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Abstract. We prove that if an analytic map f : U → Cn, where U ⊂
Cn is an open neighborhood of the origin, admits an algebraic addition
theorem then, there exists a meromorphic map g : Cn 99K Cn admitting
an algebraic addition theorem such that each coordinate function of f is
algebraic over C(g) on U (this was proved by K. Weierstrass for n = 1).
Furthermore, g admits a rational addition theorem.

1. Introduction

The aim of this paper is to study maps admitting an algebraic addi-
tion theorem, maps whose coordinate functions can be viewed as limitting
(degenerate) cases of abelian functions. Let K be C or R and MK,n be the
quotient field of OK,n, the ring of power series in n variables with coefficients
in K that are convergent in a neighborhood of the origin.

Definition. Let u and v be variables of Cn. We say (φ1, . . . , φn) ∈ Mn
K,n

admits an algebraic addition theorem (AAT) if φ1, . . . , φn are algebraically
independent over K and if each φi(u+ v), i = 1, . . . , n, is algebraic over

K(φ1(u), . . . , φn(u), φ1(v), . . . , φn(v)).

The concept of AAT was introduced by K. Weierstrass during his lectures
on abelian functions in Berlin in the second half of the 19th century. The
statement for dimension one of the main result concerning AAT proved by
Weierstrass appeared for the first time in [19]:

Eine analytische Function φ(u), für welche ein algebraisches
Additions-theorem besteht, ist entweder I. eine algebraische
Function von u, oder II., wenn mit ω eine passend gewählte
Constante bezeichnet wird, eine algebraische Function der
Exponentialfunction euπiω, oder III., eine algebraische Func-
tion einer Function ℘u = s, welche, wenn mit g2 und g3 zwei
passend gewählte Constanten bezeichnet wergden, durch die
Differentialgleichung ( dsdu)2 = 4s3 − g2s − g3 und die Bedin-
gung ℘(0) =∞ bestimmt werden kann.

Date: November 17, 2017.
2010 Mathematics Subject Classification. 32A20, 33E05, 14P20.
Key words and phrases. Algebraic Addition Theorem, Rational Addition Theorem.
All the authors supported by Spanish GAAR MTM2011-22435 and MTM2014-55565.

Second author also supported by a grant of the International Program of Excellence in
Mathematics at Universidad Autónoma de Madrid.

1



Most of Weierstrass’ lectures were never published. However, several
proofs of the above statement can be found in the literature. The first
one by E. Phragmen [14] in 1884. There are also proofs by A.R. Forsyth in
1893, by P. Koebe in 1905, and by M. Falk and H. Hancock both in 1910
(see [18] for historical details). All these proofs – despite their differences –
go through an extension result:

the germ of an analytic function admitting an AAT can be
transformed algebraically into the germ of a global meromor-
phic function admitting an AAT.

The general idea to prove the latter is to first show that any φ admitting
an AAT can be analytically extended to a multivalued analytic map with
a finite number of branches (see [14, p. 40]), and then – making use of
the elementary symmetric functions of the branches – the desired global
univaluated meromorphic function admitting an AAT is obtained (see [14,
p.41]).

The above statemement – in German – has a several variables version,
which was also introduced by Weierstrass in his lectures. It did not appeared
published until 1894 by P. Painlevé in [12, p. 348] (see also [13, p. 1]):

Tout systeme de n fonctions (indépendantes) a n variables
qui admet un théoreme d’addition est une combinaison al-
gébrique de n fonctions abéliennes (oú dégénérescences) á n
arguments et aux mêmes périodes.

Painlevé proves the latter statement for systems of analytic functions with
a finite number of branches (see [13, § 6]) which is essentially the same than
considering only systems of global meromorphic functions. F. Severi in [16]
and Y. Abe [1, 2] also give a proof under these hypothesis. We are interested
in applying Painlevé’s result to Nash groups (see [4]), where the functions to
be consider are defined locally, hence we need an extension result in several
variables which we think it has interest by its own.

