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Abstract. Low energy X-ray Intra-Operative Radiation Therapy (IORT) is used mostly for 

breast cancer treatment with spherical applicators. X-ray IORT treatment delivered during 

surgery (ex: INTRABEAM®, Carl Zeiss) can benefit from accurate and fast dose prediction 

in a patient 3D volume. However, full Monte Carlo (MC) simulations are time-consuming 

and no commercial treatment planning system was available for this treatment delivery 

technique. Therefore, the aim of this work is to develop a dose computation tool based on 

MC phase space information, which computes fast and accurate dose distributions for 

spherical and needle INTRABEAM® applicators. First, a database of monoenergetic phase-

space (PHSP) files and depth dose profiles (DDPs) in water for each applicator is generated 

at factory and stored for on-site use. During commissioning of a given INTRABEAM® unit, 

the proposed Fast and Optimized Phase-Space (FOPS) generation process creates a phase-

space at the exit of the applicator considered, by fitting the energy spectrum of the source to 

a combination of the monoenergetic precomputed phase-spaces, by means of a genetic 

algorithm, with simple experimental data of depth dose profiles in water provided by the 

user. An in-house hybrid MC algorithm which takes into account condensed history 

simulations of photoelectric, Rayleigh and Compton interactions for X-rays up to 1 MeV 

computes the dose from the optimized phase-space file. The whole process has been 

validated against radiochromic films in water as well as reference MC simulations 

performed with penEasy in heterogeneous phantoms.  From the pre-computed 

monoenergetic PHSP files and DDPs, building the PHSP file optimized to a particular 

depth-dose curve in water only takes a few minutes in a single core (i7@2.5 GHz), for all 

the applicators considered in this work, and this needs to be done only when the X-ray 

source is replaced. Once the phase-space file is ready, the hybrid Monte Carlo code is able 

to compute dose distributions within 10 minutes. For all the applicators, more than 95% of 

voxels from dose distributions computed with the FOPS+hybrid code agreed within 7%-0.5 

mm with both reference MC simulations and measurements. The method proposed has been 

fully validated and it is now implemented into radiance (GMV SA, Spain), the first 

commercial IORT Treatment Planning System (TPS). 

 

 

1. Introduction 

 

Intra-Operative Radiation Therapy (IORT) is a modality of cancer treatment that combines the 

effort of surgery and radiation therapy in order to increment the rate of tumour control. In this 

treatment technique a high dose is administrated directly to the exposed tumour bed during surgery. 

                                                           
*
 The first two authors of this work have made equal contributions to the manuscript and the associated scientific research. 
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Mobile devices are increasingly used, such as dedicated electron accelerators or kilovoltage X-ray 

devices. 

The INTRABEAM® system (Carl Zeiss Surgical Gmbh, Oberkochen, Germany) is a 

commercial device dedicated to low energy X-ray IORT treatments. It is a mobile accelerator that 

includes a miniature electron-beam driven X-ray source (Dinsmore et al. 1996, Beatty et al. 1996) 

and allows treating various localizations with different applicators (Sethi et al. 2018). 

Low-energy X-ray IORT is a subject of debate and there has been some controversy 

regarding the potential benefits of the technique. Although longer-term follow up randomized trials 

would be needed to definitely settle this issue, the 5-year TARGIT-A (Vaidya et al. 2014) trial 

showed promising clinical results for breast cancer irradiation. Indeed X-ray IORT exhibited similar 

local control and less toxicity, especially chronic skin toxicity (Sperk et al. 2012) in comparison to 

patients treated with external beam radiotherapy. IORT is also used as a boost for breast cancer 

treatments, since intra-operative treatments present some potential advantages to the patient, such as 

avoiding the delay between surgical resection and treatment, minimizing the risk of geographic 

misses associated with external beam boost techniques (Kraus-Tiefenbacher et al. 2005), or 

incrementing patient comfort when compared to other boost methods (Sedlmayer et al. 2017). 

However, there are some obstacles that difficult the task of finding evidence of therapeutic benefit 

of this technique. Dose prescription is not personalized, the actual dose distribution delivered is 

unknown, and the calculation tool provided by vendors is based on water profiles (Clausen et al. 

2012).  

Previous studies have already pointed out the impact of not considering heterogeneities in 

dose calculation for low energy X-ray IORT. The use of water instead of CT-derived densities may 

lead to inaccurate dose calculations, particularly in regions where variable tissue densities and 

heterogeneities may be present (Bouzid et al. 2015). Deviations from dose prescription have been 

found of up to 34% in the case of breast irradiation (Hensley 2017) and larger than 300% for bone 

tissues (Chiavassa et al. 2015). Some of these uncertainties in tissue assignation, target assessment 

and applicator placement could be reduced by means of treatment planning systems. However, 

hitherto there was no commercial treatment planning tool which allows accurate and fast 

determination of the dose received during an irradiation using X-ray IORT.  

There are several previous studies aiming to characterize the INTRABEAM® device. 

