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Summary

In this paper we study a nonlinear system of differential equations arising
in chemotaxis. The system consists of a PDE that describes the evolution of a
population and an ODE which models the concentration of a chemical substance.
We study the number of steady states under suitable assumptions, the existence
of one global solution to the evolution problem in terms of weak solutions and
the stability of the steady states.
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1 Introduction

Chemotaxis is the ability of microorganisms to respond to chemical signals by mov-
ing along the gradient of the chemical substance, either toward the higher concentration
(positive taxis) or away from it (negative taxis).

Over the last few decades a rich variety of mathematical models for studying chemo-
taxis has appeared. One of the first was presented by Keller and Segel [7], [8]. It
describes the density distribution of a type of bacteria “Dyctyostelium discoideum”
(denoted by p) and a chemical concentration, w, in a coupled system of partial differ-
ential equations

∂p

∂t
= ∆p− div (pχ(w)∇w),

0 = ∆w + (p− 1).

After this study, there has been great interest in the analysis of similar models (see [2]
– [6] and reference there).
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In the last fifteen years another model, called reinforced random walks, has been de-
veloped to understand the mechanism of chemotaxis (see [12], [9] and reference there).
Chemotaxis also appears in many other phenomena, such us for instance in the for-
mation of capillary blood by endothelial cells. Recently, Anderson and Chaplain [1]
and Levine, Sleeman and Nilsen-Hamilton [10] have introduced several models for an-
giogenesis. These authors study the growth of tumors based on the analysis of the
relevant biochemical processes and the methodology of reinforced random walks.

Friedman and Tello [4] study the models proposed in Levine and Sleeman [9] and
Othmer and Stevens [12] under suitable conditions in chemotactic coefficient and pro-
duction terms.

Fontelos, Friedman and Hu [3] study the model proposed in Levine, Sleeman and
Nilsen-Hamilton [10]. This system of equations does not have a logistic growth term
and nonconstant steady states appear (see [3]). Fontelos et al [3] prove the existence of

global solutions in the space C
2+β,1+ 1

β

x,t and analyze the asymptotic behavior of the solu-
tions and their stability. They consider that the production of the chemical substance
depends on p and x. Therefore the production term is nondecreasing in w (essential
assumption in the proof of the results of this paper).

In this paper we consider the system

∂p

∂t
= div(d∇p− pχ(w)∇w) + rp(N − p) x ∈ Ω t > 0, (1)

∂w

∂t
= h(p, w) x ∈ Ω t > 0, (2)

where d is the diffusion constant, χ(w) is the chemotactic sensitivity and r,N are
positive constants. h(p, w) represents the production of the chemical substance by the
living organisms. Depending on the process, χ(w) and h(p, w) can take different forms.
The boundary conditions for p are

∂p

∂n
− pχ(w)

∂w

∂n
= 0 x ∈ ∂Ω t > 0, (3)

where ∂p
∂n

is the outward normal derivative and initial conditions are

p(x, 0) = p0(x), w(x, 0) = w0(x) x ∈ Ω. (4)

As in Reference [11] we consider the logistic growth term rp(N − p) in the equation
which models the density of the population.

Myerscough, Maini and Painter [11] performed a numerical study of the steady
states in case that w satisfies an elliptic equation of the type

−∆w = h(p, w) x ∈ Ω.

They focus on the role of boundary conditions and find spatially non-constant solutions
for different boundary conditions and some nonlinear functions h.

We assume throughout the paper that the positive constants q̄, p̄, w̄ exist and satisfy

q̄ > max
x∈Ω

{p0(x), N}, w̄ > max
x∈Ω

{w0(x)}, p̄ = q̄exp{
∫ w̄

0
χ(w)dw} (5)
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h(p̄, w̄) = 0 h(0, 0) = 0. (6)

χ and h satisfy

χ, h belong to C2, for 0 ≤ p ≤ p̄, 0 ≤ w ≤ w̄, (7)

∂h

∂p
> 0 if 0 ≤ p ≤ p̄, 0 ≤ w ≤ w̄, (8)

pχ
∂h

∂p
+

∂h

∂w
< 0 if 0 ≤ p ≤ p̄, 0 ≤ w ≤ w̄, (9)

χ(w) > 0, for 0 ≤ w ≤ w̄. (10)

Ω ⊂ IRn (n ≤ 3) is an open and bounded domain with ∂Ω ∈ C2+β. (11)

Assumption (10) means that the organisms move toward the higher concentration of
the chemical substance.

