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Abstract

The problem of diagnostic checking is tackled from the perspective of the

subspace methods. Two statistics are presented and its asymptotic distribu-

tions are derived under the null. The procedures generalize the Box-Pierce

statistic for single series and the Hoskings’ statistic in the multivariate case.

The performance of the proposals is illustrated via Monte Carlo simulations

and an example with real data.
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1 Introduction

Since the seminal work by Box and Pierce (1970) many studies have focused in the

portmanteau tests and its ability to determine the adequacy of a model. Almost

forty years later the subject is still open and many alternatives to this procedure,

or the enhanced version by Ljung and Box (1978), are being proposed. Lately
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the literature about diagnostic checking can be divided into two broad categories:

i) those papers which relax assumptions of the original test, and ii) those which

present some improvements in its finite properties.

Among others, the first group includes works by Lobato (2001) or Francq

et al. (2005), who relax the assumption of independence of the errors, Jung and

Tremayne (2003), suggesting a test for specific models of counts, Duchesne and

Roy (2004), that generalize the test to multivariate autoregressive models with ex-

ogenous variables or, more recently, Escanciano and Lobato (2009) who design an

automatic data-driven test, particularly suitable for financial data. On the other

hand, the second class of methods is currently dominated by the use of bootstrap

techniques which usually outperform the results in empirical size and power of the

original proposal, see, e.g., Horowitz et al. (2006).

The tests suggested in this paper belong to the previous second group as they

do not relax any assumption of the original test, although they are not based on

bootstrap methods either. However, they present some properties that are difficult

to find in a single test, as: (i) they generalize the Box-Pierce statistic for single

series and the Hoskings’ statistic (Hosking, 1980) for multivariate processes, (ii)

its asymptotic null distribution is known and hence, in comparison with bootstrap

methods, there is no need of computationally expensive simulations to estimate

the corresponding critical values, and (iii) they are, by construction, more robust

in the presence of outliers that occur in the beginning or the end of the sample.

The proposals are obtained by tackling the question from a subspace methods

perspective.

The plan of the paper is as follows. Section 2 contains details of the subspace

methods and the assumptions employed. Two general tests are derived in Section

3. Section 4 compares the performance of the proposals with the Ljung-Box test

using Monte Carlo experiments and an application to real data. Some concluding

remarks are offered in Section 5.
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To express the results precisely, we introduce the following notation which will

be use throughout the paper:
d→ means converges in distribution to,

a.s.→ means

converges almost surely to and plim means convergence in probability. This three

concepts are define, e.g., in White (2001). Furthermore, In will be a n-dimensional

identity matrix and Am a square m−by−m matrix, unless defined otherwise.

2 Model set and subspace estimation

Consider a linear fixed-coefficients system that can be described by the State Space

(SS) model,

xt+1 = Φxt +Eψt (1a)

zt = Hxt +ψt (1b)

where xt is a state n-vector, being n the true order of the system. In addition, zt is

an observable output m-vector, which is assumed to be zero-mean without loss of

generality, ψt is a noise m-vector (known as innovations), while Φ, E and H are

parametric matrices. Model (1a-1b) is called an “innovations model” and is used

as it is simple and general, in the sense that any fixed-coefficients SS model can be

written in this specific form (see e.g., Casals et al., 1999, Theorem 1). Moreover,

some assumptions about the system and the noise must be established.

Assumptions A.1. Let ψt be a sequence of independent and identically distributed

random variable with E(ψt) = 0 and E(ψ′tψt) = Q, being Q a positive definite

matrix. A.2. Let the system be stable and strictly minimum-phase, i.e., all the

eigenvalues of Φ and (Φ−EH) lie inside the unit circle.

Now we will show that the subspace methods can derive from the innovations
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model. By substituting (1b) into (1a) in ψt and solving by recursion we have:

xt = (Φ−EH)tx0 +
t∑

j=1

(Φ−EH)t−jEzj−1 (2)

so that the states in time t depend on the initial state and past values of the

output. We will use this equation afterward.

