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We study the response of a Bose-Einstein condensate to an unbiased periodic driving potential. By

controlling the space and time symmetries of the driving we show how a directed current can be induced,

producing a coherent quantum ratchet. Weak driving induces a regular behavior, and space and time

symmetries must both be broken to produce a current. For strong driving, the behavior becomes chaotic

and the resulting effective irreversibility means that it is unnecessary to explicitly break time symmetry.

Spatial asymmetry alone is then sufficient to produce the ratchet effect, even in the absence of interactions,

and although the system remains completely coherent.
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Introduction.—The physics of ratchets, systems that ex-
hibit directed motion in the absence of an external bias, has
undergone extremely rapid development in recent years
[1,2]. The concept is very general, and ranges from new
technological forms of manipulating and directing matter
at nanoscale levels, to understanding how systems in nature
such as biological molecular motors function. Funda-
mentally a ratchet must satisfy two essential requirements:
the systemmust be driven out of equilibrium by an external
force, and the relevant space and time symmetries, which
would otherwise forbid the generation of directed currents,
must be broken.

A well-known example is provided by a Brownian par-
ticle in a periodic potential. Driving the system from
equilibrium by either pulsing the potential (‘‘flashing
ratchet’’) or tilting it (‘‘rocking ratchet’’) produces a cur-
rent if the spatial or temporal symmetry of the driving force
is broken. In the most commonly studied overdamped
regime, the ratchet current arises from the rectification of
random fluctuations, and accordingly noise and dissipation
are essential ingredients. This is not true in general, how-
ever, and surprisingly it has been shown recently [3–9] that
ratchet effects can also occur even in completely coherent
systems.

Considerable progress in this direction has been made by
considering the quantum kicked rotor. Experimentally this
system can be realized extremely well in gases of ultracold
atoms held in pulsed optical lattices. While it was origi-
nally thought that ratchet effects would only arise in sys-
tems with an underlying mixed classical phase space [3],
recent work has shown that they can also arise when the
phase space is globally chaotic. In Ref. [4] a quantum
Hamiltonian ratchet of this type was studied both theoreti-
cally and experimentally, in which the current arose from
the generation of an asymmetry in the momentum distri-
bution due to the desymmetrization of the system’s Floquet
states. An alternative scheme, developed in the context of
quantum maps [5], is to use interference effects to produce
an imbalance in the phase-space distribution. Quantum

resonances, where the period of the kicks is matched to
the inverse recoil velocity of the optical lattice, have also
been proposed [6,7] as a means of producing ratchet
accelerators.
In this Letter we consider an optically trapped Bose-

Einstein condensate (BEC), since the macroscopically
protected coherence and excellent controllability of these
systems make them ideal subjects for investigating quan-
tum transport effects. Instead of kicking the system [8,10],
we use a smoothly varying potential and so can expect to
produce less heating effects, which we verify explicitly by
evaluating the fraction of noncondensed atoms. By choos-
ing a form for the driving which enables us to separately
break space and time symmetries, we find that we can
induce a directed current in a BEC starting from a sym-
metric initial state. This occurs by two distinct mecha-
nisms; for weak driving, the system undergoes regular
oscillations, and both space and time symmetries in the
driving must be broken. Conversely, for strong driving, the
system’s dynamics becomes chaotic, and this produces an
effective irreversibility which means it is not necessary to
explicitly break the time symmetry.
Model.—We consider a BEC confined in a toroidal trap

[11] with a cross section much smaller than the trap’s
radius, R. The system can thus be described by an effective
one-dimensional Gross-Pitaevskii equation (GPE)

HðtÞ ¼ � 1

2

@2

@x2
þ gjc ðx; tÞj2 þ KVðx; tÞ; (1)

where x parametrizes distance around the trap, and we
measure all energies in units of @2=2mR2. The short-range
interactions between the atoms in the condensate are de-
scribed by a mean-field term with strength g, and the
condensate is driven by a time-periodic external potential
with zero mean by modulating the amplitude of the optical
potential. The archetypal form of a ratchet potential [2] is
V ¼ sinðxÞ þ � sinð2xþ�Þ, where V is symmetric for
� ¼ �=2, and is maximally asymmetric for � ¼ 0, �.
We make the unusual choice of factoring the potential
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into separate spatial and time-dependent components of
this form Vðx; tÞ ¼ VðxÞfðtÞ