P.J. Myrberg [11] studies a generalization of the statement – in French –
in which the number of functions n and that of variables m do not need to
coincide. His aim is to reduce the generalization to the known case n = m.
He first consider systems of analytic functions which satisfy a rational addi-
tion theorem (i.e., each φi(u+ v) ∈ K(φ1(u), . . . , φn(u), φ1(v), . . . , φn(v)) in
the above definition of AAT) and for these systems he proves an extension
result via a theorem of Poincaré concerning systems of functions satisfying
a rational multiplication theorem. Myrberg claims (see [11, p. 2]) that this
Poincaré’s theorem also applies to systems of functions satisfying an alge-
braic multiplication theorem. Making use of this, he sketches an argument
in [11, § IV] to pass from the hypothesis of satisfying an algebraic addition
theorem to a rational addition theorem.

In this paper, we prove by different methods that any system of analytic
functions admitting a AAT is algebraic over a system admitting a rational
addition theorem (Theorem1). As a consequence (Corollary 2), we obtain
a several variable case of the extension result mentioned above.

Besides the mentioned application to Nash groups, the relevance of the
AAT transcend the context of elliptic or abelian functions: A.A. Belavin and
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V. G. Drinel’d [5] use ideas concerning algebraic addition theorems in the
setting of the theory of integrable quantum systems. Moreover, they prove
an extension result for maps admitting an AAT in the specific situation
given by the Yang-Baxter equations.

Theorem 1 (Extension Theorem). Let φ := (φ1, . . . , φn) ∈ Mn
K,n admit

an AAT. Then, there exist ψ := (ψ1, . . . , ψn) ∈ Mn
K,n admitting an AAT

and algebraic over K(φ), and an additional meromorphic series ψ0 ∈MK,n
algebraic over K(ψ) such that,

(1) For each f(u) ∈ K
(
ψ0(u), . . . , ψn(u)

)
,

(a) f(u+ v) ∈ K
(
ψ0(u), . . . , ψn(u), ψ0(v), . . . , ψn(v)

)
and

(b) f(−u) ∈ K
(
ψ0(u), . . . , ψn(u)

)
.

(2) Each ψ0, . . . , ψn is the quotient of two convergent power series whose
complex domain of convergence is Cn.

Corollary 2. Any φ ∈Mn
K,n admitting an AAT is algebraic over K(ψ) for

some ψ ∈ Mn
K,n admitting an AAT and whose coordinate functions are the

quotient of two convergent power series whose complex domain of conver-
gence is Cn.

We obtain the rational version in (1a) through the coefficients of the
polynomial associated to each φi(u + v). Then, we obtain the extension
result of Theorem 1 (2) by considering the rational expression obtained in
Theorem 1 (1a). In particular, this shows that any φ admitting an AAT can
be analytically extended to a multivalued analytic map with a finite number
of branches. Thus, we provide a new way of proving Weierstrass’ extension
result in dimension one, whose classical proofs go the other way around (and
do not provide a rational counterpart).

The motivation of the results of this paper is to study abelian locally
K-Nash groups, for K = R or C. Charts at the identity of such groups
admit an AAT. Locally Nash groups (i.e. for K = R) were studied by J.J.
Madden and C.M. Stanton [10] and M. Shiota [17], mainly in dimension
1. In particular, the Extension Theorem will allow us to reduce the study
of simply connected abelian locally Nash groups to those whose charts are
restrictions of (global) meromorphic functions admitting an AAT (see [3]).
Moreover, the new rational version of the AAT we have obtained in this
paper will allow us to compare these groups with the algebraic ones.

The results of this paper are part of the second author’s Ph.D. disserta-
tion.

2. The Extension Theorem.

For each ε > 0, let UK,n(ε) := {a ∈ Kn | ‖a‖ < ε}. We will only consider
convergence over open subsets of Cn, let Un(ε) := UC,n(ε). We say that
(φ1, . . . , φm) ∈Mm

K,n is convergent in Un(ε) if each φ1, . . . , φm is the quotient
of two power series convergent on Un(ε).

