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Abstract

In this work we consider a planar stationary flow of an incompress-
ible viscous fluid in a semi-infinite strip governed by the standard Stokes
system. We show how this fluid can be stopped at a finite distance of
the entrance of the semi-infinite strip by means of a feedback source de-
pending in a sub-linear way on the velocity field. This localization effect
is proved reducing the problem to a non-linear bi-harmonic type one for
which the localization of solutions is obtained by means of the application
of an energy method, in the spirit of the monograph by Antontsev, Dı́az
and Shmarev [5]. Since the presence of the non-linear terms defined by
the source is not standard in the fluid mechanics literature, we establish
also some results about the existence and uniqueness of weak solutions for
this problem.

Keywords: Stokes system, feedback dissipative field, non linear higher or-
der equation, energy method, localization effect.

1 Introduction

In this paper, we present the detailed version of our note [2]. We study the
planar stationary flow of an incompressible viscous fluid in a semi-infinite strip
Ω = (0,∞)× (0, L), L > 0, of velocity u(x) = (u(x), v(x)), x = (x, y) ∈ Ω, with
a non-zero velocity at the strip entrance

u(0, y) = u∗(y), y ∈ (0, L) (1.1)
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and zero velocity on the lateral wall

u(x, 0) = u(x, L) = 0, x ∈ (0,∞). (1.2)

Since Ω is unbounded, we have to prescribe the velocity at infinity. We are
interested in the case

|u(x, y)| → 0, as x →∞ and y ∈ (0, L). (1.3)

The main question we shall consider in this paper can be stated in the
following terms: can we find an external localized force field f stopping the fluid
at a finite distance, i.e., such that

u(x, y) = 0 for x ≥ xu and y ∈ (0, L)

for some xu > 0 ? In the following, we shall denote this property as the
localization effect. Here, the localization of the external field must be understood
in the sense that we search for a field f such that

f(x,u) = 0 for x ≥ xf and y ∈ (0, L),

for some xf > 0.
Once the inertia terms are neglected, the velocity u and pressure p are

determined from the standard Stokes system

−ν4u = f −∇p in Ω, (1.4)

divu = 0 in Ω, (1.5)

where p = p(x, y) stands for the hydrostatic pressure divided by the constant
density of the fluid and ν is the kinematic viscosity coefficient.

We recall that due to the incompressibility condition (1.5), the first compo-
nent of u∗(y) = (u∗(y), v∗(y)) must satisfy

∫ L

0

u∗(s)ds = 0. (1.6)

We also assume the compatibility conditions

u∗(0) = u∗(L) = 0. (1.7)

Further on, we shall denote problem (1.1)-(1.7) as P(Ω,u∗, f).
We point out the resemblance between our formulation and the important

question of the confinement of a plasma, typical of magnetohydrodynamics
(MHD). Although most of the studies on this effect deal with the case of the
ideal MHD (i.e., with a non-viscous fluid), we recall (see, e.g., Freidberg [17])
that the 3d-MHD system involves, among other equations, the system

−ν4v + ∇p = j×B

E + v ×B = ηj,
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where the resistivity η is assumed to be a given positive constant. Now, if we
assume a planar flow (v = (u,0)) and the electric and magnetic fields E and
B are given in the form E(x) =(0, 0, E(x)) and B(x) = (0, B(x), 0), then the
conservation of momentum equation becomes

−ν4u + ∇p = −η(EB, 0)− η(B2u, 0).

So, the resultant external field is a dissipative feedback field, (i.e., it depends
on its own solution u)

f = f(x,u) =− η(E(x)B(x), 0)− η(B2(x)u, 0).

Nevertheless, we shall show (see Remark 3.3) that this field (when E(x) and
B(x) are assumed known) is not able to lead to a positive answer to our question:
the x-decay of u is of exponential type. The results on confinement in toroidal
devices (as Tokamaks and Stellarators) assume that u ≡ 0 and are based on the
so called Grad-Safranov equation for the potential function of the magnetic field
(see, e.g., Berstycki and Brezis [9], Temam [27] and Simon [26] for Tokamaks
and Dı́az and Rakotoson [13] for Stellarators).

We also recall that for the classical Stokes problem, i.e., with f = f(x)
prescribed, it is well known that the decay is exponential and so the local-
ization effect fails. See Knowles [22], for the exponential decay results on the
Saint-Venant’s Principle in the two-dimensional linear theory of elasticity, which
can be easily adapted for the problem P(Ω,u∗, f). See also Toupin [28] and
Galdi [18], Chapter VI.

The main goal of this paper is to show the localization effect when we assume
the external body forces be given in feedback form, f : Ω× R2 → R2, f(x,u) =
(f1(x,u), f2(x,u)), and are such that, for every u ∈ R2, u = (u, v), and for
almost all x ∈ Ω,

−f(x,u) · u ≥ δ χf (x) |u|1+σ − g(x) (1.8)

for some δ > 0, 0 < σ < 1 and

g ∈ L1 (Ωxg ) , g ≥ 0, g(x) = 0 a.e. in Ωxg (1.9)

for some xf , xg with 0 ≤ xg ≤ xf ≤ ∞ and xf large enough, where Ωxg =
(0, xg) × (0, L) and Ωxg = (xg,∞) × (0, L). The function χf denotes the char-
acteristic function of the interval (0, xf ), i.e., χf (x) = 1, if x ∈ (0, xf ) and
χf (x) = 0, if x /∈ (0, xf ). Notice that such a result will hold, in particular, for
the simpler non-localized case corresponding to xf = ∞ (and so χf (x) ≡ 1). As
already mentioned, the answer becomes negative for σ = 1. For some comments
on the other limit case, σ = 0, see Remark 3.4.

We recall that other localization effects as, for instance, the finite extinction
time or the finite speed of propagations for some problems on viscous fluids
of different natures, as well for some problems on non-viscous fluids have been
established (see [5] and the references therein). In [5] the finite extinction time
property was established for pseudo-plastic fluids, i.e., a class of non-Newtonian
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fluids satisfying a certain non-linearity condition on the stress tensor. To the
best of our knowledge, the only result on the finite speed of propagations prop-
erty, for the solution of a fluid mechanics formulation is due to [5], Section 4.7.5.
In that case, for a dilatant fluid in a pipe, a certain non-linearity condition on
the source f was also very important there.

The localization effect will be proved for weak solutions of the problem
P(Ω,u∗, f) under assumptions (1.8) and (1.9). Since the presence of the non-
linear terms defined by f(x,u) is not standard in the fluid mechanics literature,
we collect in Section 2 some results about the existence and uniqueness of weak
solutions for problem P(Ω,u∗, f).