We also assume that the initial data satisfy

0 ≤ p0(x) ∈ H1(Ω) ∩ L∞(Ω) 0 ≤ w0(x) ∈ H2(Ω) and

∂p0

∂n
=

∂w0

∂n
= 0 on ∂Ω.

(12)

Assumptions (7)-(10) are satisfied, for instance,

h(p, w) = µp− w χ = constant, (13)

h(p, w) = µp− w

α + w
χ =

β + w

α + w
(14)

h(p, w) = µp
w

α + w
− νw χ =

γ

β + w
(15)

for a range of parameters and some initial data. Several researchers in this area are
particulary interested in the case (15) where χ(w) appears in the literature in the form
ln(φ(w))′ for φ(w) = (β + w)γ. In case (15) assumptions (5)-(9) hold and Theorems
1.1-1.3 can be applied if p̄ satisfies N < p̄ < νβα

γw̄
where p̄ and w̄ are defined by (5), (6).

Solutions to (1)-(4) which are biologically meaningful must satisfy

0 ≤ p(x, t) < ∞, 0 ≤ w(x, t) < ∞. (16)

Set ΩT = Ω× (0, T ) (0 < T < ∞). We will assume throughout the paper that d = 1.

The main results of this work are the following theorems:

Theorem 1.1 Under the assumptions (7)-(11), the steady states (p∗, w∗) of (1)-(4)
satisfying (16) are constant and given by

(0, 0) or (N, Ψ(N)) (17)

where Ψ(N) is the unique solution to h(N, Ψ(N)) = 0.
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Theorem 1.2 Under the assumptions (7)-(11), there exists a unique global solution
(p, w) to (1)-(4) satisfying

p ∈ L2(0, T : H2(Ω)) ∩ L∞(ΩT ) w ∈ L∞(0, T : H2(Ω)) ∩ L∞(ΩT )

for any T < ∞.

Theorem 1.3 If the initial values (p0, w0) satisfy

sup
x∈Ω

|p0(x)−N |+ sup
x∈Ω

|w0(x)−Ψ(N)| ≤ ε, (18)

where ε is small enough and (7)-(11) hold. Then, the solution (p, w) to (1)-(4) has the
asymptotic behavior

p → N, w → Ψ(N) when t →∞ in Ls(Ω)

for any s ≤ ∞ if n = 1, s < ∞ if n = 2 and s < 6 if n = 3.

Assumptions (8) and (9) define the behavior of the solution. Following Levine and
Sleeman [9] the equation (1)-(4) can be considered in the “Hodograph plane”: applying
the implicit function theorem to equation (2) and as a result of (8) and (9) we obtain

p = ψ(wt, w)
∂ψ

∂wt

=

(
∂h

∂p

)−1
∂ψ

∂w
= − ∂h

∂w

(
∂h

∂p

)−1

.

If Ω = (0, L) ⊂ IR, substituting it in (1) it results

ψwtwtt + ψwwt − (ψwtwxxt + ψwwxx + 2ψwwtwxwxt)+

χψwxx + χψwtwxtwx + (χψw + χ′ψ)(wx)
2 = rψ(N − ψ).

Consider now the second order operator

L(w) := wttψwt + (−ψw + χψ)wxx + 2bwxt

where b = 1
2
(−2ψwwtwx + χψwtwx). Then equations (1), (2) become

L(w) = k(w, wx, wt, wxxt, ψ, ψw, ψwt , ψwwt). (19)

Since the discriminant

b2 − ψwt(−ψw + χψ) = b2 −
[
∂h

∂p

]−1

(
∂h

∂w

(
∂h

∂p

)−1

+ χψ) = b2 −
[
∂h

∂p

]−2

(
∂h

∂w
+ χψ

∂h

∂p
)

is strictly positive (by (9)) L is clearly an hyperbolic operator. Assumption (9) implies
that h is strictly increasing in w. If (9) is substituted by pχ∂h