As usual, by the identity principle for analytic functions, we identify OK,n
with the ring of germs of analytic functions at 0, and MK,n with its quotient
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field. We will use without mention properties of OK,n, see e.g. R.C. Gunning
and H. Rossi [8] and J.M. Ruiz [15].

Let ε > 0. Let φ := (φ1, . . . , φm) ∈Mm
K,n be convergent on Un(ε), let a ∈

UK,n(ε) and let (u, v) := (u1, . . . , un, v1, . . . , vn) be a 2n-tuple of variables.
We will use the following notation:

φ(u,v) :=
(
φ1(u), . . . , φm(u), φ1(v), . . . , φm(v)

)
∈M2m

K,2n.

φu+v :=
(
φ1(u+ v), . . . , φm(u+ v)

)
∈Mm

K,2n.

φu+a :=
(
φ1(u+ a), . . . , φm(u+ a)

)
∈Mm

K,n.

Given φ ∈ Mn
K,p and ψ ∈ Mm

K,p we say that the tuple φ is algebraic
over K(ψ) := K(ψ1, . . . , ψm) if each component, φ1, . . . , φn, is algebraic over
K(ψ).
Thus, φ ∈Mn

K,n admits an algebraic addition theorem (AAT) if φ1, . . . , φn
are algebraically independent over K and φu+v is algebraic over K(φ(u,v)).
Note that if φ ∈MR,n admits an AAT then φ also admits an AAT when

considered as an element of MC,n.
We first prove two properties of maps admitting an AAT.

Lemma 3. Let ε > 0 and let φ ∈Mn
K,n be convergent on Un(ε). If φ admits

an AAT then φu+a is algebraic over K(φ), for each a ∈ UK,n(ε).

Proof. Fix j ∈ {1, . . . , n} and let f(u, v) := φj(u + v). By hypothesis,
there exists P ∈ K[X1, . . . , X2n][Y ] such that P (φ(u), φ(v);Y ) 6= 0 and
P (φ(u), φ(v); f(u, v)) = 0. For any a ∈ UK,n(ε) such that P (φ(u), φ(a), Y ) is
not identically zero, we clearly obtain that f(u, a) is algebraic over K(φ). We
have to consider those a ∈ UK,n(ε) such that P (φ(u), φ(a);Y ) is identically
zero.

We first check that there exists an open dense subset U of UK,n(ε) such
that for each a ∈ U , P (X1, . . . , Xn, φ(a);Y ) ∈ K[X1, . . . , Xn][Y ] is a non-
zero polynomial. Let W be an open dense subset of UK,n(ε) such that

W ⊂ {a ∈ UK,n(ε) | φ(a) ∈ Kn}

and φ : W → Kn is analytic. Let

U := {a ∈W | P (X1, . . . , Xn, φ(a);Y ) 6= 0}.

Since W is an open dense subset of UK,n(ε), it is enough to show that W \U
is closed and nowhere dense in W . Clearly W \ U is closed in W because φ
is continuous in W . To prove the density, we note that if W \U contains an
open subset of W then

{a ∈ UK,n(ε) | P (φ(u), φ(a);Y ) ∈MK,n+1 and P (φ(u), φ(a);Y ) = 0}

contains an open subset of UK,n(ε) and therefore P (φ(u), φ(v);Y ) = 0, a
contradiction.

To finish the proof we will show that for each a ∈ UK,n(ε), there exists
Qa ∈ K[X1, . . . , Xn][Y ] such that Qa(φ(u);Y ) is not identically zero and
Qa(φ(u); f(u, a)) = 0. We follow the proof of [7, Ch. IX. §5. Theorem 5].
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For each a ∈ U , where U is as above, let

Pa(X1, . . . , Xn;Y ) =
∑
i,µ≤N

bi,µ,a X
µ1
1 . . . Xµn

n Y i

denote the polynomial P (X1, . . . , Xn, φ(a);Y ). We have that U is dense in
UK,n(ε) and Pa 6= 0 for all a ∈ U . For each a ∈ U , we define

E(Pa) :=
∑
i,µ≤N

‖bi,µ,a‖2.