Detailed Monte Carlo simulations of a miniature 50 keV accelerator used to treat brain tumours 

were performed by Yanch and Harte with ITS 3.0 (Yanch and Harte 1996). More specifically, 

Bouzid et al. developed a Geant4/GATE code suitable to INTRABEAM® treatment issues (Bouzid 

et al. 2015) while Ebert and Carruthers used EGSnrc to model the INTRABEAM® source (Ebert 

and Carruthers 2003). High accuracy is reached with full Monte Carlo (MC) simulations, however it 

is still a time-consuming technique and it is not suitable for real-time planning in the Operating 

Room (OR). The use of phase-space (PHSP) files reduces the overall computation time. Therefore, 

in order to speed up dose calculation, Clausen et al. developed a Geant4-based source model using 

PHSP files which decreased computation time to 12 minutes for a full gynecological treatment 

(Clausen et al. 2012). However, that technique was suitable only for water dose calculations and 

simulation time would increase when applied to more complex geometries with heterogeneities. 

Moreover, standard PHSP files lack flexibility in manipulating data, exhibit huge storage 

requirement, and need resources for reading-in the stored data during simulation (Chetty et al. 2007, 

Schach von Wittenau et al. 1999). Alternatively, Nwankwo et al. obtained PHSP from a virtual 

source model to generate photons for a specific INTRABEAM® source defined in Geant4 

(Nwankwo et al. 2013). A reasonable calculation uncertainty was achieved within 2 hours of 

simulation. However, dose computation time is still too long for OR irradiations or to be 

implemented in commercial treatment planning systems (TPS).  

Indeed, in order to develop an accurate dose computation tool, the main problem we face is to 

obtain a description of the radiation produced by a particular X-ray INTRABEAM® device. A 

detailed MC simulation of each device and X-ray source is just too complicated to be of any 

practical use in the clinical routine. The aim of this work is to develop a fast and accurate dose 

calculation tool which can obtain the radiation produced by any given INTRABEAM® applicator, 

tuned to the user’s device from simple experimental data, and which is suitable for a fast and easy 
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deployment as a treatment planning system. In order to achieve this goal, we propose an 

optimization method that uses a pre-stored database of monochromatic PHSP files and depth dose 

profiles (DDP) which can be tuned to reproduce every user’s device, just knowing the experimental 

DDP in water for the given device. This development is supplemented with a hybrid Monte Carlo 

dose calculation algorithm to allow fast and accurate computation of dose distributions, taking into 

account the source parameters as well as complex patient data (heterogeneities, CT data). Dose 

computed by this process was compared to dose obtained by realistic MC simulations of the 

sources, for spherical and needle applicators, and to experimental data in water. 

 

2. Materials and methods 

2.1. INTRABEAM® device and spherical treatment applicators 

The INTRABEAM® system consists of an electron gun which emits electrons that are accelerated 

to a maximum of 50 kV by the accelerating unit. Two pairs of bending coils guide the electron 

beam through the probe to the gold target, where bremsstrahlung photons are generated. This results 

in an approximately isotropic dose distribution (Eaton 2012, Schneider et al. 2009) around the X-

ray Source (XRS). The probe may be encapsulated with different applicators, which shape the dose 

distribution. In particular, a simple needle applicator can be added in the case of stereotactic 

radiosurgery for brain tumours (Douglas et al. 1996) or spinal metastases irradiation (Schneider et 

al. 2011, Wenz et al. 2010). Spherical applicators are mostly employed for breast cancer (Vaidya et 

al. 2010), but its use is being extended to other treatments such as glioblastomas (Giordano et al. 

2014).  

2.2. Dose calculation with the Hybrid Monte Carlo algorithm 

A fast and precise dose calculation algorithm was developed in order to compute dose in voxelized 

volumes. The hybrid MC dose calculation algorithm takes into consideration photoelectric, 

Rayleigh and Compton interactions. Particles are sampled at the surface of the applicator following 

the stratified approach described by Guerra et al. (Guerra et al. 2014), using the information stored 

in the phase-space, and transported throughout the volume in steps of length dr, whose value is 

typically smaller than half the voxel size. At each transport step, the probability P for each 

interaction type is computed as P=1-exp(-µ·dr), with μ being the attenuation coefficient coming 

from either photoelectric, Rayleigh or Compton effects extracted from PENELOPE-2008 database 

(Salvat et al. 2008). If an incident photon undergoes photoelectric interaction with a probability PPE, 

the photon transfers all its energy Eph to the electron, and it is assumed that it is immediately 

absorbed at the voxel where the photoelectric interaction occurred. If a photon undergoes Compton 

interaction with a probability PC, the photon is scattered and part of its energy is transferred to the 

recoil electron, which we also assume that it is absorbed in the voxel where the Compton interaction 

occurred. Finally, if a photon undergoes Rayleigh interaction, the photon is scattered and no energy 

loss takes place. Rayleigh and Compton scattering angles have been precomputed and stored for the 

different materials in a compact form. These approximations are fair for the energies considered 

here, for biological materials (lung, muscle, bone), if voxel sizes of the order of 0.25 mm
3
 or larger 

are employed. 

In order to reduce variance, the following aspects are included in the simulation (Ibáñez 

2017a,b): 

 Meta-histories (m-histories) approximation. Every primary particle (m-history) represents 

the fate of many photons. This m-history can scatter or undergo photoelectric effect, with a 

given probability. After interacting, m-histories are not removed, but instead their weights 

are updated after each spatial time progression. Energy deposition in the voxel is computed 

from the change of weight of the m-history.  

 Condensed and forced interactions. After each simulation step, the fraction of the primary 

m-history that interacts is computed, its weight removed from the weight of the primary m-

history. Secondary particles (due to Compton or Rayleigh) are generated with their 

corresponding weights.  
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 A fluence normalization is implemented to reduce dose artifacts due to poor statistics or 

suboptimal sampling of the region of interest, allowing dose distributions free from 

statistical noise from a low number of initial meta-histories. 