VðxÞ ¼ sinðxÞ þ � sinð2xÞ; (2)

fðtÞ ¼ sinð!tÞ þ � sinð2!tÞ: (3)

It is important to note that this potential does not corre-
spond to either a purely rocking or flashing ratchet, and has
the appealing feature of allowing the space and time sym-
metries of the system to be controlled independently. We
plot the form of VðxÞ in the inset of Fig. 1(a), and show that
for nonzero values of � the potential becomes skewed,
breaking both inversion symmetry and shift symmetry. A
static spatial potential of this type has been recently studied
experimentally in [12].

Results.—To probe the behavior of the system we evalu-
ate IðtÞ ¼ hc ðx; tÞjpjc ðx; tÞi as a measure of the current
flowing in the ring. As an initial condition, we choose the

zero-current state c ðx; 0Þ ¼ 1=
ffiffiffiffiffiffiffi
2�

p
, which is convenient

for experiment as it is the ground state of the undriven
Hamiltonian, and so can be prepared by cooling. We
numerically integrate the wave function in time using a
split-operator method, and henceforth we shall take the
driving frequency ! ¼ 1. In Fig. 1(a) we show the time-
averaged current, �I, obtained by integrating the system
over 100 driving periods. For weak driving we can note a
sharp peak centered at K ¼ 0:15. As K is increased from
this value the current drops, becomes negative, and passes
through a negative peak at K ¼ 2:4 This second peak is
associated with an enhancement of (negative) current over
a rather broad range of driving amplitudes.

We show the time dependence of the current for weak
driving in Fig. 1(b). It is clear that the sharp peak in �I is
associated with regular oscillations of the current. For g ¼
0 this oscillation is sinusoidal with a period much larger
than T ¼ 2�=!. Increasing g initially slightly enhances
the amplitude of the oscillation, while also deforming its
waveform. As g is increased further, however, the os-
cillation’s amplitude becomes abruptly suppressed [see
Fig. 2(d)]. Examining the evolution of the system in detail

reveals that the oscillation occurs chiefly between the states
j0i and j2i, where jni denotes an eigenstate of the undriven
Hamiltonian with (quantized) momentum n@. While a
symmetric driving would equally populate states with
positive and negative momentum, producing zero current,
interference effects cause the asymmetric form to prefer-
entially drive the system to jþ2i rather than j�2i, thus
inducing a net current. A perturbative study of the Floquet
states explains this result [13].
To qualitatively study this phenomenon, let us truncate

the wave function to just the two components of interest,

c ðx; tÞ ¼ Aþ B expð2ixÞ, where jAj2 þ jBj2 ¼ 1=
ffiffiffiffiffiffiffi
2�

p
.

Under the action of the Hamiltonian [Eq. (1)], this yields
the equation of motion for the expansion coefficients
� ¼ ðA; BÞ
i _� ¼

�

��K

2
fðtÞ�y �

�
1þ g

2
½jAj2 � jBj2�

�
�z

�

�; (4)

where �j are the Pauli matrices. We may now visualize the

time evolution of the system using the Bloch sphere rep-
resentation, where the north/south poles correspond to
occupation of the states j0i=j2i. For g ¼ 0 the Bloch vector
will evolve under the influence of a fictitious magnetic field
By ¼ �KfðtÞ, and so will simply make a Larmor orbit in