We note that E(Pa) > 0, for all a ∈ U . For each a ∈ U , let

Qa(X1, . . . , Xn;Y ) :=
∑
i,µ≤N

ci,µ,a X
µ1
1 . . . Xµn

n Y i,

where
ci,µ,a := bi,µ,a√

E(Pa)
.

Hence, for each a ∈ U , we have that Qa(φ(u);Y ) is not identically zero,
Qa(φ(u); f(u, a)) = 0 and E(Qa) = 1. We define

~v(a) := (ci,µ,a)i,µ≤N ∈ {z ∈ K(N+1)(n+1) | ‖z‖ = 1}.

Take a ∈ UK,n(ε) \ U . Since U is an open dense subset of UK,n(ε), there
exists a sequence {ak}k∈N ⊂ U that converges to a. For each ak, the identity
Qak

(φ(u); f(u, ak)) = 0 holds, therefore∑
i,µ≤N

ci,µ,ak
φ1(u)µ1 . . . φn(u)µnf(u, ak)i = 0.

By hypothesis there are α, β ∈ OK,2n, β 6= 0, convergent on U2n(ε), such
that f(u, v) = α(u,v)

β(u,v) and β(u, a) 6= 0 for all a ∈ UK,n(ε). In particular

(2.1)
∑
i,µ≤N

ci,µ,ak
φ1(u)µ1 . . . φn(u)µnα(u, ak)iβ(u, ak)N−i = 0.

Since {z ∈ K(N+1)(n+1) | ‖z‖ = 1} is compact, taking a suitable subsequence
we can assume that the sequence {~v(ak)}k∈N is convergent. For each i, µ ≤
N , we define

ci,µ,a := lim
k→∞

ci,µ,ak
.

Since α and β are continuous, when k tends to infinity equation (2.1) be-
comes ∑

i,µ≤N
ci,µ,aφ1(u)µ1 . . . φn(u)µnα(u, a)iβ(u, a)N−i = 0.

So dividing by β(u, a)N , we also have∑
i,µ≤N

ci,µ,aφ1(u)µ1 . . . φn(u)µnf(u, a)i = 0

and hence the polynomial

Qa(X1, . . . , Xn;Y ) :=
∑
i,µ≤N

ci,µ,aX
µ1
1 . . . Xµn

n Y i
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satisfies Qa(φ(u), f(u, a)) = 0. We note that E(Qa) = limk→∞E(Qak
) =

1, so Qa 6= 0. Since φ1, . . . , φn are algebraically independent over K and
Qa(X1, . . . , Xn, Y ) 6= 0, we have Qa(φ(u), Y ) is not identically zero. �

Lemma 4. Let φ, ψ ∈Mn
K,n and suppose that φ is algebraic over K(ψ). If φ

admits an AAT then ψ admits an AAT. The converse is also true, provided
φ1, . . . , φn are algebraically independent over K.

Proof. Assume that φ admits an AAT, hence ψ1, . . . , ψn are algebraically
independent over K because φ is algebraic over K(ψ). To check that ψu+v
is algebraic over K(ψ(u,v)) it is enough to show that ψu+v is algebraic over
K(φu+v), φu+v is algebraic overK(φ(u,v)) and φ(u,v) is algebraic overK(ψ(u,v)).
The three conditions above are trivially satisfied because φ admits an AAT
and both φ is algebraic over K(ψ) and ψ is algebraic over K(φ). The converse
follows by symmetry because if φ1, . . . , φn are algebraically independent over
K then ψ is algebraic over K(φ). �

Now, we adapt to our context a result on AAT due to H.A.Schwarz, see
[9, Ch. XXI. Art. 389] for details.