∂p
+ ∂h

∂w
> 0, there are no

control on the type of the differential operator L, and it could be parabolic, elliptic
or hyperbolic. Then the arguments used to prove Lemma 3.2 can not be applied and
blow-up could occur (as in case r = 0 for some values of the parameters, see [9] for
details).
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2 On the steady states

2.1 Proof of Theorem 1.1

Let us consider the solutions to the stationary problem

div(∇p− pχ(w)∇w) + rp(N − p) = 0 x ∈ Ω, (20)

h(p, w) = 0 x ∈ Ω. (21)

Since hp > 0, hw < 0 (by (8) and (9)), we can apply the implicit function theorem to
solve the equation (20) in the form p = Ψ(w) and obtain

Ψ′(w) = −hw

hp

> 0 and Ψ(0) = 0. (22)

Let (p∗, w∗) be a stationary solution, then h(p∗, w∗) = 0 and p∗ = Ψ(w∗). Substi-
tuting this in (1) we get

−div{ 1

hp

(hw + p∗χ(w∗)hp)∇w∗}+ rΨ(w∗)(N −Ψ(w∗)) = 0 in Ω (23)

with boundary conditions

Ψ′(w∗)
∂w∗
∂n

− p∗χ(w∗)
∂w∗
∂n

=
−1

hp

(hw + p∗χ(w∗)hp)
∂w∗
∂n

= 0,

i.e.
∂w∗
∂n

= 0 x ∈ ∂Ω. (24)

Lemma 2.1 Any solution w∗ to (23), (24) satisfying (16) belongs to C1(Ω).

Proof: Let us consider the function Φ defined by

Φ(w∗) =
∫ w∗

0

1

hp(Ψ(s), s)
(hw(Ψ(s), s) + Ψ(s)χ(s)hp(Ψ(s), s))ds.

By (7), (8) and (9) we know that Φ ∈ C1 and Φ′ < 0. Substituting this into (23) we
get (assuming (16))

−∆Φ(w∗) ∈ L∞(Ω),

and then Φ(w∗) ∈ W 2,∞(Ω) ⊂ C1(Ω). By regularity of Φ we get the desired result.
Extra regularity can be obtained if χ and h have additional regularity. 2

Let us consider the positive part function defined by

(s)+ =

{
s if s > 0
0 otherwise.
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Taking (N −Ψ(w∗))+ as test function in (23), we obtain

∫

Ω

1

hp

(hw + p∗χ(w∗)hp)
1

−Ψ′ [∇(N −Ψ(w∗))+]2dσ +
∫

Ω
rΨ(w∗)(N −Ψ(w∗))2

+dσ = 0.

By (22), (8) and (9) we get

∫

Ω
rΨ(w∗)(N −Ψ(w∗))2

+dσ = 0,

hence, by (22) and (16), w∗ satisfies

Ψ(w∗) = 0 or Ψ(w∗) ≥ N. (25)

Integrating (23), (24) we get

∫

Ω
Ψ(w∗)(N −Ψ(w∗))dσ = 0.

By Lemma 2.1, continuity of Ψ and (25), we deduce the desired result. 2

2.2 On infinitely many steady states (a simple example)

If assumption (9) is not satisfied then infinitely many solutions to (20), (21) can occur.

Let us consider a simple case where χ is a positive constant and h(p, w) = µp− w
for µχN

2
= 1. Then w = µp, and p satisfies

{ −div{∇p− χµp∇p} = rp(N − p) x ∈ Ω
∂p
∂n

= 0 x ∈ ∂Ω.

Let us define u = p− 1
N

p2 which satisfies the well known problem

{ −∆u = rNu x ∈ Ω,
∂u
∂n

= 0 x ∈ ∂Ω.

Let rN = λm (m ∈ IN) be an eigenvalue of the Laplacian operator −∆ with zero flux
on the boundary and um be the eigenfunction associated to λm. Then

p = N(
1

2
+

1

2
(1− 4

um

CN
)

1
2 ) (26)

is a solution to the problem for any C ≥ C∗ := 4
N

maxx∈Ω{|um|}. Notice that p > 0.

