and false on states that were transitions in the origi-
nal system. It is needed to translate formulas from LTLR to LTL, as explained
below.

The formula we want to model check, written in our syntax for LTLR is

@[] (going-back @-> @[] @~ at-N1t2)

To avoid clashes with LTL’s syntax, we have prefixed every operator with the
symbol e. It is not a beautiful choice, but it is acceptable for a prototype. Then,
we have the function LTLR that translates from LTLR to LTL. This translation
needs to use isState. For instance, the translation for operator eU is defined in
this way:

| eq LTLR(F QU G) = (isState -> LTLR(F)) U (isState /\ LTLR(G))

That is why we need to include the definition for isState in our module.

After loading the module EXAMPLE-PROPS-LTLR into Full Maude, the only thing
left is running the model checker:
| red modelCheck(a(0), LTLR(@[](going-back @-> @[] @~ at-N1t2)))

To which it answers on the affirmative.

A.3 Second way: LTL

In many cases, propositions on states can also be given a natural meaning on
transitions, and vice versa. For instance, going-back is trivially false when noth-
ing is running, that is, on any state. In the same way, at-N1t2 can be considered
to be true when running rule forth with a value for N less than 2. Thus, we can
extend SPLIT[EXAMPLE] in this way:

(mod EXAMPLE-PROPS-LTL is
pr SPLIT[EXAMPLE]
inc MODEL-CHECKER .

op going-back : -> Prop .
eq back |= going-back = true .
eq S:State |= going-back = false [owise]

var N : Nat .

op at-N1lt2 : -> Prop .

eq a(N) |= at-N1t2 = (N < 2)

eq forth(N) |= at-N1t2 = (N < 2)

eq S:State |= at-N1t2 = false [owise]
endm)

Note that the sort State appearing here is the one from SPLIT[EXAMPLE], that
includes as subsorts StateEXAMPLE and TransEXAMPLE. Also, the sort Prop includes
both propositions on transitions and on proper states. This allows us to write and
use the LTL formula directly when calling the model checker. So, after loading
EXAMPLE-PROPS-LTL into Full Maude, we issue the command:
| red modelCheck(a(0), [](going-back -> [] ~ at-N1t2))

The answer is again a boring but reassuring true.

27

References

10.

11.

12.

13.

Bae, K., Meseguer, J.: The linear temporal logic of rewriting Maude model checker.
In: Olveczky, P.C. (ed.) Rewriting Logic and its Applications. 8th International
Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos,
Cyprus, March 20-21, 2010, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6381, pp. 208-225. Springer (2010), http://dx.doi.org/10.1007/
978-3-642-16310-4_14

Bae, K., Meseguer, J.: A rewriting-based model checker for the linear temporal logic
of rewriting. In: Kniesel, G., Pinto, J.S. (eds.) Ninth International Workshop on
Rule-Based Programming (Rule 2008). Electronic Notes in Theoretical Computer
Science, vol. 290, pp. 19-36. Elsevier (2012), http://www.sciencedirect.com/
science/article/pii/S1571066112000795

Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved
transitions. Fundamenta Informaticae 11, 433-452 (1988)

Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based
software model checking. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM. Lec-
ture Notes in Computer Science, vol. 2999, pp. 128-147. Springer (2004)

De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458-487 (Mar 1995), http://doi.acm.org/10.1145/201019.201032

De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, 1. (ed.) Semantics of Systems of Concurrent Processes.
Lecture Notes in Computer Science, vol. 469, pp. 407-419. Springer (1990)

Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In:
Gadducci, F., Montanari, U. (eds.) Proceedings of the Fourth International Work-
shop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September
19-21, 2002. Electronic Notes in Theoretical Computer Science, vol. 71, pp. 162—
187. Elsevier (2004), http://dx.doi.org/10.1016/S1571-0661(05)82534-4
Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. J. ACM 33(1), 151-178 (Jan 1986), http:
//doi.acm.org/10.1145/4904.4999

Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems us-
ing narrowing. In: Baader, F. (ed.) Term Rewriting and Applications, 18th In-
ternational Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4533, pp. 153-168. Springer (2007),
http://dx.doi.org/10.1007/978-3-540-73449-9_13

Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137-161 (1985)