Lemma 5. Let ε > 0 and let φ ∈ Mn
K,n be convergent on Un(ε) such that

it admits an AAT. Then, there exist a finite subset C ⊂ UK,n(ε), with 0 ∈ C
and C = −C, and ε′ ∈ (0, ε] satisfying: each element of K(φu+a | a ∈ C) is
convergent on Un(2ε′), and there exist A0, . . . , AN ∈ K(φ(u+a,v+a) | a ∈ C)
convergent on U2n(2ε′) such that φu+v is algebraic over K(A0, . . . , AN ) and,
for each j ∈ {0, . . . , N},
(2.2) Aj(u, v) = Aj(u+ a, v − a), for all a ∈ UK,n(ε′).

Proof. Fix i ∈ {1, . . . , n}. Let S0 := {0} and K0 := K(φ(u,v)). Let

P0(X) = X`0+1 +
`0∑
j=0

A0,j(u, v)Xj

be the minimal polynomial of φi(u+v) overK0. If each A0,j satisfies equation
(2.2) for ε′ = 2−1ε then we are done for this i letting ε′ := 2−1ε, C := S0 and
Aj := A0,j , for each 0 ≤ j ≤ `0. Otherwise, there exists a1 ∈ UK,n(2−1ε)
such that

Q0(X) := X`0+1 +
`0∑
j=0

A0,j(u, v)Xj −X`0+1 −
`0∑
j=0

A0,j(u+ a1, v − a1)Xj

is not zero. Since u + v = (u + a1) + (v − a1), we deduce that φi(u + v) is
a root of Q0(X). Let S1 := S0 ∪ {a1,−a1} and K1 := K(φu+a,v+a | a ∈ S1).
By definition K0 ⊂ K1. Let

P1(X) = X`1+1 +
`1∑
j=0

A1,j(u, v)Xj

be the minimal polynomial of φi(u+ v) over K1. We note that the elements
of K1 are convergent on U2n(2−1ε). If each A1,j satisfies equation (2.2)
for ε′ = 2−2ε then we are done for this i letting ε′ := 2−2ε, C := S1 and
Aj := A1,j , for each 0 ≤ j ≤ `1. Otherwise, we can repeat the process to
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obtain sets S2, S3 and so on, where the set Sk is obtained from the set Sk−1
as

Sk := Sk−1 ∪ {a+ ak | a ∈ Sk−1} ∪ {a− ak | a ∈ Sk−1},
for some ak ∈ UK,n(2−kε) such that Qk−1 is not 0. Similarly, we obtain
Kk := K(φu+a,v+a | a ∈ Sk) whose elements are convergent on U2n(2−kε).
Since in the k repetition the degree of Pk is smaller than that of Pk−1, this
process eventually stops, say at step s. Letting ε′ := 2−s−1ε, C := Ss and
Aj := As,j , for each 0 ≤ j ≤ `s, we are done for this i. The elements
A0, . . . , A`s are convergent on U2n(2ε′) because they are elements of Ks.

For each i, 1 ≤ i ≤ n, denote by ε′i, Ci and Ai0, . . . , AiNi
the elements ε′,

C and A1, . . . , A`s previously obtained for that choice of i. To complete the
proof, take C :=

⋃
i Ci, ε′ := mini{ε′i}, and let {A0, . . . , AN} be the union of

the sets {Ai0, . . . , AiNi
}. �

We need two additional lemmas before proving the Extension Theorem.

Lemma 6. Let φ ∈ Mn
K,n admit an AAT. Then, φ(−u) is algebraic over

K(φ(u)).