3 Existence of solution (proof of Theorem 1.2)

We introduce the function

f(w) = exp[
∫ w

0
χ(s)ds] (27)
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and the unknown q defined by
p = f(w)q. (28)

In terms of q and w the system (1)-(3) becomes

Lq ≡ ∂q
∂t
−∆q − χ(w)∇w · ∇q =

−qχ(w)h(qf(w), w) + rq(N − qf(w)) x ∈ Ω t > 0,
(29)

∂w

∂t
= h(qf(w), w) x ∈ Ω t > 0 (30)

and
∂q

∂n
= 0 x ∈ ∂Ω t > 0. (31)

The initial conditions (4) become

q(x, 0) = q0(x) =
p0(x)

f(w0(x))
w(0, x) = w0(x). (32)

Notice that

f(w) · Lq = f(w)
∂q

∂t
− div{f(w)∇q}.

Denote the right hand side of (29) by g(q, w).

Definition 3.1 q ∈ L2(0, T : H2(Ω)) ∩H1(0, T : L2(Ω)) and w ∈ L∞(0, T : L2(Ω)) is
a weak solution to (29)-(32) if

∫ ∫

ΩT

f(w)qtηdσdt +
∫ ∫

ΩT

f(w)∇q∇ηdσdt =
∫ ∫

ΩT

f(w)g(q, w)ηdσdt (33)

for any η ∈ L2(0, T : H1(Ω)) and

wt = h(qf(w), w) a.e. 0 < t < T x ∈ Ω.

In order to establish the existence of a global solution, we consider the sequence qi

defined as the unique solution to (29), (31) where w = wi and wi satisfies

∂wi

∂t
= h(qi−1f(wi), wi) x ∈ Ω 0 < t < T, w(x, 0) = w0(x).

Let us denote qi by q and wi by w, then

Lemma 3.1 q ≥ 0 and 0 ≤ w ≤ w̄.

Proof: By the maximum principle we get q ≥ 0. Since ∂h
∂q

= f(w)∂h
∂p

> 0, we have

h(0, w) ≤ wt ≤ h(q̄, w). By (7) and (6) we conclude the result. 2

Lemma 3.2
q(x, t) ≤ q̄. (34)
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Proof: Let us take f(w)(q − q̄)+ as test function in (29), then

1

2

∫

Ω
f(w)(q − q̄)2

+dσdt +
1

2

∫ ∫

ΩT

f ′(w)wt(q − q̄)2
+dσdt+

∫ ∫

ΩT

f(w)(∇(q− q̄)+)2dσdt =
∫ ∫

ΩT

f(w)g(q, w)(q− q̄)2
+dσdt+

∫

Ω
f(w0)(q0− q̄)2

+dσdt.

Since g(q, w)(q − q̄)+ ≤ 0 provided that 0 ≤ w ≤ w̄ we get
∫

Ω
f(w)(q − q̄)2

+dσdt ≤ C
∫ ∫

ΩT

(q − q̄)2
+dσdt.

By Gronwall′s Lemma we prove the lemma. 2

Provided that 0 ≤ q < q̄ and 0 ≤ w < w̄, we show the following a priori estimates:

Lemma 3.3
∫

Ω
q2dσ +

∫ ∫

ΩT

|∇q|2dσdt +
∫

Ω
|∇w|2dσ ≤ C0(T + 1).

Proof: From (2) we have

∇wt = f(w)hp∇q + (hpf(w)qχ(w) + hw)∇w. (35)

Taking the scalar product with ∇w, integrating over ΩT and using (8), (9) we find that
∫

Ω
|∇w|2dσ ≤ C1

∫ ∫

ΩT

|∇q|2dσdt +
∫

Ω
|∇w0|2dσ. (36)

Taking f(w)q as test function in (29) and integrating by parts, it follows

d

dt

1

2

∫

Ω
q2f(w)dσ +

∫

Ω
f(w)|∇q|2dσ =

−1

2

∫

Ω
q2f(w)χ(w)h(qf(w), w)dσ +

∫

Ω
q2f(w)(N − qf(w))dσ ≤ C2

and then

1

2

∫

Ω
q2f(w)dσ +

∫ ∫

ΩT

f(w)|∇q|2dσdt ≤ C2T +
1

2

∫

Ω
q2
0f(w0)dσ.