The localization effect is proved, in Section 3, by means of the application of
an energy method to the associated current function ψ (u = (ψy,−ψx)). The
function ψ satisfies the following higher order non-linear equation and boundary
conditions





ν42ψ + ∂f1
∂y (x, ψy,−ψx)− ∂f2

∂x (x, ψy,−ψx) = 0 in Ω,

ψ(x, 0) = ψ(x, L) = 0 for x ∈ (0,∞) ,
∂ψ
∂n (x, 0) = ∂ψ

∂n (x, L) = 0 for x ∈ (0,∞) ,

ψ(0, y) =
∫ y

0
u∗(s)ds, ∂ψ

∂n (0, y) = v∗(y) for y ∈ (0, L) ,
ψ(x, y), |∇ψ(x, y)| → 0 as x →∞ and for y ∈ (0, L) .

(1.10)

Further on, we shall denote problem (1.10) as Pψ.
We shall adapt in the paper the half-planes technique introduced in Ber-

nis [6] for the study of other higher order equations. We point out that in
contrast with the problems considered in the mentioned work, (1.10) do not
contains any zero order term. Our approach is inspired by some previous unidi-
rectional results for anisotropic equations proved in [5], Section 1.4.2, by using
a different energy method.

In a final section, we show that the localization effect holds also for the case of
non-constant semi-infinite strip domains of the type Ω = (0,∞)×(L1(x), L2(x)).

The consideration of the stationary and transient problem for the Navier-
Stokes system will be developed by the authors in the future papers ( [3] and
[4]).

2 On the existence and uniqueness of weak so-
lutions.

In this section we consider a general class of domains of the form Ω = (0,∞)×
(L1(x), L2(x)) with

L1, L2 ∈ C2 (0,∞) , (2.11)
1
L
≤ |L2(x)− L1(x)| ≤ L, (2.12)

for all x ≥ 0, where L is a positive constant. Now, the boundary conditions
(1.1) and (1.2) are replaced, respectively, by

u(0, y) = u∗(y), y ∈ (L1(0), L2(0)) , (2.13)
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u(x,L1(x)) = u(x,L2(x)) = 0, x ∈ (0,∞), (2.14)

where u∗(y) = (u∗(y), v∗(y)) satisfies the compatibility conditions

∫ L2(0)

L1(0)

u∗(s)ds = 0 (2.15)

and
u∗ (L1(0)) = u∗ (L2(0)) = 0. (2.16)

We shall search solutions such that
∫
Ω
|∇u|2dx < ∞. Moreover, due to the

fact that the Poincaré inequality

∫ L2(x)

L1(x)

|u|p dy ≤
(

L

π

)p ∫ L2(x)

L1(x)

|u′|p dy, (2.17)

holds, where L = supx∈[0,∞) |L2(x)− L1(x)|, for every u ∈ W1,p
0 (L1(x), L2(x))

and 1 ≤ p < ∞ (see, e.g., Gilbarg and Trudinger [19], Section 7.8), our searched
solution will be an element of the Sobolev space H1(Ω) simplifying, in this way,
the functional framework needed for other unbounded domains.

In order to define the notion of a weak solution, we introduce the functional
spaces

H̃(Ω) = {u ∈ H1(Ω) : divu = 0, u(0, .) = u∗(.),
u(x,L1(x)) = u(x,L2(x)) = 0, x ∈ (0,∞), limx→∞ |u| = 0}

and
H̃0(Ω) = {u ∈ H1(Ω) : divu = 0,u(0, .) = 0,

u(x,L1(x)) = u(x,L2(x)) = 0, x ∈ (0,∞), limx→∞ |u| = 0}
We shall assume that

u∗ ∈ H
1
2 (L1(0), L2(0)), (2.18)

where we used the notation H
1
2 = W

1
2 ,2. For more details on this space see,

e.g., [18], Chapter II.
In this section we shall assume that f : Ω × R2 → R2, with f(x,u) =

(f1(x,u), f2(x,u)), u = (u, v),

f(x,u) = −δ χf (x)(|u|σ−1u, 0)− h(x,u), (2.19)

for some δ > 0, 0 ≤ xf ≤ ∞ and 0 < σ < 1. Here, h(x,u) is a Carathéodory
function, i.e., h(x,u) is measurable in x for all u ∈ R2 and continuous in u for
almost all x ∈ Ω, such that

h(x,u) · u ≥ −g(x), for every u ∈ R2 and a.a. x ∈ Ω, (2.20)

for some
g ∈ L1 (Ωxg ) , g ≥ 0, g(x) = 0 a.e. in Ωxg , (2.21)
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with 0 ≤ xg < xf , and

HM ∈ L1 (Ωxf ) , for all M > 0, (2.22)

where HM (x) = sup|u|≤M |h(x,u)|.
Notice that no upper restriction on the growth of |f(x,u)| with respect to u

is imposed. This is the reason why sometimes this type of terms is called as a
strong nonlinearity.

Definition 2.1 We say that a vector function u is a weak solution of problem
P(Ω,u∗, f), if:
(i) u ∈ H̃(Ω), f(x,u) ∈ L1(Ω);
(ii) ν

∫
Ω

∇u : ∇ϕ dx =
∫
Ω

f · ϕ dx, for all ϕ ∈ H̃0(Ω) ∩ L∞(Ω) with compact
support.

Later on, in our considerations, there will appear two types of constants:
absolute constants, which will be denoted by the letter C and constants de-
pending on parameters, which will be numbered by subscripts and will contain
the parameters in parenthesis.

The main result of this section is as follows.

Theorem 2.1 Under the above assumptions on f(x,u), there exists, at least,
one weak solution of problem P(Ω,u∗, f). Moreover, f(x,u) · u lies in L1(Ω)
and u satisfies to the energy estimate

∫

Ω

(|∇u|2 + χf |u|1+σ + |h(x,u) · u|) dx ≤ (2.23)

C1(L, δ, ν, σ)
(
‖u∗‖2

H
1
2 (L1(0),L2(0))

+ ‖g‖L1(Ωxg ) + 1
)

.

Problem P(Ω,u∗, f) has only one solution, if, in addition, the inequality

(f(x,u1)− f(x,u2)) · (u1 − u2) ≤ 0,

holds for every u1,u2 ∈ R2 and almost all x ∈ Ω.