On the other hand, by recursive substitution in (1a) and replacing the result

into the observation equation (1b), we get:

zt = HΦtx0 +H
t−1∑
j=0

ΦjEψt−j−1 +ψt (3)

which means that the endogenous variable, zt, depends on the initial state vector,

x0, and past and present innovations, ψt. Equation (3) can be written in matrix

form as,

Zp = OX0 + VΨp (4)

where the subscript p is an integer that denotes the dimension of the row space

of Zp, see Bauer (2005) for more explanations about p. In the following, we will

define the matrices in equation (4):

1) Block-Hankel Matrices (BHM), which dimensions are determined by the

integers p and f , such that:

Zp =


z1 z2 . . . zT−p−f+1

z2 z3 . . . zT−p−f+2

...
...

...

zp zp+1 . . . zT−f

 ; Zf =


zp+1 zp+2 . . . zT−f+1

zp+2 zp+3 . . . zT−f+2

...
...

...

zp+f zp+f+1 . . . zT

 (5)

In (4), Ψp is as Zp but with ψt instead of zt. For simplicity, in the following

we will assume that the dimension of the past and future information sets is the

same, i.e., p = f = i. Notice that both, Zp and Ψp are im × (T − 2im + 1)
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matrices. In order to make the notation simpler we adopt, throughout the paper,

the nomenclature T∗ = T −2im+1 to denote the number of columns of any BHM.

2) The state sequence which is defined asX t = (xt xt+1 xt+2 . . . xt+T−2i).

Specially, we will use the past and future state sequences, denoted, respectively,

by Xp = X0 and Xf = X i.

3) The Extended Observability matrix, which is:

O =
(
H ′ (HΦ)′ (HΦ2)′ . . . (HΦi−1)′

)′
im×n

(6)

4) The lower block triangular Toeplitz matrix, defined as:

V =



Im 0 0 . . . 0

HE Im 0 . . . 0

HΦE HE Im . . . 0
...

...
...

...
...

HΦi−2E HΦi−3E HΦi−4E . . . Im


im

(7)

Given assumption A.2. and for large values of t, the first addend in equation

(2) is negligible and Xf is to a close approximation representable as a linear

combination of the past of the output, MZp. Shifting time subscripts in (4) and

substituting Xf by MZp lead to,

Zf = OMZp + VΨf (8)

where Zf , Zp and Ψf are as in (5), and O and V , respectively, as in (6) and (7).

Subspace methods estimate O, M and V in (8) by solving a reduced-rank

weighted least square problem, as the product OM , which is an im square matrix,

is of rank n < im. Then, an estimation of the parameter matrices in (1a-1b) can

be obtained from O, M and V , see, e.g., Katayama (2005).
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3 Statistics and its distribution

Firstly, the following hypothesis of the data, zt, should be defined.

Hypothesis Let the null hypothesis, hereafter H0, be that there are no correlations

up to lag order k and let the alternative hypothesis, H1, be that there exist corre-

lations up to lag order k.

Moreover, hereafter we will consider i as a function of k, such that i will be

the integer rounded toward infinity of (k + 1)/2. Nevertheless, this is for the sake

of simplicity and the tests could be directly adapted to any suitable value of i, or

even different values of p and f . From equation (8) and by denoting β = OM ,

we can write:

Zf = βZp + VΨf , (9)

where β is rank deficient. Ignoring this restriction, which is not of interest in our

aim, β can be estimated using least squares as:

β̂ = ZfZ
′
p(ZpZ

′
p)−1. (10)

3.1 By exploiting an estimate of the β matrix

From the least square estimate of β and by means of the vec operator, which stacks

the columns of a matrix into a long vector, we state the following proposition:

Proposition 1 Under H0 and given assumptions A.1. and A.2., the covariance

matrix of vec(β̂|Zp) can be formulated as H−1A(Ω ⊗ Q)A′H−1, where A =

Zp⊗I im, H = A′A and the structure of Ω is represented in Appendix A, equation

(20).