Since w ≥ 0, by (27) and (10) we get
∫

Ω
q2dσ +

∫ ∫

ΩT

|∇q|2dσdt ≤ C2(T + 1). (37)

Substituting (37) into (36) we prove the lemma. 2

Lemma 3.4 ∫ ∫

ΩT

q2
t dσdt +

∫

Ω
|∇q|2dσ ≤ C3(T + 1)
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Proof: Let us take f(w)qt as test function in (29), we obtain
∫

Ω
f(w)|qt|2dσ −

∫

Ω
(divf(w)∇q)qtdσ =

∫

Ω
f(w)g(q, w)qtdσ. (38)

Since

−
∫

Ω
(divf(w)∇q)qtdσ =

1

2

∫

Ω
f(w)

∂

∂t
|∇q|2dσ =

∂

∂t

1

2

∫

Ω
f(w)|∇q|2dσ − 1

2

∫

Ω
f(w)χ(w)wt|∇q|2dσ =

∂

∂t

1

2

∫

Ω
f(w)|∇q|2dσ − 1

2

∫

Ω
f(w)χ(w)h(qf(w), w)|∇q|2dσ

and ∫

Ω
f(w)g(q, w)qtdσ ≤ 1

2

∫

Ω
f(w)|qt|2dσ +

1

2

∫

Ω
f(w)g2(q, w)dσ

then, substituting it into (38) we find
∫

Ω
f(w)|qt|2dσ +

∂

∂t

1

2

∫

Ω
f(w)|∇q|2dσ − 1

2

∫

Ω
f(w)χ(w)h(qf(w), w)|∇q|2dσ ≤ C.

Integrate with respect to time to get
∫ ∫

ΩT

f(w)|qt|2dσ +
∫

Ω
f(w)|∇q|2dσ ≤ C5[

∫ ∫

ΩT

|∇q|2dσdt +
∫

Ω
f(w0)|∇q0|2dσ + T ].

By selection of f and Lemma 3.3 we obtain the desired result. 2

Lemma 3.5 q belongs to L2(0, T : H2(Ω)).

Proof: By the previous lemma we know that 1
f(w)

div{f(w)∇q} belongs to L2(ΩT ) i.e.

∫ ∫

ΩT

1

f 2(w)
(div{f(w)∇q})2dσdt =

∫ ∫

ΩT

(
1

f 2(w)
(∇f(w) · ∇q)2 + (∆q)2)dσdt+

∫ ∫

ΩT

2

f(w)
(∆q)(∇f(w) · ∇q)dσdt ≤ C3(T + 1).

Then ∫ ∫

ΩT

1

f(w)
(∆q)(∇f(w) · ∇q)dσdt ≤ C3

2
(T + 1). (39)

Let us take −∆q as test function in (29) then:
∫ ∫

ΩT

(−∆q)qtdσdt +
∫ ∫

ΩT

(∆q)2dσdt +
∫ ∫

ΩT

1

f(w)
(∆q)(∇f(w) · ∇q)dσdt =

∫ ∫

ΩT

g(q, w)(−∆q)dσdt ≤ T |Ω|
2

(max{g(q, w)})2 +
1

2

∫ ∫

ΩT

(∆q)2dσdt.

Then, integrating by parts on the left hand side of the equation and as a result of (39)
we conclude

1

2

∫

Ω
|∇q|2dσ

∣∣∣∣
T

0
+

1

2

∫ ∫

ΩT

(∆q)2dσdt ≤ C4(T + 1)

which proves the lemma. 2
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Lemma 3.6
∫
Ω |∇w|4dσ ≤ C5(T + 1).

Proof: As a consequence of Lemma 3.5 and (29) we obtain that ∇q · ∇w belongs to
L2(ΩT ) (using (10) and (7)). Multiplying by |∇w|2∇w in (35) and integrating over ΩT

we conclude the claim of the lemma. 2

Lemma 3.7 w ∈ L∞(0, T : H2(Ω)).