2.3.  Fast Optimized Phase-Space-based (FOPS) Dose Computation process  

The dose optimization and calculation method proposed in this work has been separated in three 

phases. Firstly, a database of monoenergetic PHSP files and DDPs in water was computed from 

detailed simulations at the external surface of the INTRABEAM® applicators. These PHSP files 

were parameterized for easier handling and storage. Secondly, a PHSP file tuned for each device is 

obtained by a linear combination of all the monochromatic sources. To this end, an experimental 

DDP provided by the manufacturer is fit to a linear combination of DDPs from the monochromatic 

sources (Iaccarino et al. 2011). The fit is performed by means of a genetic algorithm (Fernandez-

Ramirez et al. 2008) and the resulting optimized PHSP file reproduces the user's data. Finally, dose 

is calculated from this optimized PHSP file with the Hybrid Monte Carlo code we have developed 

(Ibáñez 2017a,b, Vidal et al. 2014a,b). A scheme of the FOPS+Hybrid MC process is shown in 

figure 1. We describe these phases below: 

 

 
 

Figure 1. Scheme of the FOPS computation process 

 

2.3.1. Database generation. This step needs to be done once for each applicator upstream the dose 

calculation process. First of all, a set of MC simulations performed to obtain a database of 

monoenergetic PHSP was run with penEasy (Sempau et al. 2011), a main program designed for 

PENELOPE-2008 (Baro et al. 1995, Salvat et al. 2008). This MC package is easy to use, very 

accurate, and it has been extensively benchmarked (Ma and Jiang 1999, Sempau et al. 2003, Ye et 

al. 2004, Chica et al. 2009). With penEasy we simulated a quasi-punctual source of photons 

emitting isotropically from the center of the applicators and interacting with a standard geometry 

per each applicator size. 50 MC simulations, from 1 keV to 50 keV, were performed with 10
8
 initial 

particles for each applicator. The resulting monoenergetic PHSP files were collected at the external 

surface of the applicator and stored in IAEA format (Capote et al. 2006), i.e. represented by n-

tuples which include particle type, energy, (x,y,z) position, angles of emission (ux,uy,uz) and weight 

of each particle. Afterwards, the PHSP files previously stored were used to compute the 

corresponding monoenergetic DDPs in water with the fast hybrid Monte Carlo dose calculation 

algorithm described before. This database is independent on the actual energy spectrum of any 

given X-ray source. The database generation is time-consuming, but it needs to be performed only 

once. 
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2.3.2. PHSP parameterization. Since standard PHSP files can be heavy to use, in this work they 

are parameterized and redundant variables are removed, taking advantage of the symmetry of the 

spherical applicators. The method was based on a similar approach used to parameterize PHSP files 

generated for IORT dose calculation with electrons (Herranz et al. 2015) and to reduce the size of 

the PHSP. It also reduces statistical noise from a given number of simulated histories in the 

computation of the PHSP. 

Owing to the geometry of the needle and spherical applicators, a PHSP history can be fully 

defined by its Energy (E) and two angles  and , one to position the particle in the surface of the 

sphere, and another to determine the direction of emission of the particle with respect to the 

direction of the radius of the sphere at the point of emission.  

The definition of the angles is presented in figure 2. We allow for a dependence for the 

fluence of the particles on their forward or backward position along the surface of the sphere, i.e., 

on the angle . We assumed azimuthal symmetry around the axis of the applicator, and azimuthal 

symmetry of the direction of emission of the particles with respect to the direction of the radius of 

the sphere at the point of emission of the particle. To compute the actual dose, the condensed 

information contained in this compact PHSP needs to be “debinned” to produce histories 

supplementing the information in the PSHP with two azimuthal angles randomly picked in the 

range from 0º to 360º. One of them, combined with , fixes the location of the emission point for 

the particle in the surface of the sphere. The second one, combined with , determines the direction 

of emission of the particle.   

 
Figure 2. Angles  and  used to parameterize PHSP files. 

 

Regarding bin size, a trade-off between accuracy of the representation and number of bins 

was made.  Starting from a reference PHSP with 100 million particles, it was binned in successively 

coarser bins in the variables previously described. The dose produced by the PHSP from coarser 

bins, once debinned, was compared to the one of the unbinned PHSP. With the bin sizes employed 

in this work, the doses from binned and unbinned PHSP agree well within the 1%-1 mm gamma 

criteria (Low et al. 1998) (more than 99% of the voxels passed the test).  The PHSP files have been 

finally parameterized with 50 bins in energy, ranging from 0 to 50 keV, 200 bins in , from 0º to 

180º, and 200 bins in , ranging from 0º to 20º. 

 

2.3.3. Optimization of the energy spectrum. For each applicator, the vendor provides only the 

DDPs in water, measured in-house. The method we propose is able to optimize the energy spectrum 

of the PHSP at the external surface of each applicator using this experimental data. This fitting step 

should be carried out each time the experimental curve changes, from one applicator to another, 

from one X-ray source to another, etc. In the first phase of the PHSP optimization process, the 

monoenergetic DDPs are going to be adjusted to the experimental dose by means of a genetic 

algorithm (Fernández-Ramírez et al. 2008). The genetic algorithm will generate an optimized 

energy spectrum which weights the relative contributions of the monochromatic DDPs that 

reproduces the experimental dose data. The energy spectrum was defined as a simple mathematical 
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function describing the bremsstrahlung behavior of the energy spectrum and the characteristic rays 

of 50 keV X-rays impinging in gold and other materials of the target. Equation (1) describes the 

bremsstrahlung background of the energy spectrum Sbackground(E) without taking into account 

characteristic  lines (Kramers 1923) 

 
b

a
background

E

E
EEES 








 1)( 0

1                                         (1) 

where E0 is the maximum energy of the 50 keV photon beam energy spectrum and E1 the cut-off 

energy. a and b are a filtration parameter and Kramers’ law adjustment parameter, respectively. 