The proof is given in Appendix A.

In the univariate case, i.e. when m = 1 and the noise covariance, Q, is a scalar,

Kolmogorov’s strong law of large numbers (see, White, 2001, Theorem 3.1) and
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H0 ensure that T∗H
−1 a.s.→ Q−1I i2 and T−1

∗ QA′ΩA
a.s.→ Q2Π̄, where Π̄ presents the

following structure:

Π̄ =



I im2 Πi−1 Πi−2 . . . Π1

Π′i−1 I im2 Πi−1 . . . Π2

Π′i−2 Π′i−1 I im2 . . . Π3

...
...

...
. . .

...

Π′1 Π′2 Π′3 . . . I im2


(im)2

(11)

with Πi−j =


πi−j 0 . . . 0

0 πi−j . . . 0
...

...
. . .

...

0 0 . . . πi−j


im2

and πi−j =

(
0 Im(i−j)

0 0

)
im

,

where j = 1, 2, ..., i− 1. In those cases, following Proposition 1,
√
T∗vec(β̂|Zp)

d→
N
(
0, Π̄).

However, when m > 1 and Q is a square m−matrix, keeping the same distribu-

tion for vec(β̂|Zp) requires some standardization of the data. In these cases, under

H0, we have E(ztz
′
t) = E(ψtψ

′
t) = IT ⊗ Q. Thus, one can define z̄t = ztQ̂

− 1
2 ,

where Q̂ = T−1z′tzt, such that under the null E(z̄tz̄
′
t) = E(ψ̄tψ̄

′
t) = ITm. Then,

the results put forward in the univariate case can be generalized, since:

(i) T∗H̄
−1 a.s.→ I(im)2 , where H̄ = (Z̄p ⊗ I im)(Z̄

′
p ⊗ I im), and (12)

(ii) T−1
∗ Ā

′
(Ω⊗ Im)Ā

a.s.→ Π̄, where Ā = (Z̄
′
p ⊗ I im), (13)

being Z̄p the BHM computed as in (5) but with (the standardized) z̄t instead of

the original zt.

Obviously, Π̄ is not, in general, the identity matrix. In fact, it is only so for

the specific case when i = 1. For i > 1, some elements of β̂, the parameter matrix

estimated in (10) but using the standardized BHMs Z̄p and Z̄f , are (perfectly)
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correlated. In both cases, the following proposition and corollary can be stated.

Proposition 2 For any random matrix A such that
√
T∗vecA

d→ N
(
0, Π̄), there

is an idempotent matrix P (im)2 of rank m2k, such that:

s(A) = T∗vec(A)′P vec(A)
d→ χ2

m2k

The proof is given in Appendix A.

Corollary 1 By applying Proposition 2, under H0 and being β̂ = Z̄fZ̄
′
p(Z̄pZ̄

′
p)−1,

then s(β̂)
d→ χ2

m2k holds.

3.2 By exploiting an estimate of the O matrix

A second intuitive idea is to use the information held in an estimate of matrix

O, defined in equation (6) and used in (8). Typically, subspace methods split β̂,

in order to estimate O and M . As we showed in Section 2, for a given system

order n, subspace methods look for a n-rank approximation of β̂. This is done

by means of the singular value decomposition of Wβ̂, being W some weighting

matrix. Once again, as we are not worried about n and the rank restriction, one of

the (infinite) possible decompositions of Wβ̂ could be WÔ = WZfZ
′
p(ZpZ

′
p)−

1
2

and M̂ = (ZpZ
′
p)−

1
2 , which leads to the following proposition and corollary.