Proof: By (30) we know that

∆wt = hq∆q + hqq|∇q|2 + 2hqw∇q · ∇whww|∇w|2 + hw∆w (40)

Multiplying by ∆w in (40) and applying Hölder inequality, one gets in view of (9)

∂

∂t

1

2
|∆w|2 ≤ h2

q

|hw| |∆q|2 +
h2

qq

|hw| |∇q|4 + 4
h2

qw

|hw| |∇q|2|∇w|2 +
h2

ww

|hw| |∇w|4.

Integrating over ΩT we conclude the lemma. 2

Proof of Theorem 1.2

Let us consider the sequence {pi = qif(wi)}i=1,∞. From Lemma 3.1, 3.2 and 3.4

pi are uniformly bounded in H1(0, T : L2(Ω)) ∩ L∞(ΩT ) (41)

and by Lemma 3.5 and 3.6

pi are uniformly bounded in L2(0, T : H2(Ω)). (42)

Let us consider

p̃ = pi − pj, p̃−1 = pi−1 − pj−1, γ(w) =
∫ w

0
χ(s)ds and γ̃ = γ(wi)− γ(wj).

Then (p̃, γ̃) satisfy

∂p̃

∂t
−∆p̃ + div{p̃∇γ(wi)}+ div{pj∇γ̃} = p̃(1− (pi + pj)) in ΩT (43)

∂γ̃

∂t
= χ(wi)h(pi−1, wi)− χ(wj)h(pj−1, wj) in ΩT . (44)

Take f(wi)p̃ as test function in (43), then

1

2

∫

Ω
f(wi)p̃

2dσ

∣∣∣∣
T
− 1

2

∫ ∫

ΩT

f ′(wi)
∂wi

∂t
p̃2dσdt +

∫ ∫

ΩT

f(wi)|∇p̃|2dσdt+

∫ ∫

ΩT

p̃∇p̃∇f(wi)dσdt−
∫ ∫

ΩT

p̃2∇γ(wi)∇f(wi)dσdt

−
∫ ∫

ΩT

f(wi)p̃∇γ(wi)∇p̃dσdt−
∫ ∫

ΩT

f(wi)pj∇γ̃∇p̃dσdt

−
∫ ∫

ΩT

pj p̃∇γ̃∇f(wi)dσdt =
∫ ∫

ΩT

p̃f(wi)(ĝ(pi, wi)− g(pi, wi))dσdt.
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Since | ∂
∂t

wi| ≤ C, 1 ≤ f(wi) ≤ C and ∇f(wi) = f(wi)∇γ(wi), we obtain

1

2

∫

Ω
p̃2dσ

∣∣∣∣
T

+
∫ ∫

ΩT

|∇p̃|2dσdt ≤

p̄
∫ ∫

ΩT

|∇γ̃||∇p̃|dσdt +
∫ ∫

ΩT

|p̃||∇γ̃||∇γ(wi)|dσdt + k0

∫ ∫

ΩT

p̃2 + γ̃2dσdt.

(45)

Let us consider the integral

p̄
∫ ∫

ΩT

|∇γ̃||∇p̃|dσ ≤ p̄2‖∇γ̃‖2
L2(ΩT ) +

1

4
‖∇p̃‖2

L2(ΩT )

and
∫ ∫

ΩT

|p̃||∇γ(wi)||∇γ̃|dσdt ≤ ‖p̃‖L2(0,T :L4(Ω))‖∇γ(wi)‖L∞(0,T :L4(Ω))‖∇γ̃‖L2(0,T :L2(Ω)) ≤

k1‖p̃‖L2(0,T :H1(Ω))‖∇γ̃‖L2(0,T :L2(Ω)) ≤ 1

4
‖p̃‖2

L2(0,T :H1(Ω)) + k2
1‖∇γ̃‖2

L2(0,T :L2(Ω)).