Further, as shown in equation (2), some characteristic X-ray lines from gold were added to 

the background, at energies 9.5, 12 and 13.5 keV, as measured by Schneider et al. at the surface of 

the probe (Schneider et al. 2010) and further confirmed by our own detailed Monte Carlo 

simulations of the X-ray source (Ibáñez, 2017a).  

 

    )()( EIEcESES pbackgroundspectrum                                         (2) 

 

Where Ip(E) is the intensity of the characteristic line at energy E relative to the other two lines, 

and c(E) is the mixing parameter determining the amplitude of the characteristic lines relative to the 

spectrum background intensity.  

The DDP is adjusted from a weighted sum of the 50 monoenergetic DDPs previously 

computed in water. Thus the resulting fitting function is just the energy spectrum of the actual 

source. For each experimental DDP provided by the user, the parameters E1, E0, a, b and c are 

varied and results in a specific energy spectrum shape (with different bremsstrahlung backgrounds 

and characteristic line intensities) reproducing each experimental DDP.  

Once the energy spectrum is optimized, the monoenergetic PHSP files are weighted by the 

corresponding energy spectrum for each applicator, obtaining an optimized PHSP tuned to the 

experimental data. A scale factor is computed in order to scale the final dose to the experimental 

data. From these scale factors and the optimized PHSP, absolute dose distributions are obtained 

from the hybrid MC algorithm described above. 

 

 
Figure 3. Schematic view of the INTRABEAM® XRS used for the energy spectrum characterization. 

2.4. Monte Carlo characterization of the X-ray source. 

A detailed characterization of the XRS has been performed with penEasy (Sempau et al. 2011) in 

order to determine the shape of the energy spectrum and to generate reference dose distributions to 

compare against the FOPS+hybrid MC process. The geometry of the XRS has been accurately 

described in the literature (Dinsmore et al. 1996, Beatty et al. 1996, Yanch and Harte 1996). We 

defined the geometry as a 1.6 cm length beryllium needle with 1.1 mm inner radius and thickness of 

0.5 mm with a 0.5 µm layer of gold at the end of the probe. The beryllium needle is surrounded by a 

first layer of nickel with a thickness of 5 µm and a second layer of TiN with a thickness of 10 µm 
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(see figure 3). Regarding the electron source impinging on the gold target, it was characterized with 

a Gaussian energy distribution with a mean energy of 50 keV and a full width at half maximum 

(FWHM) of 5 keV. The electron beam does not impact in the entire target surface, but in an annular 

area between 0.6 and 0.8 mm radii (Clausen et al. 2012). The dose was scored at the exit of the 

probe surface with 4·10
10

 initial particles in order to accumulate more than 200 million particles in 

the scoring plane, obtaining a  statistical uncertainty of the simulation to around 2%. No variance 

reduction techniques were used. The voxel size employed in the simulation was 0.25 mm. This 

simulation was split up into 200 simulations running in parallel for around 12 hours each in a cluster 

based on an 8 core Intel® Xeon® CPU @ 2.00 GHz. 

 

2.5. Validation of the Fast Optimized Phase-Space generation and Hybrid MC dose computation for 

needle and spherical applicators 

First of all, PHSP were generated and optimized to reference data for spherical and needle 

applicators. Then, dose distributions were computed with the hybrid MC algorithm in various 

phantoms. Dose distributions obtained with the FOPS-hybrid were compared to measurements, 

when they were available, and to dose distributions computed by standard reference PenEasy MC 

simulations. 2D and 3D gamma evaluations were performed to check the accuracy of the results. 

The steep gradient of INTRABEAM® dose distributions was taken into account when selecting 

distance-to-agreement and dose difference criteria (Eaton and Duck 2010, Chiavassa et al. 2015). 

Since most points will fail on distance and not on dose, 7%-0.5 mm asymmetric tolerances were 

selected. We considered that a given solution would pass the gamma evaluation if at least 95% of 

the points with dose equal or higher than 5% of the maximum dose had gamma values smaller than 

one (Herranz et al. 2015).  

 

2.5.1. Water measurements. On the one hand, dose distributions from the FOPS+hybrid process 

were compared to experimental 2D dose maps in water provided by Zeiss Medical (Oberkochen, 

Germany) for all applicators. A water-equivalent phantom, specifically designed to measure 2D 

dose distributions along the applicator axis, was employed. It consists of two blocks made of solid 

water with an applicator-shaped hole. The film is located between the two blocks and the applicator 

is placed in the phantom hole. Dose distributions were measured with EBT3 Gafchromic films and 

scanned using an Epson Expression 10000XL (US Epson, Long Beach, CA) flatbed scanner at least 

24 hour post-irradiation. A scanning protocol described by Avanzo et al. (Avanzo et al., 2012) was 

adopted. Film images were analyzed using an in-house image manipulation routine written with 

MATLAB 7.6.0.324 (MathWorks, Natick, MA, USA) based on the three channel technique (Micke 

et al. 2011).  