Proof. We split the proof into two parts: existence and uniqueness.
Existence. First step. We start by considering the auxiliary problem, in

ΩN = (0, N)× (L1(x), L2(x)), with N ∈ N given,




−ν4uN = f −∇pN

div uN = 0 in ΩN ,

uN (x, L1(x)) = uN (x, L2(x)) = 0 for x ∈ (0, N),
uN (0, y) = u∗(y) for y ∈ (L1(0), L2(0)),
uN (N, y) = 0 for y ∈ (L1(N), L2(N)),

which will be denoted by P(ΩN ,u∗, f), wether f ≡ f(x) or f ≡ f(x,uN ). With
no loss of generality, we assume N > 1, and let U1 be an extension of u∗ to
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Ω1 = (0, 1)× (L1(x), L2(x)) such that: (i) U1 ∈ H1(Ω1); (ii) divU1 = 0 in Ω1;
(iii) U1 = u∗ on x = 0, U1 = 0 on x = 1 and on y = L1(x), y = L2(x), for
x ∈ (0, 1), in the trace sense. Such an extension exists (see , e.g., [18], Section
III.3), and, moreover, ‖U1‖H1(Ω1) ≤ C2(L)‖u∗‖

H
1
2 (L1(0),L2(0))

.

Now, we consider the extension UN to ΩN such that UN = U1 if x < 1 and
UN = 0 if x ≥ 1. From what we had said above, UN ∈ H1(ΩN ) and we have

‖UN‖H1(ΩN ) ≤ C3(L)‖u∗‖
H

1
2 (L1(0),L2(0))

. (2.24)

Moreover, using Hölder’s inequality, one can prove
∫

ΩN

|UN |pdx ≤ C4(L, p)‖u∗‖p

H
1
2 (L1(0),L2(0))

, for 1 ≤ p < 2. (2.25)

Second step. Firstly, we consider the intermediary case in which we assume,
additionally,

|h(x,u)| ≤ Cχf (x), (2.26)

for some positive constant C, for all u ∈ R2 and almost all x ∈ Ω.
We recall that, if we consider the linear problem P(ΩN ,u∗, f) with f ≡ f(x)

given arbitrarily, for instance, f ∈ L2(ΩN ), then we know the existence of a
unique weak solution uN ∈ H1(ΩN ) (see, e.g., [18], Chapter IV) which satisfies
to the energy relation

ν

∫

ΩN

∇uN : (∇uN −∇UN )dx =
∫

ΩN

f · (uN −UN )dx. (2.27)

Applying modules to the right-hand side, next using Young’s and Poincaré’s
(2.17) inequalities and then (2.24), we obtain the following estimate

∥∥uN
∥∥2

H1(ΩN )
≤ C5(L, ν)

(
‖u∗‖2

H
1
2 (L1(0),L2(0))

+ ‖f‖2L2(ΩN )

)
. (2.28)

We look for a weak solution uN of the non-linear problem P(ΩN ,u∗, f), with
f ≡ f(x,uN ). Notice that, in the special case of (2.26), f(x,uN ) satisfies

|f(x,uN )| ≤ a(x)|uN |σ + b(x), (2.29)

for every uN ∈ R2 and almost all x ∈ ΩN , where a, b ≥ 0 are measurable
functions in ΩN with

a ∈ L
2

1−σ (ΩN ), b ∈ L2(ΩN ). (2.30)

From (2.29) and after made use of Young’s inequality with a suitable ε, we have

|f(x,uN )|2 ≤ 4
[
ε|uN |2 + (1− σ)

(σ

ε

) σ
1−σ

a
2

1−σ + b2

]
. (2.31)
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Gathering (2.28), (2.31), using (2.24) and choosing ε in a reasonable way, we
obtain the a priori estimate for the non-linear problem P(ΩN ,u∗, f(x,uN ))

∥∥uN
∥∥2

H1(ΩN )
≤ C6

(
‖a‖

2
1−σ

L
2

1−σ (ΩN )
+ ‖b‖2L2(ΩN ) + ‖u∗‖2

H
1
2 (L1(0),L2(0))

)
, (2.32)

with C6 = C6(L, ν, σ). Next, given ε > 0 and vN ∈ L2(ΩN ), we define

vN
ε =

vN

1 + ε ‖vN‖L2(ΩN )

.

Obviously,
∥∥vN

ε

∥∥
L2(ΩN )

≤ min
(

1
ε
,
∥∥vN

∥∥
L2(ΩN )

)

and consequently vN
ε ∈ L2(ΩN ). We consider the linear problem P(ΩN ,u∗, f)

with f(x) = f(x,vN
ε ). The above considerations yield that for each vN

ε ∈
L2(ΩN ), there exists a unique weak solution uN

ε ∈ H1(ΩN ). Thus, we can
define a non-linear operator Λ : L2(ΩN ) → L2(ΩN ) by setting

Λ(vN
ε ) = uN

ε . (2.33)

According to (2.32),

∥∥Λ(vN
ε )

∥∥2

L2(ΩN )
=

∥∥uN
ε

∥∥2

L2(ΩN )
≤

∥∥uN
ε

∥∥2

H1(ΩN )
< Rε, (2.34)

where

Rε = C6(L, ν, σ)
(
‖a‖

2
1−σ

L
2

1−σ (ΩN )
+ ‖b‖2L2(ΩN ) + ‖u∗‖2

H
1
2 (L1(0),L2(0))

+
1
ε

)
.

Under the assumptions (2.18) and (2.30) and from (2.34), the operator (2.33)
maps L2(ΩN ) into a bounded subset of H1(ΩN ) and from the Sobolev com-
pact embedding H1(ΩN ) → L2(ΩN ), it is a completely continuous operator.
According to Shauder’s theorem, the operator (2.33) has a fixed point

uN
ε = Λ(uN

ε )

for any ε > 0. On the other hand, using (2.32), we obtain the estimate

∥∥uN
ε

∥∥2

H1(ΩN )
≤ C7

(
‖a‖

2
1−σ

L
2

1−σ (ΩN )
+ ‖b‖2L2(ΩN ) + ‖u∗‖2

H
1
2 (L1(0),L2(0))

)
, (2.35)

with C7 = C7(L, ν, σ). Let us now consider a sequence uN
ε,k ∈ H1(ΩN ), with

k ∈ N, satisfying (2.27) with f(x) replaced by f(x,uN
ε,k). Then, from (2.35),

there exists a subsequence, which we still denote by uN
ε,k, such that

uN
ε,k → uN

ε , weakly in H1(ΩN ), as k →∞
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and because f is a Carathéodory function,

f
(
x,uN

ε,k

) → f
(
x,uN

ε

)
, in L1(ΩN ), as k →∞.

Then, passing to the limit in ε → 0, we prove the existence of, at least, one
weak solution uN ∈ H1(ΩN ) to the non-linear problem P(ΩN ,u∗, f(x,uN )).