the x-z plane as shown in Fig. 2(a). This corresponds to the
sinusoidal oscillation displayed in Fig. 1(a). For a larger
value of g the Bloch vector will execute a more compli-
cated ‘‘figure-of-eight’’ motion under the combined influ-
ence of Bx and Bz, shown in Fig. 2(b), producing the
nonsinusoidal current oscillations seen in Fig. 1(b).
When g is increased further, the magnitude of the fictitious
field component Bz is enhanced, until the Bloch vector is
confined to making rapid circular orbits [Fig. 2(c)] near the
north pole, in a process directly analogous to the nonlinear
phenomenon termed self-trapping [14]. These small orbits
correspond to the low amplitude, high frequency oscilla-
tions seen in Fig. 1(b) for large values of g. In Fig. 2(d) we
show in detail how this transition occurs by plotting the
amplitude of the current oscillations as g is increased, and
demonstrate that this simple model indeed captures the
main features of this effect.
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FIG. 1 (color online). (a) Time-averaged current (averaged over 100 periods), a function of driving strength K for symmetry
parameters � ¼ � ¼ 0:2 and nonlinearity g ¼ 0:1. Clear peaks at K ¼ 0:15 and K ¼ 2:4 are marked with arrows. Inset: Plot of the
driving potential VðxÞ. For � ¼ 0 (black dashed curve) it is symmetric, but for � ¼ 0:2 (solid red curve) it has an asymmetric sawtooth
form. (b) Current induced for weak driving (K ¼ 0:15). For g ¼ 0 the current exhibits a smooth sinusoidal oscillation; as g is increased
the oscillations are initially enhanced in amplitude and deviate from sinusoidal form, and subsequently become highly suppressed.
(c) Current induced for strong driving (K ¼ 2:4, g ¼ 0:1). In contrast to the previous case the current shows rapid quasiperiodic
oscillations, which nonetheless maintain a stable time-averaged value (red dashed line).
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We now consider the case of strong driving (K ¼ 2:4).
In this regime the initial state is driven to a larger number
of excited levels, and consequently the two-level approxi-
mation is no longer valid. The generated current, shown in
Fig. 1(c), instead shows an irregular, quasiperiodic charac-
ter corresponding to the large number of frequency com-
ponents present. Despite its jagged appearance, the current
converges to a stable time average after just a few tens of
driving periods. The ratchet current thus arises from a
completely different mechanism than before; instead of a
regular oscillation between two momentum states, the
system now evolves to a superposition of many momentum
eigenstates, which crucially has an asymmetric momentum
distribution [4]. This produces a dramatic difference be-
tween the symmetry dependence of the current in the weak
and strong driving regimes. The symmetry properties of
this form of driving were analyzed in Ref. [15] for a non-
interacting system, and it was concluded that both space
and time symmetries needed to be broken to produce a
ratchet current. This is indeed the case for weak driving,
and in Fig. 2(e) we can clearly see that the current vanishes
for �, � ¼ 0. In contrast, when the system is driven
strongly only � � 0 is required, that is, it is sufficient to
just break the spatial symmetry, an effect also noted in
quantum resonant ratchets [16]. In Fig. 3 we show the
current produced for strong driving when the temporal
asymmetry � is set to zero. Away from � ¼ 0 we obtain
a clear ratchet current whose direction depends on the sign
of �. This occurs in analogy to the production of a ratchet
current in a non-Hamiltonian system [17], but instead of
dissipation it is the quasiperiodic evolution of the system
which produces the effective irreversibility in time [18].
This contrasts sharply with the results obtained in Ref. [9],
where instead the interaction was argued to play the role of
breaking the time-reversal symmetry. As a result, the
ratchet current we obtain has only very weak dependence
on g (as shown in Fig. 3), and occurs even in the non-
interacting case.

As well as driving the dynamics of the condensed atoms,
the potential also has the effect of exciting atoms out of the
BEC to form a thermal cloud. This depletion eventually
leads to the destruction of the BEC, and seeing how rapidly
this occurs allows us to assess the stability of the BEC
under driving [10]. This can be done by making the
Bogoliubov approximation, and linearizing the GPE about
its ground state. Following the Castin-Dum formalism
[19], the mean number of noncondensed atoms at zero
temperature is given by NðtÞ ¼ P

k�0hvkðtÞjvkðtÞi, where
(uk, vk) are the amplitudes of the Bogoliubov quasiparticle
operators with quantized momentum k. This approxima-
tion is valid provided that the number of particles excited
from the condensate is small compared to the condensate
itself.
In Fig. 4(a) we show the time development of the non-