Substituting it in (45) we get

1

2

∫

Ω
p̃2dσ

∣∣∣
T

+
1

2

∫ ∫

ΩT

|∇p̃|2dσdt ≤ k2(
∫ ∫

ΩT

p̃2 + γ̃2dσdt +
∫ ∫

ΩT

|∇γ̃|2dσdt). (46)

Notice that, as below, if t ≤ T we obtain

1

2

∫

Ω
p̃2dσ

∣∣∣∣
t
≤ k2(

∫ T

0

∫

Ω
p̃2 + γ̃2dσdt +

∫ T

0

∫

Ω
|∇γ̃|2dσdt)

and integrating again in time we get

1

2

∫ ∫

ΩT

p̃2dσdt ≤ Tk2(
∫ ∫

ΩT

p̃2 + γ̃2dσdt +
∫ ∫

ΩT

|∇γ̃|2dσdt).

Taking T < 1
4k2

it results

∫ ∫

ΩT

p̃2dσdt ≤ 4Tk2(
∫ ∫

ΩT

γ̃2dσdt +
∫ ∫

ΩT

|∇γ̃|2dσdt). (47)

Then, by (46) and (47) p̃ satisfies

∫ ∫

ΩT

p̃2dσdt+
∫ ∫

ΩT

|∇p̃|2dσdt ≤ (4Tk2+2k2(1+4Tk2))
∫ ∫

ΩT

(γ̃2+|∇γ̃|2)dσdt. (48)

On the other hand, γ̃ satisfies:

∂

∂t
γ̃ = hp|p̂,ŵ p̃−1 + hγ|p̂,ŵ γ̃

where pi ≤ p̂ ≤ pj or pi ≥ p̂ ≥ pj and wi ≤ ŵ ≤ wj or wi ≥ ŵ ≥ wj and hγ = hw

γ′ < 0.
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Multiply by γ̃, integrate and apply Hölder inequality to get

∫

Ω
γ̃2dσ|t ≤ k3

∫ ∫

ΩT

p̃2
−1dσdt +

1

2

∫ ∫

ΩT

hγ γ̃
2dσdt

i.e. ∫ ∫

ΩT

γ̃2dσdt ≤ k3T
∫ ∫

ΩT

p̃2
−1dσdt +

T

2

∫ ∫

ΩT

hγ γ̃
2dσdt. (49)

Since ∇γ̃ satisfies

∂
∂t
∇γ̃ = hp|p̂,γ̂ ∇p̃−1 + hpp|p̂,γ̂ p̃−1∇p̂+

hpγ|p̂,γ̂ (p̃−1∇γ̂ + γ̃∇p̂) + hγ|p̂,γ̂ ∇γ̃ + hγγ|p̂,γ̂ γ̃∇γ̂
(50)

taking ∇γ̃ as test function and by Hölder inequality we get

∫

Ω
|∇γ̃|2dσdt|t ≤ k4(‖p̃−1‖2

L2(0,T :H1(Ω)) + ‖γ̃‖2
L2(0,T :H1(Ω)))

and ∫ ∫

ΩT

|∇γ̃|2dσdt ≤ Tk4(‖p̃−1‖2
L2(0,T :H1(Ω)) + ‖γ̃‖2

L2(0,T :H1(Ω))). (51)

Adding (49) to (51) we get

‖γ̃‖2
L2(0,T :H1(Ω)) ≤ Tk5(‖p̃−1‖2

L2(0,T :H1(Ω)) + ‖γ̃‖2
L2(0,T :H1(Ω))).

Taking T ≤ 1
2k5

it results

∫ ∫

ΩT

γ̃2dσdt +
∫ ∫

ΩT

|∇γ̃|2dσdt ≤ 2Tk5‖p̃−1‖2
L2(0,T :H1(Ω)). (52)

Substitute (52) into (48)

∫ ∫

ΩT

p̃2dσdt +
∫ ∫

ΩT

|∇p̃|2dσdt ≤ (4Tk2 + 2k2(1 + 4Tk2))2Tk5‖p̃−1‖2
L2(0,T :H1(Ω)).