Proposition 3 Under H0 and given assumptions A.1. and A.2., ifW = (ZfZ
′
f )−

1
2 ,

then
√
T∗vec(WÔ|Zp)

d→ N
(
0, Π̄).

The proof is given in Appendix A.

Corollary 2 By applying Proposition 2, under H0, then s(WÔ)
d→ χ2

m2k holds.

3.3 Univariate and multivariate ARMA residuals

One of the most common use of the portmanteau tests is to check the residuals

obtained from fitting (vector) autoregressive moving-average, (V)ARMA, models.

Here we will adopt the usual definition of a stationary m-variate ARMA(p, q)
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process (e.g., see Peña et al., 2001, p. 368). When zt are the residuals from

a VARMA model, the asymptotic distribution of s(β̂) and s(WÔ) is not as in

Corollaries 1 and 2, respectively. The reason is that assumption A.1. does not

hold, as residuals, contrary to innovations, present some linear constraints inherit

from the VARMA estimation, see Box and Pierce (1970) for the univariate case

or Hosking (1980) for the multivariate case. In these circumstances, the following

proposition establishes the asymptotic distribution of both statistics.

Proposition 4 If zt in (1b) are the residuals from a fitted m-vector ARMA(p,q)

model, then, under H0, s(β̂) and s(WÔ) converge in distribution to a χ2
m2(k−p−q).

The proof is given in Appendix A.

Notice that checking the null hypothesis in any m−variate process requires,

if the Ljung-Box test is used, the typical Q-matrix which leads to m2 different

statistics. Our tests offer a more natural scalar statistic instead. Further, it is

straightforward to see that for m = 1, both s(β̂) and s(WÔ) are equivalent to the

Box-Pierce statistic if p = 1 and f = k+1 in the BHM defined in (5). Analogously,

when m > 1, the Hoskings’ statistic is a particular case of the tests proposed. As

in the previous case, they are equivalent if p = 1 and f = k + 1 (see Hosking,

1980, p. 605). In short, our proposals generalize Box-Pierce’s and Hosking’s

procedures, since they allow for different values of p. Furthermore, this fact entails

benefits in terms of robustness. As we have previously seen, if p > 1 then Π̄ is

not the identity matrix, which means that some elements in s(β̂) and s(WÔ) are

correlated. Consequently, those elements will be weighted (as it is shown in the

proof of proposition 2) to obtain a vector of uncorrelated components. In this way,

the effect of an outlier will be mitigated, provided that it only affects some, but

not all, of the weighted correlations. This usually occurs with outliers located in

the beginning or the end of the sample.
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4 Numerical examples

In this section we investigate the finite sample properties of the proposed tests. All

the results are compared with those obtained with the QLB statistic by Ljung-Box

as it is the most common and cited diagnostic test in the literature. We will split

the exercise into the analysis of some Monte Carlo simulations of univariate and

bivariate processes and an application to real data.

4.1 Monte Carlo Simulations

In this first part we will study three aspects of the tests: 1) its empirical power, 2)

how the chosen order of lags influences over its performance and 3) if its empirical

size coincides with the designated significance level (nominal size).

[FIGURE 1 SHOULD BE AROUND HERE]

Figure 1 presents the empirical power of s(WÔ), s(β̂) and QLB. The sample

size is 50 observations and the data generating processes and lags employed are:

i) an AR(1) with k = 1 and k = 5, ii) a MA(1) with k = 5, and iii) an ARMA(1,1)

with the autoregressive parameter fixed to −.8 and k = 3. In the ARMA model,

an AR(1) is misspecified and estimated so that the statistics computed from the

residuals are distributed as a χ2
k−1. The most noticeable features are:

1. In the four cases, the empirical power achieved by s(WÔ) is higher or equal

to the one shown by QLB and higher than the one exhibited by s(β̂). On the

other hand, the three tests perform particularly badly with the ARMA(1,1)

model when the moving average parameter is negative, specifically when the

AR and MA parameters are close to be cancelled out.