Reference DDPs were extracted from the films along the applicator axis and used to fit the 

monoenergetic PHSP files and DDPs by means of our optimization algorithm. Optimized PHSP 

files were generated and then used to compute dose with the Hybrid Monte Carlo. 10
7
 histories were 

simulated with the Hybrid MC in 401×401×401 voxels phantoms, with 0.25×0.25×0.25 mm
3
 voxel 

size.   

Dose was compared to verify the accuracy of the fitting process in the whole 2D dose map. The 

first 0.5 millimeters of film next to the surface of the applicator were removed from the comparison 

to avoid artifacts in the experimental dose distribution caused by the deformation that the border of 

the films experience when cut to adapt to the applicator surface. 

 

 

2.5.2. Heterogeneous phantoms.  The FOPS+hybrid MC process was tested against penEasy 

simulations in heterogeneous phantoms representing possible clinical situations for all applicators. 

In the first situation, the applicator was surrounded by a layer of water 5 mm thick, and then bone, 

representing a glioblastoma treatment or a partial breast irradiation close to a rib. The second 

situation represented the applicator surrounded by a layer of bone 1.5 mm thick, and then lung, to 

simulate a Kypho-IORT treatment. And the third phantom represents the applicator surrounded by 

water and then lung also representing a breast irradiation.  
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On the one hand, reference dose distributions were calculated with penEasy using the energy 

spectrum derived from the XRS characterization. Full MC simulations were performed for the three 

situations with 2·10
9
 histories, without variance reduction techniques. On the other hand, 

FOPS+hybrid process was used to predict dose distributions in the same phantoms. Doses were first 

calculated in water with penEasy and their DDPs were used as the input in the FOPS optimization 

process. Then, the optimized PHSP files were used to calculate dose distributions with the hybrid 

MC in the three heterogeneous phantoms with 10
7
 m-histories. Both calculations were performed 

with a voxel size of 0.25×0.25×0.25 mm
3
. 3D gamma evaluations were performed with 7%-0.5 mm 

tolerances.  

 

2.5.3.  Clinical cases. Two clinical situations were also included in the validation of the 

FOPS+hybrid MC. The first one is the case of a partial breast irradiation with a 3 cm diameter 

spherical applicator, while the second one is a Kypho-IORT treatment of the spine. For both clinical 

cases, 3D CT scans of the patients were used to compute dose distributions with penEasy and with 

the FOPS process combined with the Hybrid MC.  The same number of histories and voxels sizes as 

for the heterogeneous phantoms were taken. 3D gamma evaluations were performed with 7%-0.5 

mm tolerances to compare both calculations.  

 

3. Results 

3.1. Detailed Monte Carlo simulations 

For the x-ray source, we have compared the energy spectrum obtained with the full MC simulation 

and the experimental energy spectrum (Schneider et al. 2010), shown in figure 4. The agreement is 

good, except for the characteristic peaks at the lower end of the spectrum, which are more visible in 

the simulation than in the measurements. However, for these very small energies the experiment 

just may not be sensitive enough, and in any case they have little relevance in the dose computation. 

 

 

 
Figure 4. Energy spectra at the surface of the XRS obtained experimentally and with the full MC simulation. 

 

3.2.  Energy spectrum optimization 

For each applicator, the genetic algorithm developed in this work fits the depth dose distribution to 

the experimental DDP provided by the user via an optimized energy spectrum. Figure 5a shows an 

example of a fitted energy spectrum compared to the experiment (Schneider et al. 2010) for the 35 

mm diameter spherical applicator. It shows that the energy spectrum obtained with the genetic 

algorithm is following the same trend than the experimental spectrum through the characteristics 

rays and general shape. The energy spectra obtained for the other spherical applicators are very 

similar to the energy spectrum shown for the 35 mm diameter spherical applicator.  The fitting of 

the depth dose distributions is shown in figure 5(b), where the experimental profiles (dots) and 
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fitted depth dose curves (solid lines) times the square of the distance to the surface of the applicators 

for all the applicators is compared.   
 

 
 

Figure 5 (a) Comparison of energy spectra obtained experimentally and the one resulting from the fit to the 

experimental DDP with the genetic algorithm for the 35 mm diameter spherical applicator. (b) Experimental 

DDP (dots) and fitted DDP (solid lines) times the square of the distance to the surface of the applicator for the 

different applicators.   

3.3. Validation of the FOPS dose computation process for needle and spherical applicators 

3.3.1. Comparison against experimental measurements in water. Figure 6 shows an example of 2D 

dose distributions in water for a 45 mm diameter applicator obtained with the FOPS+hybrid process 

from the reconstructed PHSP file and measured with a radiochromic film, the corresponding 2D 

gamma map and a comparison of dose profiles along the indicated directions, as well as the 

corresponding dose differences. Direction p1 was chosen to evaluate the dose differences in the area 

where anisotropy is more present, in contrast to direction p2 that has been selected in a more 

isotropic region. Both p1 and p2 dose profiles have been compared with a dose profile extracted 

from the isotropic dose map obtained from the hybrid MC. Dose differences are below 5% in most 

of the area, but increase up to about 15% in the backward direction next to the applicator, as it can 

be seen in figure 6d. The gamma evaluation distribution was performed for 7%-0.5 mm criteria with 

a 5% threshold and normalized to the maximum dose. Table 1 summarizes the gamma results for all 

spherical applicators. Almost all the cases have more than 95% voxels fulfilling the criteria. The 

main differences between experimental and simulated images are present in the backward direction, 

and are due to the anisotropy of the real XRS, which is not taken into account in the FOPS 

computation. Results are still reasonably good despite the fact that an isotropic particle emission of 

the source is assumed in the FOPS process.  