Proof. Take ε > 0 such that φ ∈ Mn
K,n is convergent on Un(ε). Since φ

admits an AAT, we know that φ(u + v) is algebraic over K(φ(u), φ(v)).
Taking into account transcendence degrees, it follows that φ(v) is algebraic
over K(φ(u+v), φ(u)). For some a ∈ UK,n(ε), we may substitute v by −u+a,
so φ(−u + a) is algebraic over K(φ(u)). By Lemma 3, φ(−u) is algebraic
over K(φ(−u+ a)) and hence over K(φ(u)). �

Lemma 7. Let ε > 0. Let φ ∈ Mn
K,n be convergent on Un(ε) such that it

admits an AAT. Then there exist ε1 ∈ (0, ε] and Ψ := (ψ0, . . . , ψn) ∈Mn+1
K,n

convergent on Un(ε1) and algebraic over K(φ) satisfying ψ := (ψ1, . . . , ψn)
admits an AAT, ψ0 is algebraic over K(ψ) and, for each f ∈ K(Ψ), f(−u) ∈
K(Ψ(u)), there exists δ ∈ (0, ε1] such that for each a ∈ UK,n(δ), fu+a ∈ K(Ψ)
and fu+a is convergent on Un(ε1).

Proof. We will define a field L generated over K by certain elements of MK,n,
next we will prove that each f ∈ L satisfy the conclusion of the lemma and
finally we find a primitive element Ψ such that L = K(Ψ).

Let ε′ ∈ (0, ε], C ⊂ UK,n(ε) and A0, . . . , AN ∈ K(φ(u+c,v+c) | c ∈ C) be the
ones provided by Lemma 5 for φ. Let U be an open dense subset of UK,n(ε′)
such that

U ⊂ {a ∈ UK,n(ε′) | φ(a+ c) ∈ Kn for all c ∈ C}
and

U ⊂ {a ∈ UK,n(ε′) | A0(u, a), . . . , AN (u, a) ∈MK,n}.
In particular, U ⊂ {a ∈ UK,n(ε′) | φ(a) ∈ Kn} because 0 ∈ C. Since U is
open there exist b ∈ U and ε′′ ∈ (0, ε′ − ‖b‖] such that

V := {a ∈ UK,n(ε′) | ‖a− b‖ < ε′′} ⊂ U.
Fix such b. Then, for each a ∈ UK,n(ε′′), each Aj(u, a+b), j = 1, . . . , N is an
element of MK,n. We note that since each Aj(u, v) is convergent on U2n(2ε′)
and by definition of b and ε′′, each Aj(u, a+ b) is convergent on Un(ε′), for
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each a ∈ UK,n(ε′′). Also, since each Aj satisfies the equation (2.2) of Lemma
5,
(2.3) Aj(u, a+ b) = Aj(u+ a, b) for all a ∈ UK,n(ε′′).
For each j ∈ {0, . . . , N}, we define Bj(u) := Aj(u, b). Let

L1 := K((Bj)u+a | a ∈ UK,n(ε′′), 0 ≤ j ≤ N).
Since, for each a ∈ UK,n(ε′′), each Aj(u, a + b) is convergent on Un(ε′),
by equation (2.3) all the elements of L1 are convergent on Un(ε′) and in
particular in Un(ε′′). Let

L2 := K((Bj)−u+a | a ∈ UK,n(ε′′), 0 ≤ j ≤ N).
Note that all the elements of L2 are also convergent on Un(ε′′). Hence, if we
define

L := K((Bj)u+a, (Bj)−u+a | a ∈ UK,n(ε′′), 0 ≤ j ≤ N),
all the elements of L are also convergent on Un(ε′′).

Let us show that
L ⊂ K(φu+c, φ−u+c | c ∈ C)