condensed atoms for both weak and strong driving. In all
cases the number of atoms does not increase exponentially,
but instead follows an approximate power law,N / t� with
� ’ 1:9, indicating that under the driving the condensate
does not exhibit dynamical instability. It is interesting to
note that for weak driving the production of noncondensed
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FIG. 3 (color online). Ratchet current produced for strong
driving (K ¼ 2:4) for a system with no temporal asymmetry
(i.e., � ¼ 0). Nonzero spatial asymmetry (� � 0) is required to
induce a current, and the direction of the current depends on the
sign of �. The magnitude of the current depends only weakly on
the nonlinearity g.
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FIG. 2 (color online). (a)–(c) Bloch sphere representation of the evolution of the effective two-level model [Eq. (4)] for weak-driving
(K ¼ 0:15). (a) g ¼ 0: The Bloch vector makes a circular orbit in the x-z plane, corresponding to a sinusoidal current oscillation.
(b) g ¼ 0:1: The Bloch vector makes a more complicated ‘‘figure-of-eight’’ orbit, producing the distortion from the sinusoidal
waveform. (c) g ¼ 0:15: A phenomenon analogous to self-trapping occurs, and the Bloch vector is confined to small orbits in the
vicinity of the north pole, implying an interaction-induced suppression of current. (d) The suppression of the current occurs at a very
precisely defined value of g. The two-level approximation results (dashed red line) compare well with the simulation of the full GPE
(solid black line). (e) Current produced as a function of the asymmetry parameters (g ¼ 0:10). The current vanishes for � or � ¼ 0,
and is positive (negative) in the top-left/bottom right (top-right/bottom left) quadrants. Contours of constant current are given by
�� ¼ cnst: in agreement with the perturbative result [13]; dashed lines show the current maxima.
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atoms exhibits marked oscillations. These are a conse-
quence of the large, slow current oscillations that the
driving generates; the regular sloshing motion periodically
produces peaks in the density distribution of the conden-
sate, causing an enhanced emission of particles at those
times and locations. As the density distribution can be
directly imaged in experiment, this provides a convenient
means to study the dynamics of the BEC in this regime.
The momentum distribution of the noncondensed atoms
also mimics the behavior of the condensate. In Fig. 4(b) we
see that weak driving essentially only excites a single
Bogoliubov mode, with momentum k ¼ þ2. As the driv-
ing is not resonant with the Bogoliubov frequency, how-
ever, this mode does not grow exponentially with time [10]
and so dynamical instability is avoided. Conversely, for
strong driving a larger number of Bogoliubov modes are
excited, and the momentum distribution is strongly asym-
metric, again resembling the momentum spectrum of the
condensate.

Conclusions.—We have investigated the dynamics of a
BEC under a periodic driving potential. In the weak-
driving regime a ratchet current can be generated by break-
ing both space and time symmetries, and inducing slow,
regular oscillations of the condensate. For strong driving a
more complicated quasiperiodic dynamics is induced, in
which chaos acts to eliminate the long term memory of the
system, thus mimicking thermal noise. Accordingly, only
the spatial symmetry then needs to be broken to produce a
ratchet current. This current should remain stable over time
scales comparable to the system’s Ehrenfest time, which
scales logarithmically with the number of atoms in the
condensate [20], as also suggested by numerical results
presented in Ref. [9]. For a condensate of 105 atoms we
estimate this time to be of the order of 50 driving periods.
These results expose a new vista of possibilities in ma-
nipulating the interplay between the driving potential,
interactions and symmetry breaking to induce directed
transport in quantum coherent systems.
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FIG. 4 (color online). (a) For weak driving (K ¼ 0:15, upper black curves) the number of noncondensed atoms exhibits significant
oscillations, arising from the oscillation of atoms in the condensate. For strong driving (K ¼ 2:4, lower red curves) the number rises
monotonically with a similar approximately power-law rate of increase. (b) Occupation of noncondensed modes after 100 driving
periods for weak driving (g ¼ 0:1). This distribution mimics the spectrum of the condensate, with a large peak at n ¼ þ2. (c) As for
(b) but for strong driving. The distribution of momentum is again asymmetric, but many modes are populated.
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