  
 

Table 1. 7%-0.5 mm gamma evaluation (5% threshold) between radiochromic films and FOPS+hybrid 

MC in water for spherical applicators. 

Applicator 

diameter 

(ϕ) 

15 mm 20 mm 25 mm 30 mm 35 mm 40 mm 45 mm 50 mm 

Water 

phantom 

(%) 

96.2 98.1 98.1 97.9 96.9 94.2 97.6 94.2 
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Figure 6. 2D dose distributions in water for a 45 mm diameter spherical applicator obtained from (a) 

radiochromic films, (b) FOPS dose computation process + hybrid MC (HMC) (c) 7%-0.5 mm Gamma 

distribution and (d) dose profiles along the indicated directions p1 and p2, and the corresponding dose 

differences. Dose agreement is very good, except in the areas close to the applicator neck, due to the isotropy 

assumption in the computed dose. 
 

3.3.2. Comparison against MC simulations in heterogeneous phantoms. 3D dose distributions were 

computed with both Monte Carlo simulations (penEasy) and FOPS+hybrid MC in the 

heterogeneous phantoms described previously in section 2.5.2 for all applicators (including needle). 

In figure 7 a comparison of transverse views and the corresponding gamma evaluation is presented 

for the 30 mm diameter spherical applicator in the water/bone phantom. The differences between 

both dose distributions come from the convention of assigning dose to voxels in penEasy and in the 

FOPS algorithm. A 3D gamma index comparison with 7%-0.5 mm criteria between both dose 

computations is summarized in Table 2, for the 3 different phantoms and all the applicators. The 

results are similar from one phantom to another, as dose computation quality does not depend on the 

considered materials. It can be seen that FOPS+hybrid dose predictions and full MC simulations are 

in good agreement (7%-0.5 mm 3D gamma index passing rate is 97.8 %).  
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Figure 7. Transverse view of 3D dose distributions delivered by the 3 cm diameter applicator in the 

water/bone phantom, computed with penEasy (a), and with the Hybrid Monte Carlo from the FOPS process 

(b), and the7%-0.5 mm gamma evaluation (c). 

 

 
Table 2. Results of the 7%-0.5 mm (5% threshold) gamma index comparison between full MC simulations 

and FOPS+ hybrid MC dose computation in heterogeneous phantoms for needle and spherical applicators. 

Applicator 

type 
Needle 

ϕ 15 

mm 

ϕ 20 

mm 

ϕ 25 

mm 

ϕ 30 

mm 

ϕ 35 

mm 

ϕ 40 

mm 

ϕ 45 

mm 

ϕ 50 

mm 

Water/bone 

(%) 
96.0 97.7 97.7 97.8 97.8 97.8 97.5 97.4 96.6 

Bone/Lung 

(%) 
98.9 99.0 99.1 98.9 97.4 96.1 96.8 96.6 95.7 

Water/ lung 

(%) 
96.2 98.8 98.9 99.0 99.1 99.1 99.1 99.0 97.6 

 

 

3.3.3. Comparison of MC simulations in clinical cases. Figure 8 shows the comparison of the two 

considered clinical situations, where dose maps computed from penEasy and the hybrid MC from 

the FOPS process are compared for a partial breast irradiation and a Kypho-IORT case. A 3D 

evaluation in terms of gamma index has been performed with 7%-0.5 mm criteria and 5% threshold 

and it is also represented. 98.2% of the voxels passed the criteria for the partial breast irradiation 

dose calculation and 95.2% of the voxels passed the criteria for the Kypho-IORT dose calculation. 

Slight differences can be observed at the surface of the applicator in both cases and this is due again 

to the different convention of assigning dose to voxels in penEasy and in the hybrid MC algorithm, 

but in general, the FOPS+hybrid MC process provides very accurate dose computation in patient 

data. 
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Figure 8. Dose maps from penEasy (a) and the hybrid MC from the FOPS process (b), and the gamma 

evaluation (c) delivered by the 30 mm diameter applicator in the partial breast irradiation simulation.  Dose 

maps from penEasy (d) and the hybrid MC from the FOPS process (e), and the gamma evaluation (f) in the 

Kypho-IORT calculation with the needle applicator. 

 

4. Discussion  

 

In this work we have described a dosimetric tool capable of providing a realistic dose distribution 

for INTRABEAM® spherical and needle applicators. First, we have developed a fast tuning tool to 

generate PHSP files optimized to any user’s device, providing as input only an experimental DDP 

in water (see figure 1). Second, we have developed a dose calculation algorithm suitable for 

INTRABEAM® working energies that includes the accuracy of a MC algorithm and calculates dose 

distributions in a fraction of the time. The combination of both developments allows the user to 

obtain accurate doses from an optimized PHSP file tuned to a particular device within minutes.  