2. When k = 5 the empirical size of s(WÔ) and QLB is (statistically) higher

than the nominal one. For the AR(1) model the behavior of s(WÔ) and

QLB is almost identical, however for the MA(1) process QLB is clearly out-

performed by our two proposals.
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3. s(β̂) is the only test which holds an empirical size close to the nominal size

in the four different situations.

On the other hand, Table 1 shows the empirical size and power of the three

tests, calculated for nine VARMA bivariate models. In these cases, the QLB is a

matrix of statistics whereas s(β̂) and s(WÔ) remain being a scalar. The main

conclusions are:

1. Both tests, s(β̂) and s(WÔ), usually present a higher empirical power than

the highest value obtained in the QLB matrix (see models 2-5, 7 and 8).

2. The empirical size, which is reasonably good for all the tests when k = 1,

becomes higher than the nominal size for QLB when k increases (compare

models 1 and 6).

3. Even if the empirical size is close to the nominal size for all the tests and

k = 1 when there are no correlations at all (see model 1), it is clearly higher

in the elements of the QLB matrix corresponding to zero-parameters when

the data has some kind of structure (see models 2,3,6,7 and 8).

[TABLE 1 SHOULD BE AROUND HERE]

4.2 An example with real data

The second example deals with the logarithms of indices of monthly flour prices

in the cities of Buffalo, Minneapolis and Kansas City, over the period from Au-

gust 1972 to November 1980, which give us 100 observations at each site. The

series have been previously studied in Tiao and Tsay (1989), Grubb (1992) and

Lütkepohl and Poskitt (1996) among others. The aim of modelling these data is

to illustrate the performance of the proposed test statistics, as specification tools,

and compare it with the most commonly used QLB.

As the series all appear non-stationary, we use the log-difference transformation

zt = ∇ log(yt), where yt are the original series and ∇ = 1−B is the difference op-

erator. Table 2 shows the results obtained by applying the statistics with different
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lags to this process. The first conclusion is that even if all the tests suggest that

there are significant correlations, at least up to order one, the Q-statistic presents

very low power when a (not-so) large lag is chosen. This is because the fact that

the significant correlations at lag one are diluted by insignificant correlations at

other lags seems to be more important in QLB than in s(β̂) or s(WÔ). In addi-

tion, QLB only reveals 5 out of 9 correlations statistically significant at 5% in lag

one.

[TABLE 2 SHOULD BE AROUND HERE]

Following the results obtained with the QLB at a significance level of 5% in

Table 2 with k = 1, a restricted VAR(1) model (I − Φ1B)zt = at is tentatively

specified. The model was fitted to the data by maximum likelihood, resulting:

Φ̂1 =


0 −.188∗ −.035

0 −.289∗ 0

−.401∗ .117 0

 , Σ̂a =


2.263 2.296 2.202

2.496 2.364

2.770

× 10−3 (14)

where, in the parameter matrices, an entry constrained to be zero is denoted by ‘0’

and ‘∗’ means that the parameter is significant at a 5%. The results of using QLB,

s(WÔ) and s(β̂) as diagnostic tests over the residuals of this model are in Table 3.

[TABLE 3 SHOULD BE AROUND HERE]

The QLB suggests that there are no correlations for k = 2, 5, 10, 15 at 10%

level of significance, implying that model presented in (14) could be appropriate.

However, s(WÔ) and s(β̂) reject the null hypothesis for k = 2 and k = 2, 5, 10, 15,

respectively, at 5% level of significance. So, may be the Q-statistic has lead to an

inappropriate model. For instance, if we had followed our proposals in Table 2,

we could have specified an unrestricted VAR(1). The estimation of this model
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returns:

Φ̂1 =


1.226∗ −1.355∗ .005

.830∗ −1.027∗ .035

.463 −.813∗ .142

 , Σ̂a =


2.033 2.140 2.039

2.390 2.253

2.647

× 10−3 (15)

To check if the estimated residual correlations of model (15) are approximately

zero, the three tests are again used. The results are shown in Table 4. This time,

none of the tests reject the null hypothesis that there are no correlations up to

order k = 2, 5, 10, 15. However, notice that our proposals show more evidence in

favour of the null than QLB, at least in the first lags. Finally, note that model

(15) was also proposed by Lütkepohl and Poskitt (1996) and is better than many

other alternatives, in particular model (14), as it was shown in Grubb (1992).