Kindler, E., Vesper, T.: ESTL: A temporal logic for events and states. In: Desel, J.,
Silva, M. (eds.) Application and Theory of Petri Nets 1998: 19th International Con-
ference, ICATPN’98 Lisbon, Portugal, June 22-26, 1998 Proceedings. pp. 365-384.
Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg
(1998), http://dx.doi.org/10.1007/3-540-69108-1_20

Kozen, D.: Results on the propositional p-calculus. Theoretical Computer Science
27(3), 333 — 354 (1983), http://www.sciencedirect.com/science/article/pii/
0304397582901256, special Issue Ninth International Colloquium on Automata,
Languages and Programming (ICALP) Aarhus, Summer 1982

Martin, O., Verdejo, A., Marti-Oliet, N.: Model checking TLR* guarantee for-
mulas on infinite systems. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specifi-
cation, Algebra, and Software, Lecture Notes in Computer Science, vol. 8373,

http://dx.doi.org/10.1007/978-3-642-16310-4_14
http://dx.doi.org/10.1007/978-3-642-16310-4_14
http://www.sciencedirect.com/science/article/pii/S1571066112000795
http://www.sciencedirect.com/science/article/pii/S1571066112000795
http://doi.acm.org/10.1145/201019.201032
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://doi.acm.org/10.1145/4904.4999
http://doi.acm.org/10.1145/4904.4999
http://dx.doi.org/10.1007/978-3-540-73449-9_13
http://dx.doi.org/10.1007/3-540-69108-1_20
http://www.sciencedirect.com/science/article/pii/0304397582901256
http://www.sciencedirect.com/science/article/pii/0304397582901256

28

14.

15.

16.

17.

18.

19.

20.

pp. 129-150. Springer Berlin Heidelberg (2014), http://dx.doi.org/10.1007/
978-3-642-54624-2_7

Martin, O., Verdejo, A., Marti-Oliet, N.: Egalitarian state-transition systems. In:
International Workshop on Rewriting Logic and its Applications. pp. 98-117.
Springer (2016)

Martin, O., Verdejo, A., Marti-Oliet, N.: Synchronous products of rewrite systems.
Tech. rep., Facultad de Informética, Universidad Complutense de Madrid (2016),
http://maude.sip.ucm.es/syncprod

Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73-155 (1992), http://dx.doi.org/10.1016/
0304-3975(92)90182-F

Meseguer, J.: The temporal logic of rewriting: A gentle introduction. In: Degano,
P., Nicola, R.D., Meseguer, J. (eds.) Concurrency, Graphs and Models, Essays
Dedicated to Ugo Montanari on the Occasion of His 65th Birthday. Lecture Notes
in Computer Science, vol. 5065, pp. 354-382. Springer (2008), http://dx.doi.
org/10.1007/978-3-540-68679-8_22

Reisig, W.: Petri Nets: An Introduction, EATCS Monographs on Theoreti-
cal Computer Science, vol. 4. Springer (1985), http://dx.doi.org/10.1007/
978-3-642-69968-9

Sanchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using du-
alization and stratification. In: Reynolds, M., Terenziani, P., Moszkowski, B. (eds.)
Proceedings of the 19th International Symposium on Temporal Representation and
Reasoning (TIME 2012). pp. 13-20. IEEE Computer Society (2012)

Wolper, P.: Temporal logic can be more expressive. Information and Control
56(1-2), 72-99 (1983), http://www.sciencedirect.com/science/article/pii/
S0019995883800515

http://dx.doi.org/10.1007/978-3-642-54624-2_7
http://dx.doi.org/10.1007/978-3-642-54624-2_7
http://maude.sip.ucm.es/syncprod
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1007/978-3-540-68679-8_22
http://dx.doi.org/10.1007/978-3-540-68679-8_22
http://dx.doi.org/10.1007/978-3-642-69968-9
http://dx.doi.org/10.1007/978-3-642-69968-9
http://www.sciencedirect.com/science/article/pii/S0019995883800515
http://www.sciencedirect.com/science/article/pii/S0019995883800515

	Egalitarian State-Transition Systems(extended version)
	Introduction
	Related Work
	Our Contributions in This Paper

	Egalitarian Structures
	Egalitarian Semantics for Rewrite Systems
	Translation to Familiar Grounds
	Temporal Logics on Egalitarian Structures
	Our Implementation
	An Alternative Translation

	Future Work
	Conclusion
	Instructions on the use of our implementation
	The example
	First way: LTLR
	Second way: LTL