Choose T small enough, then

‖p̃‖L2(0,T :H1(Ω)) ≤ 1

2
‖p̃−1‖L2(0,T :H1(Ω)). (53)

Then pi is a Cauchy sequence satisfying pi → p in L2(0, T : H1(Ω)). By (52) we get
the same result for wi and γ(wi). Since {pi, γ(wi)}∞i=1 are uniformly bounded in

[L2(0, T : H2(Ω)) ∩H1(0, T : L2(Ω)) ∩ L∞(ΩT )]2,

there exists a subsequence (pij, γ(wij)) such that (pij, γ(wij)) → (p, γ(w)) in [L2(0, T :
W 1,s(Ω))]2 for any s ≤ ∞ if n = 1, s < ∞ if n = 2 and s < 2n

n−2
if n = 3 and weakly in

[H1(0, T : L2(Ω))]2. By (50) and a priori estimates, we obtain that γ(wij) → γ(w) in
Lr(0, T : H1(Ω)) for arbitrary r < ∞.
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Taking limits in the weak formulation

∫ ∫

ΩT

∂

∂t
pijηdσdt +

∫ ∫

ΩT

∇pij · ∇ηdσdt =

∫ ∫

ΩT

pij∇γ(wij) · ∇ηdσdt +
∫ ∫

ΩT

ĝ(pij, wij)ηdσdt

∂

∂t
wij = h(pij, wij)

we get the existence of weak solutions for small T . Repeating the process, starting now
from T , we conclude the existence of solutions for arbitrary T > 0 by lemmata 3.1-3.7.

Remark 3.1 Uniqueness of solutions is a consequence of (53).

4 On stability (proof of Theorem 1.3)

Taking p−N as test function in (1) we get

1

2

∫

Ω
(p−N)2dσ|T0 +

∫ ∫

ΩT

|∇p|2dσdt =

∫ ∫

ΩT

pχ(w)∇p · ∇wdσdt + r
∫ ∫

ΩT

p(p−N)2dσdt.

Since ∇wt = hp∇p + hw∇w, taking scalar product with γ∇w (for a positive constant
γ) and integrating over ΩT (as in [4]) we find that

γ

2

∫

Ω
|∇w|2dσ|T0 = γ

∫ ∫

ΩT

hw|∇w|2dσdt + γ
∫ ∫

ΩT

hp∇p · ∇wdσdt.

Adding both expressions one concludes

1

2

∫

Ω
(p−N)2dσ

∣∣∣∣
T

+
∫ ∫

ΩT

|∇p2dσdt +
γ

2

∫

Ω
|∇w|2dσ

∣∣∣∣
T

−γ
∫ ∫

ΩT

hw|∇w|2dσdt = r
∫ ∫

ΩT

p(p−N)2dσdt+

∫ ∫

ΩT

(pχ(w) + γhp)∇p · ∇wdσdt + O(1).

By Schwarz′s inequality, the last integral is bounded by

(1− δ)
∫ ∫

ΩT

|∇p|2dσdt +
1

4(1− δ)

∫ ∫

ΩT

(pχ(w) + γhp)
2|∇w|2dσdt

for any 1 > δ > 0 and γ > 0.

Consider the quadratic equation in γ:

(γhp + pχ(w))2 + 4γhw = 0
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and denote its two roots by

γ1,2(p, w) =
2

h2
p

{(−2hw − hppχ(w))± [(2hw + hppχ(w))2 − (pχ(w))2h2
p]

1
2}.

By assumption (9) there exists γ > 0 such that

(γhp + pχ(w))2 < 4γhw.

Therefore
∫

Ω
(p−N)2dσ

∣∣∣∣
T

+ r
∫ ∫

ΩT

p(p−N)2dσdt +
∫

Ω
|∇w|2dσ

∣∣∣∣
T

+

δ
∫ ∫

ΩT

|∇p|2dσdt + ε
∫ ∫

ΩT

|∇w|2dσdt ≤ O(1)

which implies ∫ ∫

Ω∞
|∇p|2dσdt +

∫ ∫

Ω∞
|∇w|2dσdt ≤ C.

Integrating the equation we get

∂

∂t

∫

Ω
pdσ = r(N

∫

Ω
pdσ −

∫

Ω
p2dσ)

which implies that p = 0 is unstable, and we deduce that

p −→ N and w −→ Ψ(N) in Ls(Ω)

where s = ∞ if n = 1, s < ∞ if n = 2 and s < 6 if n = 3.
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