[TABLE 4 SHOULD BE AROUND HERE]

5 Concluding remarks

This work tackles the problem of diagnostic checking from an original point of view.

Two statistics based on the subspace methods are presented and its asymptotic

distributions are derived under the null. The procedures generalize the Box-Pierce

statistic for single series and the Hoskings’ statistic in the multivariate case. More-

over, they are more robust than the alternatives in the presence of outliers. Monte

Carlo simulations and an example with real data show that our proposals perform

better than the common Ljung-Box Q-statistic in many situations.
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Appendix A

Proof of Proposition 1. By applying the vec operator, equation (9) can be

formulated as:

vecZf = (Z ′p ⊗ I im)vecβ + vecΨf , (16)

where we have used that V = I im under H0. From this, β̂ will be computed as,

vecβ̂ = [(Z ′p ⊗ I im)′(Z ′p ⊗ I im)]−1(Z ′p ⊗ I im)′vecZf , (17)

or substituting equation (16) in vecZf and rearranging,

vec(β̂ − β) = H−1A′vecΨf , (18)

where H = A′A and A = Z ′p ⊗ I im. Therefore, the covariance matrix of vecβ̂

conditional to Zp will be formulated as:

cov[vecβ̂|Zp] = E
[
H−1A′vec(Ψf )vec(Ψf )′AH−1|Zp

]
(19a)

= H−1A′(Ω⊗Q)AH−1, (19b)
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where Ω, which is not an identity matrix, presents the form:

Ω =



I im ω′i−1 ω′i−2 . . . ω′i−(T*−1)

ωi−1 I im ω′i−1 . . . ω′i−(T*−2)

ωi−2 ωi−1 I im . . . ω′i−(T*−3)
...

...
...

. . .
...

ωi−(T*−1) ωi−(T*−2) ωi−(T*−3) . . . I im


imT*

, (20)

where

ωi−j =

(
0 Im(i−j)

0 0

)
im

and j = 1, 2, ..., T* − 1. (21)

Moreover, when j ≥ i, ωi−j is an im-by-im zero-matrix. This particular composi-

tion of Ω is inherited from the structure of the BHM Ψf , defined in (5).

�

Proof of Proposition 2. Once the structure of the covariance matrix Π̄ is known,

it is straightforward to see that not all the random elements in A are independent,

except when i = 1. Therefore, the aim is to find where the independent components

are located. Given the structure of Π̄ and using the submatrix Matlab notation:

(i) The first im elements of vecA, which are A1:im,1:m, are uncorrelated as

the square submatrix Π̄1:im = I im2 .

(ii) As the first m rows of Π̄
′
i−1 are zeros, then the elements of the submatrix

A1:m,m+1:m+2 are also uncorrelated with those of A1:im,1:m. In the same

way, this occurs for every element in the submatrix A1:m,m+1:im due to the

structure of zeros in matrices Π̄
′
i−k for k = 1, 2, ..., i− 1. Then the elements

in A1:m,m+1:im are uncorrelated with those of A1:im,1:m and, therefore, Π̄ is

of rank m2(2i− 1).
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In order to extract m2k independent elements from A, we use the singular value

decomposition of Π̄, creating a matrix B(im)2×m2k such that Π̄ = BB′ as:

Π̄
svd
= US

1
2︸ ︷︷ ︸S 1

2V ′︸ ︷︷ ︸ (22)

= B · B′. (23)

Consequently, from (23) we have that B†Π̄B′† = Im2k, where the symbol ‘†’
denotes the Moore-Penrose inverse. Therefore, B†vec(A)

d→ N
(
0, T−1

∗ Im2k) which

leads directly to:

s(A) = T∗vec(A)′P vec(A)
d→ χ2

m2k

being P = B′†B† a weighting idempotent matrix with rank m2k that averages the

perfectly correlated elements of vec(A) in a vector of m2k uncorrelated elements.