The dose computational tool described in this work has been validated against reference data 

that included experimental measurements and Monte Carlo simulations. A detailed simulation of the 

INTRABEAM® X-ray source was performed in order to obtain a realistic X-ray spectrum to use in 

the rest of the MC simulations. The simulated energy spectrum of the XRS was compared to an 

experimental measurement (figure 4). The calculated energy spectrum is very similar to the 

experiment and shows resemblance to previous studies (Nwankwo et al. 2013, Yanch and Harte 

1996), although some differences can be seen in the characteristic X-ray peaks, mostly at low 

energies, where the lowest energy peak (4.41 keV), corresponding to Ti characteristic X-rays is only 

seen in the simulation, and the second peak (7.54 keV), matching the Ni transitions, presents a 

higher intensity in the simulation than in the experiment. However, the most intense peaks, 

corresponding to the Au lines (9.54, 11.53 and 13.24 keV), exhibit essentially the same intensity as 

the experiment. Observable differences in the lowest energy peaks can be either due to the limited 

efficiency of the detector for X-rays of such small energy, or by a slight difference in the thickness 

of the biocompatible layer employed in the simulation with respect to the actual material. 

Nevertheless, these differences bear little relevance for actual dose estimations, as such low 

energetic X-rays are absorbed within the first micrometers of the applicator.   

The optimization algorithms developed in this work to tune PHSP to experimental data 

perform accurately. Some fitting results are shown in figure 5. DDPs for all applicators are very 

well reproduced and the fitted energy spectrum of the 35 mm diameter spherical applicator 
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resembles the measured spectrum. The parameterization employed to compress the PHSP reduces 

the number of lines of PHSP files to a maximum of 2 million, making the problem amenable to our 

algorithms and the PHSP files easier to handle.  

The FOPS+hybrid MC process was tested against experimental measurements in water and 

against MC simulations in heterogeneous phantoms and clinical patient data. 2D and 3D gamma 

computations were used to evaluate the results. Dose difference and distance-to-agreement values of 

7% and 0.5 mm respectively were chosen to take into account the high dose gradients in the 

INTRABEAM® dose distributions (Eaton and Duck 2010). As for distance-to-agreement 

requirements of the TPS for IORT, a 0.5 mm in the areas of steep gradients should be deemed more 

than good enough. For these kind of treatments, patient/applicator positioning, and co-registration 

with the CT or other image employed to compute dose, 1 mm accuracy in distances is either in the 

state of the art or within reach in the immediate future, thus we should demand the TPS to exceed 

this accuracy, and this is so if it fulfills a 0.5 mm criteria. On the other hand, if the IORT procedure 

is unable of obtaining distance control for patient-applicator positioning better than 1 mm, there is 

no point in further increasing the TPS accuracy. Distance-to-agreement of 0.5 mm certainly 

saturates the accuracy that can be obtained with IORT procedures in the near future. 

 For the water validation against experimental measurements, Gafchromic EBT3 films were 

used. There has been some controversy regarding the use of radiochromic films for low energy X-

rays. EBT, as well as EBT2, showed energy dependence in the kilo-voltage energy range (Ebert et 

al. 2003, Sutherland and Rogers 2010), which made these dosimeters not suitable for low-energies. 

However, EBT3 have been found to be a more suitable dosimeter for INTRABEAM®’s working 

energies (Brown et al. 2012, Hill et al. 2014), and they can be used for absolute and relative 

dosimetry, measuring of output factors and beam profiles (Steenbeke et al. 2016). DDPs were 

extracted from the films and used to fit the monochromatic DDPs and PHSP files. Dose 

distributions obtained from the tuned PHSP files were then compared to the complete 2D dose maps 

measured with the films. We observed that the main differences between measurements and the 

Hybrid MC calculation were due to the anisotropy present in the backward direction of the actual 

applicators, as seen in the radiochromic films (figure 6a). The approach we considered for our 

spherical dose definition considers isotropy in the particle emission, and therefore, does not 

reproduce the experimental excess of dose close to the neck of the applicator. This can be seen in 

figure 6d, where dose profiles along two directions have been selected, one through the area where 

the experimental anisotropy is more significant (profile p1), and the other in a region far from the 

neck of the applicator (profile p2). Dose differences up to 14% are observed in the neck region, 

while for the remainder applicator measured and simulated dose differences are well below 5%. 

This anisotropy can result in an increment of the dose delivered of up to 3 Gy next to the applicator 

neck for a standard breast treatment, where dose prescription is usually 20 Gy at the surface. 

However, the volume presenting the anisotropy is restricted to a small region in the vicinity of the 

applicator neck, an area where very often no tissue is located, and anyway far enough from critical 

structures such as lung, heart or the rib cage. A 7%-0.5 mm gamma test with a 5% threshold 

resulted in more than 95% of voxels passing for most cases. For two applicators the level of 

fulfillment of the gamma criterion was marginally inferior. These two cases corresponded to 

measurements where the films were centered poorly and dose maps were incomplete, thus only a 

small area could be evaluated. Overall, there is reasonable agreement of simulations and 

experiment, considering the uncertainty associated with film dosimetry (Sorriaux et al. 2013) and 

possible experimental setup errors. The error of the system used (film, scanner and procedure) was 

approximately 2% for voxels with more than 5% of the maximum dose. 

Further improvement to the FOPS+hybrid MC process would be achieved by introducing an 

angular-dependent function in the fluence of the X-ray beam, thus the anisotropy of the spherical 

applicators would be reproduced. Anisotropy can be fully addressed in the procedure proposed. 