and that each element of L is algebraic over K(φ).
We begin proving that

L1 ⊂ K(φu+c | c ∈ C)
and that each element of L1 is algebraic over K(φ). Fix j ∈ {0, . . . , N}
and a ∈ UK,n(ε′′). We recall from Lemma 5 that Aj(u, v) is convergent
on U2n(2ε′) and A(u, v) ∈ K(φ(u+c,v+c) | c ∈ C). Hence we can evaluate
Aj(u, v) at v = a+b to deduce that Aj(u, a+b) ∈ K(φu+c | c ∈ C). Thus, by
equation (2.3), Aj(u+ a, b) ∈ K(φu+c | c ∈ C). Hence, L1 ⊂ K(φu+c | c ∈ C)
and therefore, by Lemma 3, each element of L1 is algebraic over K(φ). By
symmetry of C, L2 ⊂ K(φ−u+c | c ∈ C) and each element of L2 is algebraic
over K(φ(−u)). Therefore L ⊂ K(φu+c,−u+c | c ∈ C) and, since by Lemma 6
we have that φ(−u) is algebraic over K(φ(u)), we deduce that each element
of L is algebraic over K(φ(u)), as required.

Next, we show that φ1(u+ b), . . . , φn(u+ b) are algebraically independent
over K. Let P ∈ K[X1, . . . , Xn] be such that P (φu+b) = 0. By notation, for
each a ∈ UK,n(ε′′), we have that P (φu+b(a)) = 0 if and only if P (φ(a+ b)) =
0. Hence,

V ⊂ {a ∈ UK,n(ε) | φ(a) ∈ K and P (φ(a)) = 0}.
Since V is open in UK,n(ε), P (φ) = 0 by the identity principle. Since
φ1, . . . , φn are algebraically independent over K, P = 0 and we are done.

Next, we show that L is finitely generated overK and its transcendence de-
gree is n. Firstly, we note that φ is algebraic over K(φu+b) because the coor-
dinate functions of φu+b are algebraically independent over K and φu+b is al-
gebraic over K(φ) by Lemma 3. Since φu+v is algebraic over K(A0, . . . , AN ),
evaluating each Aj(u, v) at v = b we deduce that φu+b is algebraic over
K(B0, . . . , BN ). Therefore, φ is algebraic over K(B0, . . . , BN ). On the other
hand, K(B0, . . . , BN ) is a subset of K(φu+c | c ∈ C) and the latter field
is algebraic over K(φ) by Lemma 3. Hence the three fields have transcen-
dence degree n over K. Recall that C = −C, so K(φ−u+c | c ∈ C) =
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K(φ−u−c | c ∈ C). We also note that φ(−u) is algebraic over K(φ(u)), so
K(φu+c, φ−u−c | c ∈ C) has transcendence degree n over K. Now, C is finite
and

K(B0(u), . . . , BN (u)) ⊂ L ⊂ K(φu+c, φ−u−c | c ∈ C),
therefore, L is finitely generated over K and its transcendence degree is n.

Fix f ∈ L and let us check that f(−u) ∈ L and that there exists δ > 0
such that for every a ∈ UK,n(δ), fu+a ∈ L and fu+a is convergent on Un(ε′′).

Since f ∈ L, there exist m,m′ ∈ N, j(1), . . . , j(m+m′) ∈ {0, . . . , N} and
a1, . . . , am+m′ ∈ UK,n(ε′′) such that f is a rational function of

(Bj(1))u+a1 , . . . , (Bj(m))u+am , (Bj(m+1))−u+am+1 , . . . , (Bj(m+m′))−u+am+m′ .

In particular, f(−u) is a rational function of

(Bj(1))−u+a1 , . . . , (Bj(m))−u+am , (Bj(m+1))u+am+1 , . . . , (Bj(m+m′))u+am+m′ ,

so f(−u) ∈ L. Take δ > 0 such that δ < ε′′ − max{‖a1‖, . . . , ‖am+m′‖}.
Then, for all a ∈ UK,n(δ), fu+a ∈ L and fu+a is convergent on Un(ε′′).

Finally, take ψ1, . . . , ψn ∈ L algebraically independent over K and ψ0
algebraic over K(ψ1, . . . , ψn) such that L = K(ψ0, ψ1, . . . , ψn). Now, since
all the elements of L are algebraic over K(φ), ψ := (ψ1, . . . , ψn) admits an
AAT by Lemma 4. �

We now have all the ingredients to prove our main result.