Third step. We shall prove the a priori estimate (independent of N) for uN

∫

ΩN

(
|∇uN |2 + χf |uN |1+σ +

∣∣∣h(x,uN ) · uN
∣∣∣
)

dx (2.36)

≤ C8(L, δ, ν, σ)
(
‖u∗‖2

H
1
2 (L1(0),L2(0))

+ ‖g‖L1(Ωxg ) + 1
)

.

We point out that from assumptions (2.20) and (2.21),

|h(x,u) · u| ≤ h(x,u) · u + 2g(x), (2.37)

for every u ∈ R2 and almost all x ∈ Ω.
In the energy relation (2.27) satisfied by uN , we use assumption (2.19),

next we add
∣∣h(x,uN ) · uN

∣∣ to both sides of the resultant equation, we use
assumptions (2.21) and (2.26) and, also, (2.37) and we apply Young’s inequality
with a suitable ε > 0, and obtain

∫

ΩN

(
|∇uN |2 + χf |uN |1+σ +

∣∣h(x,uN ) · uN
∣∣
)

dx ≤

C9

[∫

ΩN

χf

(|UN |+ |UN |1+σ
)
dx +

∫

ΩN

|∇UN |2dx + ‖g‖L1(Ωxg )

]
,

with C9 = C9(δ, ν, σ). Then, we use (2.24) and (2.25), and get
∫

ΩN

(
|∇uN |2 + χf |uN |1+σ +

∣∣h(x,uN ) · uN
∣∣
)

dx ≤ C10

(
‖u∗‖

H
1
2 (L1(0),L2(0))

+‖u∗‖1+σ

H
1
2 (L1(0),L2(0))

+ ‖u∗‖2
H

1
2 (L1(0),L2(0))

+ ‖g‖L1(Ωxg )

)
,

with C10 = C10(L, δ, ν, σ). Finally, once that 0 < σ < 1, we can use the
algebraic inequality asserting that A+A1+σ +A2 ≤ C(A2 +1), for every A ≥ 0
and C a positive constant, to obtain (2.36).

Fourth Step. Now, for each N ∈ N, we consider a sequence uN
k of weak

solutions to problems P(ΩN ,u∗, f(x,uN
k )) and thus satisfying (2.36). In conse-

quence, using a standard diagonal process and that f(x,uN
k ) is a Carathéodory

function, we can choose a subsequence uNk

k , such that

uNk

k → u, weakly in H1(ΩR), as k →∞,

and
f
(
x,uNk

k

)
→ f (x,u) , in L1(ΩR), as k →∞,
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for every R > 0 and u is a weak solution to the non-linear problem P(Ω,u∗,
f(x,u)), once we assume condition (2.26). In addition, u satisfies to the energy
estimate (2.23).

Fifth step. We proceed with a truncation and approximation argument to
deal with the general case, i.e., the case without condition (2.26). We shall
adapt the arguments of Brezis and Browder [10] (see, also, Bernis [8]). We
define the n-radial truncation hn(x,u) defined by

hn(x,u) =
{

h(x,u) if |u| ≤ n,
h(x, (ncosθ,nsinθ)) if u = (r cos θ, r sin θ) and r > n.

It was shown in Vrabie [29], Lemma 3.4.3, that hn(x,u) is continuous and
bounded on u for almost all x ∈ Ω. Then

hn(x,un) → h(x,u), for a.a. x ∈ Ω, as n →∞. (2.38)

Moreover, hn(x,u) also satisfies assumptions (2.20)-(2.22) and (2.26) with the
same functions g and HM . From Step 4, it follows that there exists a weak
solution un of problem P(Ω,u∗, f(x,un)) and which satisfies (2.23) with C1

independent of n. Therefore, there exists a subsequence, which we still denote
by un, such that

un → u, weakly in H1(Ω), as n →∞. (2.39)

On the other side, we also have
∫

Ω

|hn(x,un) · un| dx ≤ C11,

with C11 independent of n. Therefore, from (2.38), (2.39) and Fatou’s Lemma,
h(x,u) · u ∈ L1(Ω). Moreover, for any M > 0,

|hn(x,un)| ≤ |h(x,un)| ≤ HM (x), if |un| < M.

On the other hand, if |un| ≥ M , then

M

∫

Ω

|hn(x,un)| |cosβn| dx ≤
∫

Ω

|hn(x,un) · un| dx ≤ C11,

where βn(x) = angle(hn(x,un(x)),un(x)). Then hn(x,un(x)) cos βn(x) is uni-
formly integrable since

∫

E

|hn(x,un)| |cos βn| dx ≤C11

M
+

∫

E

HM (x) dx,

for any measurable subset E of Ω. Indeed, once we assume (2.22), given a ε > 0,
we can choose δ such that

∫

E

HM (x)dx < ε if meas(E) < δ

10



and taking M such that C11/M < ε, we get that
∫

E

|hn(x,un)| |cosβn| dx <2ε.

Then, by Vitali convergence theorem, we conclude that

hn(.,un(.)) cos βn(.) →h(.,u(.)) cos β(.) in L1(Ω),

which proves that
hn(x,un) → h(x,u) in L1(Ω).

Then h(x,u) ∈ L1(Ω) and u is a weak solution to problem P(Ω,u∗, f(x,u)).
Uniqueness. Let u1 and u2 be two weak solutions. Then, according to

Definition 2.1, u1 − u2 ∈ H1
0(Ω). Hence, f(x,u1) − f(x,u2) ∈ H−1(Ω). But,

since (f(x,u1)− f(x,u2)) · (u1 − u2) ≤ 0, we can use a vector version of a
result due to Brezis and Browder [11] assuring that, if T ∈ L1(Ω)∩H−1(Ω) and
u ∈ H1(Ω) are such that T (x)u(x) ≥ 0 a.e. in Ω, then Tu ∈ L1(Ω) and

〈T, u〉H−1(Ω)×H1(Ω) =
∫

Ω

T (x)u(x)dx.

Thus,

ν

∫

Ω

|∇(u1 − u2)|2 dx =
∫

Ω

(f(x,u1)− f(x,u2)) · (u1 − u2) dx

which implies that ∫

Ω

|∇(u1 − u2)|2 dx =0

and from Poincaré inequality (2.17) we get the result. �

Remark 2.1 The above existence theorem admits many different variations
(σ ≥ 1, case of σ=0, more general unbounded sets Ω, etc.), but they are not
considered here. Our presentation is strictly motivated by the results on the
localization effect.