However, backward/forward anisotropy in INTRABEAM® spherical applicators is not part of the 

manufacturer commissioning workflow, nor it is routinely measured, as it is considered a minor 

correction. Therefore, despite the technical feasibility of introducing anisotropy in the fitting 

process, the lack of experimental data does not allow us to consider it in the PHSP optimization. 
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 A further validation of the FOPS+hybrid MC process was done when comparing with 

heterogeneous phantoms. PHSP file derived from DDPs in water were used to predict dose in 

different heterogeneous phantoms resembling clinical situations, as well as in two clinical cases. 

Good results were obtained in general, with a 7%-0.5 mm gamma evaluation yielding a 98% 

average pass rate (5% threshold). The uncertainty of a MC simulation is inversely proportional to 

the square number of initial histories, more exactly, to the square number of energy depositing 

interaction in each voxel. We are dealing with 10
9
-10

10
 histories in every reference simulation, thus 

statistical noise at the voxels with 5% of dose or more is below 1%.  

Absolute dose can also be reproduced with our algorithm. A scale factor that adjusts our 

algorithm to absolute dose is recovered from the comparison with the reference MC and the 

experimental DDP. The formalism includes this scale factor that is going to be applied to the final 

dose so that it is scaled to the input experimental DDP. This way, if the experimental DDP input in 

the procedure is a relative dose, with 100% at the maximum dose in water, we will obtain as well a 

relative dose distribution with a maximum value compared to maximum value in water. But if the 

initial DDP used to input in the algorithm is an absolute dose, the optimized PHSP file will generate 

absolute dose distributions. 

Computation time of the FOPS fitting process (genetic + PHSP weighting algorithms) varies 

on each case. The genetic algorithm is the most time consuming procedure. The number of dose 

values of the experimental profile and the voxel size employed in the simulation of the 

monochromatic DDPs are a contributing factor in the running time of the code. It goes from less 

than one minute up to 6-7 minutes running in one core of an Intel® Xeon® CPU @ 2.00 GHz. The 

PHSP weighting algorithm is faster. In this part of the procedure, the computation time is highly 

dependent on the number of bins in which each PHSP file has been discretized. The computation 

time of this part of the fitting process takes about 40 seconds for the spherical applicators. In all 

cases the overall time needed to generate an optimized PHSP file that reproduces a given 

experimental DDP is below 10 minutes, and this optimization only needs to be done once for each 

X-ray source deployed. Once the PHSP is fine-tuned, dose calculation with the Hybrid MC requires 

around 10
7
 histories to achieve 2% statistical noise, which takes less than 10 minutes of simulation 

time in one core of an Intel® Xeon® CPU @ 2.00 GHz, while 2·10
9
 histories were needed in 

penEasy, equivalent to several days of computation time in the same computer.  

The need of dose planning systems for INTRABEAM® has been already discussed in the 

literature (Hensley 2017, Hill et al. 2014). Previous studies trying to develop a treatment planning 

system for the INTRABEAM® proved this to be a very challenging goal mostly due to computation 

time issues. Dose calculation must be very fast because it should be possible to repeat the 

calculations once the patient situation right after surgery is known, and it should be even possible to 

compute the dose under different scenarios (energy, applicator size or angle, different shielding) so 

that oncologists and medical physicists can tune the setup within minutes, in order not to delay the 

procedure and to finish the surgical intervention as fast as possible. Clausen et al. developed a 

Monte Carlo model to calculate dose for a cylindrical INTRABEAM® applicator within 12 minutes 

in water (Clausen et al. 2012). However, the approximation they described is not suitable for 

heterogeneous media and if a full simulation is needed, the required calculation time would increase 

up to 5 h (Nwankwo et al. 2013). A virtual model of the INTRABEAM® source was also 

developed by Nwankwo et al. (2013) generating a source model tuned to each device as in the 

FOPS process. However, dose calculation required 2 hours, which is too long to be used for dose 

treatment planning in the OR during an IORT treatment.  

Alternatively, the FOPS+hybrid process described in this work can be used for treatment 

planning, as it combines a fast tuning tool to generate PHSP files optimized to any user's device 

with a dose calculation that exhibits the accuracy of a MC method while obtaining dose 

distributions in a fraction of the time. The combination of both tools allows the user to obtain a dose 

distribution from a PHSP tuned to reproduce his device within minutes. The presented work is valid 

not only for needle and spherical applicators but also for other INTRABEAM® applicators such as 

flat and surface. Future studies will be focused on extending the process to include other applicators 

and performing a complete validation of the codes against experimental measurements. 
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5. Conclusion 

 

As far as the authors know, previous to this work there was no readily available TPS for the 

INTRABEAM® device (Hensley 2017). The aim of this work was to develop a dose computation 

tool based on MC phase space information to rapidly and accurately compute the dose in a first 

approach for spherical applicators.  The hybrid MC algorithm and the phase-space generation tool 

described here have been fully validated against full MC simulations and experimental data, in 

homogeneous and heterogeneous phantoms, as well as in clinical 3D patient data. These tools have 

been integrated into radiance (GMV, Tres Cantos, Spain), a planning software for intra-operative 

radiation therapy (Valdivieso-Casique et al. 2015, Pascau et al. 2012), thus extending the number of 

supported devices within this tool. With this software, the user is able to use commissioning 

measurements to calibrate the treatment device, estimate dose distributions in complex scenarios 

with the aid of advanced techniques (Schneider et al. 2017) and finally perform dose-volume 

histogram (DVH) calculations and procedure reporting.  
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