Proof of the Extension Theorem. Let φ := (φ1, . . . , φn) ∈ Mn
K,n admit an

AAT. Take ε > 0 such that φ is convergent on Un(ε). Applying Lemma 7
we obtain ε1 ∈ (0, ε] and Ψ := (ψ0, . . . , ψn) ∈ Mn+1

K,n as in the lemma. We
next check that this Ψ satisfies the conditions of the theorem.

(1) By Lemma 7, if f ∈ K(Ψ) then f(−u) ∈ K(Ψ), so we only have to
check f(u + v) ∈ K

(
Ψ(u,v)

)
. Fix a non-constant f ∈ K(Ψ) and δ ∈ (0, ε1]

such that fu+a ∈ K(Ψ), for each a ∈ Un(δ), as in Lemma 7. Let 0 < ε < δ be
such that fu+v is convergent on U2n(ε). Let U be an open connected subset
of Un(ε) such that Ψ(u) is analytic on U . In particular, Ψ(u,v) is analytic on
U×U . On the other hand, if for each a ∈ U we have that g(u, v) := f(u+v)
is not analytic in (a, a) then we would deduce that f(u) is not analytic on
an open subset of Un(ε), a contradiction. Therefore, shrinking U we can
assume that g(u, v) := f(u+ v) is also analytic on U ×U . By Lemma 7, we
have that g(u, a) ∈ K(Ψ(u)) and g(a, v) ∈ K(Ψ(v)), for each a ∈ U . Hence,
by Bochner [6, Theorem 3], g(u, v) ∈ C(Ψ(u,v)) on U × U . Since U × U
is an open subset of U2n(ε), it follows that g(u, v) ∈ C(Ψ(u,v)) on U2n(ε).
Moreover, clearly g(u, v) ∈ K(Ψ(u,v)) on U2n(ε) since both Ψ ∈ Mn+1

K,n and
f ∈ K(Ψ). This concludes the proof of (1).

(2) We may assume that ψ0 6= 0. Fix i ∈ {0, . . . , n}. We have already
shown that ψi(u + v) ∈ K(Ψ(u,v)). Let A(u, v) := ψi(u + v). By Lemma 7
and taking a smaller ε > 0 if necessary, we may assume that Ψ is convergent
on Un(ε) and K(Ψu+a) ⊂ K(Ψ), for each a ∈ UK,n(ε). Let us show that there
exists c ∈ UK,n(ε) such that

A(u+ c, u− c) ∈MK,n.
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Take α, β ∈ OK,2n, β 6= 0 such that A(u, v) = α(u,v)
β(u,v) . Suppose by contradic-

tion that β(u+ c, u− c) = 0 for all c ∈ UK,n(ε). Then

β

(
a+ b

2 + a− b
2 ,

a+ b

2 − a− b
2

)
= 0,

for all a, b ∈ UK,n(ε/2). So β(a, b) = 0, for all (a, b) ∈ UK,n(ε/2), that is,
β = 0, which is a contradiction. Consequently,

ψi(2u) = A(u+ c, u− c) ∈ K(Ψu+c(u),Ψu−c(u)) ⊂ K(Ψ(u)).
By induction we deduce that

ψ0(u), . . . , ψn(u) ∈ K(Ψ(2−Nu)),
for each N ∈ N. Hence since Ψ(2−Nu) is convergent on Un(2N ε), Ψ is also
convergent on Un(2N ε). Thus each ψi is the quotient of two power series
convergent in all Cn (by Poincaré’s problem [8, Ch. VIII, §B, Corollary
10]). �

Proof of Corollary 2. Let φ ∈ Mn
K,n admit an AAT. By Theorem 1, there

exists ψ ∈ Mn
K,n admitting an AAT whose coordinate functions are the

quotient of two convergent whose complex domain of convergence is Cn and
such that ψ is algebraic over K(φ). Since the coordinate functions of ψ are
algebraically independent, φ is algebraic over K(ψ). �
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