3 On the localization effect

We recall that the existence of a weak solution having a finite global energy

E :=
∫

Ω

(|∇u|2 + χf |u|1+σ
)
dx,

has been established in the previous section. The main result of this section is
the following, where we consider the constant strip (0,∞)× (0, L).

11



Theorem 3.1 Assume that f satisfies (1.8) and (1.9). Then,
(i) if xf = ∞ (xf is given in (1.9)), u is any weak solution of P(Ω,u∗, f) with
finite energy E, then u(x, y) = 0 for x > a′, where a′ = C(E, L, δ, ν, σ) is a
positive constant;
(ii) if xf < ∞, then there exists at least one weak solution u of P(Ω,u∗, f), with
a finite energy E, such that if a′ < xf , then u(x, y) = 0 for x > a′;
(iii) if, in addition, we assume f non-increasing, then conclusion (ii) holds for
the unique solution of P(Ω,u∗, f).

In order to prove the localization effect, it is useful to work with the associ-
ated stream function ψ. We recall that due to the incompressibility condition
(1.5), there exists a function ψ such that

u = ψy and v = −ψx in Ω (3.40)

(see, e.g., Feistauer [16], Theorem 2.5.1). In this way, by classical methods
(see, e.g., Ladyzhenskaya [23], Section 2.3), we can reduce the study of problem
P(Ω,u∗, f), to the consideration of problem Pψ referred in (1.10), where the
pressure term does not appear anymore.

The notion of weak solution is adapted to the information we have on func-
tion f(x, ψy,−ψx).

Definition 3.1 A function ψ is called a weak solution of problem Pψ, if:
(i) ψ ∈ H2(Ω), f(x, ψy,−ψx) ∈ L1(Ω);
(ii) ψ(0, y) =

∫ y

0
u∗(s)ds, ∂ψ

∂n (0, y) = v∗(y) for y ∈ (0, L), ψ(x, 0) = ψ(x, L) =
∂ψ
∂n (x, 0) = ∂ψ

∂n (x, L) = 0 for x ∈ (0,∞) and ψ(0, 0) = ψ(0, L) = 0;
(iii) ψ, |∇ψ| → 0, when x →∞;
(iv) ν

∫
Ω
4ψ4φ dx − ∫

Ω

(
f1(x, ψy,−ψx)φy − f2(x, ψy,−ψx)φx

)
dx =0, for all

φ ∈ H2
0(Ω) ∩W1,∞(Ω) with compact support.

Lemma 3.1 If u is a weak solution of problem P(Ω,u∗, f) in the sense of Def-
inition 2.1, then ψ, given by (3.40), is a weak solution of problem Pψ in the
sense of Definition 3.1.

Proof. The only difficulty takes places with verifying (iv). However, given
φ ∈ H2

0(Ω) ∩W1,∞(Ω), we construct ϕ = (ϕ1, ϕ2) with divϕ = 0 such that φ is
the current function associated to ϕ = (ϕ1, ϕ2), i.e., ϕ1 = φy and ϕ2 = −φx.
Then we get

ν

∫

Ω

(
ψyxφyx + ψyyφyy + ψxxφxx + ψxyφxy

)
dx−

∫

Ω

(
f1φy − f2φx

)
dx = 0.

Integrating by parts the first and fourth terms in the first integral, where we
use the density of C∞0 (Ω) in H2

0(Ω), we obtain the desired result. �

Remark 3.1 The existence and uniqueness of a weak solution ψ to problem Pψ

can be proved by different techniques without invoking to the problem P(Ω,u∗, f).
For some results of this nature see, e.g., Bernis [8], Grisvard [20], Lions [24]
and the references therein.
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To establish the localization effect, as stated in Theorem 3.1, we will apply
the so-called energy methods for free boundary problems (see [5]) introduced by
Antontsev [1], improved by Dı́az and Véron [14, 15], and extended by several
authors amongst whom is Bernis [6].

We shall use here the technique of integrating over a family of variable half-
planes, which requires zero boundary conditions. We observe that the only
non-zero boundary condition in problem P(Ω,u∗, f), or problem Pψ, is on the
boundary x = 0. Thus, following [6], we are lead to introduce a weighted
function which will cancel the terms on this boundary. For m ≥ 2, let

ψ(x)(x− a)m
+ =

{
0 if x ≤ a,

ψ(x)(x− a)m if x > a,

where a ≥ 0 is a variable parameter and ψ is a weak solution of Pψ. This
function is not, in general, an admissible test function, because Ω is unbounded.
Following Bernis [7], Appendix II, we approximate ρ(x) = (x−a)m

+ by a sequence
ρk(x) = kmξ((x− a)/k), with ξ ∈ C(R) ∩ C2(0,∞) and

ξ(x) =





0 if x ≤ 0,
xm if 0 < x ≤ 1

2 ,
1 if x ≥ 1.

Due to the fact that m ≥ 2, it is possible to show that ρk ∈ W2,∞(Ω) and thus
ψ(x)ρk(x) is already a test function. Moreover

0 ≤ Diρ1(x) ≤ Diρ2(x) ≤ . . . ≤ Diρk(x) ≤ Diρk+1(x) ≤ . . . (3.41)

and

Diρk(x) → m(m− 1) . . . [m− (i− 1)](x− a)m−i
+ , as k →∞, (3.42)

for all x > 0, m ≥ 2, 0 ≤ i ≤ m and i ≤ 2. Thus, we can prove the following
result.

Lemma 3.2 Let ψ be a weak solution of Pψ with E finite. Assume that f
satisfies (1.8) and (1.9) with xf = ∞. Then, for every a > xg and every
positive integer m ≥ 2,

min(ν, δ)
∫

Ω

(|D2ψ|2 + |ψy|1+σ
)
(x− a)m

+dx ≤ (3.43)

2mν

∫

Ω

|4ψ||ψx|(x− a)m−1
+ dx + 2mν

∫

Ω

|ψy||ψxy|(x− a)m−1
+ dx

+m(m− 1)ν
∫

Ω

|4ψ||ψ|(x− a)m−2
+ dx,

where |D2ψ|2 = ψ2
xx + 2ψ2

xy + ψ2
yy.
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Proof. Taking ψ(x)ρk(x) as a test function in Definition 3.1, applying the
Leibnitz formula and using assumptions (1.8) and (1.9), we obtain

ν

∫

Ω

(4ψ)2ρkdx + δ

∫

Ω

|ψy|1+σρkdx ≤ (3.44)

−2ν

∫

Ω

4ψψxρ′kdx− ν

∫

Ω

4ψψρ′′kdx.

The study of the first term on the left-hand side requires an integration by parts
leading to ∫

Ω

ψxxψyyρk dx =
∫

Ω

ψ2
xyρk dx +

∫

Ω

ψyψxyρ′k dx,

where we used a regularization procedure on ψ. Then from (3.44), it comes

ν

∫

Ω

|D2ψ|2ρk dx + δ

∫

Ω

|ψy|1+σρk dx ≤

−2ν

∫

Ω

4ψψxρ′k dx− 2ν

∫

Ω

ψyψxyρ′k dx− ν

∫

Ω

4ψψρ′′k dx.

We take the minimum on the left-hand side and apply modules. Finally, (3.43)
follows from (3.41), (3.42) and the theorem on monotone convergence.�

In the first term of left-hand side of the inequality (3.43), it arises the energy
type term which depends on a

Em(a) =
∫

Ω

(|D2ψ|2 + |ψy|1+σ
)
(x− a)m

+dx.

We observe that E0(0) = E (recall that xf = ∞).
The mentioned technique, as introduced in [6], has, as main goal, to get a

differential inequality for Em(a) leading to the vanishing of Em(a) (and then of
ψ) for a large enough. Notice that a simple differentiation leads to the relations

dEm(a)
da

= −mEm−1(a) and
d2Em(a)

da2
= m(m− 1)Em−2(a).

The crucial part of the technique consists in to use the non-linear structure
of the equation in order to get some differential inequality. To this end, a
fundamental role will be played by two inequalities. The first, is a weighted
Gagliardo-Nirenberg inequality derived in [6], Appendix I, from Nirenberg [25],
Lecture II.

Lemma 3.3 If j, k, l are integers with 0 ≤ j < k, k ≥ 1 and l ≥ 0 and
1 ≤ p < ∞ and if 1 ≤ r ≤ p, then

∫

Ω

|Dju|p(x− a)ldx ≤ (3.45)

C12

(∫

Ω

|Dku|p(x− a)ldx
)θ (∫

Ω

|u|r(x− a)ldx
)p 1−θ

r

,
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once that the integrals of the right-hand side exist, where θ is given by

1
p

=
j

2 + l
+ θ

(
1
p
− k

2 + l

)
+ (1− θ)

1
r

and C12 = C12(j, k, l, p, r).

Here, Dku denotes the vector of all derivatives of order k, with k integer
non-negative and

|Dku|2 =
∑

|α|=k

|Dαu|2, where Dαu =
∂|α|u

∂α1x∂α2y
and |α| = α1 + α2.

The second, is a Hardy type inequality derived in [6], Appendix I , from Hardy
et al [21], Theorem 330.

Lemma 3.4 If 1 < p < ∞, l ≥ 0 and u is bounded in a neighborhood of x = 0,
then ∫

Ω

|u|p(x− a)ldx ≤
(

p

l + 1

)p ∫

Ω

|ux|p(x− a)l+pdx, (3.46)

once that the integrals of both sides exist.

After the differential inequality has been obtained, the following auxiliary
result, a direct consequence of [7], Appendix III, leads us to the conclusion.

Lemma 3.5 Assume that the fractional differential inequality

Em(a) ≤ C (Em−p(a))µ

holds for all a ≥ xg > 0, where 0 < p ≤ m < w, C is a positive constant and
µ > 1. Assume Em−p(a) is finite for any a ≥ xg. Then, the support of E0(a) is
a bounded interval [0, a∗] with a∗ ≤ a′ and where

a′ = (w −m + 1)C
1

(µ−1)(w−m) E
1

w−m and w =
µp

µ− 1
. (3.47)

So, we arrive at the more difficult part of the proof of Theorem 3.1.

Lemma 3.6 Let ψ be a weak solution of Pψ and assume f satisfies (1.8) and
(1.9) with xf = ∞. Then, the following differential inequalities hold for a ≥ xg:

Em(a) ≤ C13 (Em−2(a))µ
, for every integer m > 3, (3.48)

and
E2(a) ≤ CE0(a) + C14 (E0(a))µ

, if m = 2; (3.49)

where C13 = C13(L, m, δ, ν, σ), C14 = C14(L, δ, ν, σ) and µ = µ(m,σ) are posi-
tive constants, with C an absolute constant, µ > 1 and xg given in (1.9).
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Proof. We rewrite (3.43) as

min(ν, δ)Em(a) ≤ 2mνI1 + 2mνI2 + m(m− 1)νI3. (3.50)

Now, let us estimate I1, I2 and I3 in terms of Em(a) and Em−2(a).
At this point, we have to distinguish two different cases.
Case m > 3. Applying Cauchy’s inequality with ε ∈ (0, 1) to each one of

these terms and then adding up the connected terms, (3.50) comes

min(ν, δ)Em(a) ≤ m(m + 1)νεEm(a) +
mν

ε
I22 +

m(m− 1)ν
2ε

I32, (3.51)

where

I22 :=
∫

Ω

|∇ψ|2(x− a)m−2
+ dx and I32 :=

∫

Ω

ψ2(x− a)m−4
+ dx. (3.52)

Applying the weighted Gagliardo-Nirenberg inequality (3.45) to I22 for the func-
tion ψ , with j = 1, k = 2, l = m− 2, p = 2 and r = 1 + σ, we get

I22 ≤ C15

(∫

Ω

|D2ψ|2(x− a)m−2
+ dx

)θ (∫

Ω

|ψ|1+σ(x− a)m−2
+ dx

)2 1−θ
1+σ

,

where

θ =
2(1 + σ) + (1− σ)m
4(1 + σ) + (1− σ)m

(3.53)

and C15 = C15(m,σ). Notice that 0 < θ < 1, because 0 < σ < 1. Applying the
Poincaré inequality (2.17), with p = 1 + σ to the term

∫ L

0
|ψ|1+σdy and then

the inequality AαBβ ≤ (A + B)α+β , where A, B ≥ 0,

I22 ≤ C15

(
L

π

)2(1−θ)

(Em−2(a))µ
, (3.54)

where

µ = 1 +
2(1− σ)

4(1 + σ) + (1− σ)m
> 1, (3.55)

because 0 < σ < 1. Now, applying the Hardy type inequality (3.46) to I32 for
the function ψ, with l = m− 4 and p = 2

I32 ≤
(

2
m− 3

)2 ∫

Ω

|ψx|2(x− a)m−2
+ dx.

Because |ψx|2 ≤ |∇ψ|2, I32 ≤ 4/(m− 3)2I22, then from (3.54)

I32 ≤ 4C15

(m− 3)2

(
L

π

)2(1−θ)

(Em−2(a))µ
, (3.56)
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where θ and µ are given by (3.53) and (3.55), respectively. Then, from (3.54)
and (3.56), (3.51) comes

min(ν, δ)Em(a) ≤ εC16Em(a) +
1
ε
C17 (Em−2(a))µ

,

where C16 = C16(m, ν), C17 = C17(L, m, ν, σ) and m > 3. Choosing ε =
min(ν, δ)/(2C16), we achieve to the fractional inequality (3.48), which is valid
for every m > 3 and where

C13 = 4C15
m2(m + 1)(m2 − 4m + 7)

(m− 3)2
ν2

min2(ν, δ)

(
L

π

)2(1−θ)

(3.57)

and C15, given immediately after to (3.53), is the constant resulting from
Gagliardo-Nirenberg inequality (3.45).

Case m = 2. In this case, we have only to worry about with the term I3,
because for the other terms the above estimates remain valid. For m = 2,

I3 =
∫

Ωa

4ψψ dx,

where Ωa = (a,∞) × (0, L). Applying Cauchy’s inequality with ε ∈ (0, 1) to
I3 and proceeding in the same manner for the other terms as in the preceding
case, but taking m = 2, we obtain the analogous inequality from (3.51)

min(ν, δ)E2(a) ≤ 4νεE2(a) + 2νεE0(a) +
2ν

ε
I22(m=2) +

ν

ε
I32(m=2), (3.58)

where
I22(m=2) :=

∫

Ωa

|∇ψ|2 dx and I32(m=2) :=
∫

Ωa

ψ2 dx. (3.59)

Taking m = 2 in (3.54),

I22(m=2) ≤ C18

(
L

π

)2(1−θ)

(E0(a))µ
, (3.60)

where, from (3.53) and (3.55), respectively,

θ =
2

3 + σ
and µ =

4
3 + σ

(3.61)

and C18 = C15 with m = 2. Applying Poincaré inequality (2.17) to the term∫ L

0
|ψ|2 dy of I32(m=2), I32(m=2) ≤ (L/π)2I22(m=2) and from (3.60),

I32(m=2) ≤ C18

(
L

π

)2(1−θ)+2

(E0(a))µ
. (3.62)

Then, (3.60) and (3.62), (3.58) yield that

min(ν, δ)E2(a) ≤ εC19(E2(a) + E0(a)) +
1
ε
C20 (E0(a))µ

, (3.63)
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where C19 = C19(ν), C20 = C20(L, ν, σ). Now, if we choose ε = min(ν,
δ)/(2C19) in (3.63), we come to the differential inequality (3.49), where

C =
1
2
, C14 = 16C18

ν2

min2(ν, δ)

[
2 +

(
L

π

)2
] (

L

π

)2(1−θ)

,

with θ and µ given by (3.61) and C18 immediately after.�
Proof of Theorem 3.1. We start with the case xf = ∞. Taking m = 4 in

Lemma 3.6, we have the fractional differential inequality

E4(a) ≤ C21 (E2(a))µ
,

where from (3.53), (3.55) and (3.57), respectively,

θ =
3− σ

4
, µ =

5− σ

4
and C21 = 2240 C22

ν2

min2(ν, δ)

(
L

π

) 1+σ
2

(3.64)

and C22 = C15 with m = 4. One can easily see that, due to 0 < σ < 1,
1/2 < θ < 3/4 and 1 < µ < 5/4. Using Lemma 3.6 with m = 2 and because of
the finiteness of E, we can easily see that E2(a) is finite. Then from Lemma 3.5,
with m = 4, p = 2 and w = 8/(1 − σ) + 2 > 4 = m, the support of E0(a) is a
bounded interval [0, a∗] with a∗ ≤ a′ and where, from (3.47) and (3.64),

a′ =
7 + σ

1− σ
C

2
3+σ

21 E
1−σ

2(3+σ) .

Then
E0(a) =

∫

Ωa

(|∇u|2 + |u|1+σ
)

dx = 0

for a > a′, which implies u = 0 and v is constant almost everywhere for x > a′.
Finally, from (1.2), v = 0 in the same domain.

Assume now that xf < ∞. Then we construct a weak solution in the follow-
ing way

u(x) =
{

ũ(x) if x ≤ a′

0 if x > a′,

with ũ(x) weak solution of P(Ω,u∗, f) with xf = ∞. By the proof of the above
case and the assumption a′ < xf , we get that u(x) is a weak solution of the
original problem P(Ω,u∗, f).�

Remark 3.2 Obviously, we obtain an analogous localization effect if we replace
the role of variables x and y for the study of unbounded sets of the form Ω =
(0, L)× (0,∞) , and if we modify correspondingly the condition(1.8).

Remark 3.3 In the case of σ = 1, the above arguments lead to the inequality

Em(a) ≤ CEm−2(a), for a ≥ xg,

and then an exponential decay is derived (this type of decay is optimal). The ex-
ponential decay estimate is derived using differential inequality techniques analo-
gous to those developed by Knowles [22] and Toupin [28] in their energy approach
to the investigation of the Saint-Venant’s Principle in classical elasticity theory.
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Remark 3.4 The localization effect can be extended to the limit case σ = 0
following the approach presented in Dı́az [12].

Remark 3.5 The main result of this section can be applied to the family of
stationary problems obtained by implicit discretization of the parabolic problem

{ un−un−1
τ − ν4un = f(x,un)−∇pn in Ω,

divun = 0 in Ω.

A direct proof of the localization effect for the non-discretized parabolic problem
will be given by the authors in [4].

4 The non-constant semi-infinite strip

In this section we prove that the localization effect holds for domains of the type
Ω = (0, ∞)×(L1(x), L2(x)), where the functions L1 and L2 are smooth enough
and L1(x) 6= L2(x) for all x ≥ 0. In this case, equations (1.4) and (1.5) are
appended with the boundary conditions (2.13) and (2.14) and the compatibility
conditions are, now, (2.15) and (2.16). The condition at infinity is the same,
(1.3). The assumptions on f are, mutatis mutandis, the same, (1.8) and (1.9).
The main difficulty in this case is the applicability of the weighted Gagliardo-
Nirenberg inequality (3.45) and the Hardy type inequality (3.46). But, as it is
known, these inequalities still hold for any domain which can be mapped, by a
sufficiently smooth mapping, in a one-to-one way onto a product-like domain.
So, if we consider Ω such regular, we can prove the same localization effects for
any weak solution of this problem. The correspondent result of Lemma 3.6 is
the following one.

Lemma 4.1 Let ψ be a weak solution of Pψ and assume f satisfies the adapted
conditions (1.8) and (1.9) for this case. Assume also (2.11), (2.12) and addi-
tionally

|L′1(x)|, |L′2(x)| ≤ L′, (4.65)

|L′′1(x)|, |L′′2(x)| ≤ L′′, (4.66)

for any x ≥ 0, where L′ and L′′ are positive constants. Then, the following
differential inequalities hold for a ≥ xg:

Em(a) ≤ C23 (Em−2(a))µ
, for every integer m > 3 (4.67)

and
E2(a) ≤ CE0(a) + C24 (E0(a))µ

, if m = 2; (4.68)

where C23 = C23(L,L′, L′′, m, δ, ν, σ), C24 = C(L,L′, L′′, δ, ν, σ) and µ = µ(m,
σ) are positive constants, with C an absolute constant, µ > 1 and xg given in
(1.9).
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Proof. Case m > 3. Proceeding as we did in the proof of Lemma 3.6 and
using the assumptions (1.8) and (1.9), we obtain the analogous of (3.51)

min(ν, δ)Em(a) ≤ m(m + 1)νεEm(a) +
mν

ε
I22 +

m(m− 1)ν
2ε

I32, (4.69)

where I22 and I32 are given in (3.52) with Ω = (0,∞)× (L1(x), L2(x)). Let us
make the following change of variables x = ξ, ξ = (ξ, η), on I22 and on I32,

x = ξ and y =
L2(ξ)− L1(ξ)

L
η + L1(ξ), (4.70)

where L is a positive constant and ξ ∈ Ω(ξ) = (0, ∞) × (0, L). Notice that
(2.11) and (2.12) makes this possible and we have

ψx = ψξ − yξy
−1
η ψη and ψy = y−1

η ψη. (4.71)

Using (4.71) and assumptions (2.12), (4.65) and (4.66) on I22 and on I32 and
then using (3.54) and (3.56), we obtain from (4.69),

min(ν, δ)Em(a) ≤ εC25Em(a) +
1
ε
C26 (Em−2(a))µ

, (4.72)

where C25 = C25(m, ν), C26 = C26(L,L′,m, ν, σ),m > 3 and

Em−2(a) =
∫

Ω(ξ)

(|D2ψ(ξ, η)|2 + |ψη(ξ, η)|1+σ
)
(ξ − a)m−2

+ dξ.

Now, we come back to the original variables (x, y) making the inverse change of
variables of (4.70) in Em−2(a)

ξ = x and η = L
y − L1(x)

L2(x)− L1(x)
. (4.73)

After we made use of Cauchy’s inequality, assumptions (2.12), (4.65) and (4.66)
and Poincaré inequality (2.17), (4.72) comes

min(ν, δ)Em(a) ≤ εC25Em(a) +
1
ε
C27 (Em−2(a))µ

,

where, now, C27 = C27(L,L′, L′′,m, ν, σ) and m > 3. Choosing ε = min(ν, δ)/
(2C25), we come to the fractional differential inequality (4.67), where

C23 = 4γC15
m2(m + 1)(m2 − 4m + 7)

(m− 3)2
ν2

min2(ν, δ)

(
L

π

)2(1−θ)

,

with θ given by (3.53), µ by (3.55), C15 immediately after to (3.53) and

γ = γ(L, L′, L′′, σ) (4.74)

results from the changes of variables (4.70) and (4.73).
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Case m = 2. Here, the analogous of (3.58) is

min(ν, δ)E2(a) ≤ 4νεE2(a) + 2νεE0(a) +
2ν

ε
I22(m=2) +

ν

ε
I32(m=2), (4.75)

where I22(m=2) and I32(m=2) are given in (3.59) with Ωa = (a,∞) × (L1(x),
L2(x)). For I22(m=2) we can obtain an estimate in the same manner as for
the previous case. For I32(m=2), we use Poincaré’s inequality (2.17) in order to
obtain I22(m=2) and then we can use the already known estimate. Then, we
come back to the original variables, by the change of variables (4.73). Thus, we
obtain from (4.75),

min(ν, δ)E2(a) ≤ εC28(E2(a) + E0(a)) +
1
ε
C29 (E0(a))µ

,

where C28 = C28(ν), C29 = C29(L,L′, L′′, ν, σ). Now, choosing ε = min(ν, δ)/
(2C28),we achieve to (4.68), where

C =
1
2
, C24 = 16 γC18

[
2 +

(
L

π

)2
]

ν2

min2(ν, δ)

(
L

π

)2(1−θ)

,

where θ, C18 and µ are given by (3.61) and γ is given by (4.74).�
Using exactly the same justifications that we did in the proof of Theorem 3.1,

we can prove the following result.

Theorem 4.1 Assume f satisfies the adapted conditions (1.8) and (1.9) for
this case. Assume also (2.11)-(2.12) and (4.65)-(4.66) are satisfied. Then:
(i) if xf = ∞ (xf is given in (1.9)), u is any weak solution of P(Ω, u∗, f) with
finite energy E, then u(x, y) = 0 for x > a′nc, where

a′nc =
7 + σ

1− σ
C

2
3+σ

30 E
1−σ

2(3+σ) , C30 = C31
ν2

min2(ν, δ)

(
L

π

) 1+σ
2

,

with C31 = C31(L,L′, L′′, σ) a positive constant;
(ii) if xf < ∞, then there exists at least one weak solution u of P(Ω, u∗, f), with
a finite energy E, such that if a′nc < xf , then u(x, y) ≡ 0 for x > a′nc;
(iii) if, in addition, we assume f non-increasing then conclusion (ii) holds for
the unique solution of P(Ω, u∗, f).

References

[1] S.N. Antontsev. On the localization of solutions of non-linear degenerate
elliptic and parabolic equations (Russian). Dokl. Akad. Nauk SSSR, 260
no.6 (1981), 1289-1293. English translation in Dokl. Math., 24 no.2 (1981),
420-424.

[2] S.N. Antontsev, J.I. Dı́az, H.B. de Oliveira. On the confinement of a viscous
fluid by means of a feedback external field. To appear in C. R. Mecanique
Acad. Sci. Paris.

21



[3] S.N. Antontsev, J.I. Dı́az, H.B. de Oliveira. Stopping a viscous fluid by a
feedback dissipative external field: II. The stationary Navier-Stokes prob-
lem. In preparation.

[4] S.N. Antontsev, J.I. Dı́az, H.B. de Oliveira. Stopping a viscous fluid by a
feedback dissipative external field: III. The evolution Navier-Stokes prob-
lem. In preparation.

[5] S.N. Antontsev, J.I. Dı́az, S.I. Shmarev. Energy Methods for Free Bound-
ary Problems: Applications to non-linear PDEs and fluid mechanics.
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