�

Proof of Proposition 3. Let us estimate WÔ as:

WÔ = WZfZ
′
p(ZpZ

′
p)−

1
2 (24)

As V = I im under H0, then (24) becomes:

WÔ = W (OMZp + Ψf )Z ′p(ZpZ
′
p)−

1
2 (25)

and substituting M = (ZpZ
′
p)−

1
2 we obtain:

W (Ô −O) = WΨfZ
′
p(ZpZ

′
p)−

1
2 . (26)

Applying the vec operator in the equation above, we have:

vec[W (Ô −O)] =
[(

(ZpZp)−
1
2Z ′p

)
⊗W

]
vecΨf . (27)

17



Thus, the covariance matrix of vec[W (Ô−O)] conditional toZp will be formulated

as:

E
[[(

(ZpZ
′
p)−

1
2Zp

)
⊗W

]
vecΨfvecΨ

′
f

[(
Z ′p(ZpZ

′
p)−

1
2

)
⊗W

]
|Zp

]
. (28)

By replacing W = (ZpZ
′
p)−

1
2 and using that, under H0, Zf |Zp = Zf , then

equation (28) can be written as:

[(
(ZpZ

′
p)−

1
2Zp

)
⊗ (ZfZ

′
f )−

1
2

]
(Ω⊗Q)

[(
Z ′p(ZpZ

′
p)−

1
2

)
⊗ (ZfZ

′
f )−

1
2

]
. (29)

Again under H0,
√
T∗(ZfZ

′
f )−

1
2

a.s.→ I i⊗Q−
1
2 and

√
T∗(ZpZ

′
p)−

1
2

a.s.→ I i⊗Q−
1
2 hold.

Using the properties of the Kronecker product, we can finally write the asymptotic

covariance matrix of vec(WÔ) as the following expression:

cov[vec(WÔ)]
a.s.→ T−2

∗

[[(
(I i⊗Q−

1
2 )Zp

)
⊗I i

]
Ω
[(
Z ′p(I i⊗Q−

1
2 )
)
⊗I i

]]
⊗Im. (30)

On the other hand, from equations (12-13) the covariance matrix of vec(β̂|Zp) is

computed as:

cov
[
vec(β̂|Zp)

]
= H̄

−1
(Z̄p ⊗ I im)(Ω⊗ Im)(Z̄

′
p ⊗ I im)H̄

′−1
(31)

= T−1
∗
(
T∗H̄

−1)︸ ︷︷ ︸
a.s.

[
T−1
∗
[
(Z̄p ⊗ I i)Ω(Z̄

′
p ⊗ I i)

]
⊗ Im

]︸ ︷︷ ︸
a.s.

(
T∗H̄

′−1)︸ ︷︷ ︸
a.s.

(32)

a.s.→ T−1
∗ · I(im)2 · Π̄ · I(im)2 (33)

= T−1
∗ Π̄ (34)

Finally, as limT→∞ |Z̄p−(I i⊗Q−
1
2 )Zp| = 0, then both covariances, (30) and (31),

tend asymptotically to T−1
∗ Π̄.

�

Proof of Proposition 4. Let the rth autocovariance matrix of the innovations be

Cr = T−1ψ′tψt−r and the rth residual autocovariance matrix be Ĉr = T−1ψ̂
′
tψ̂t−r.

Further, define C = (C1 C2 ...Ck) and similary Ĉ. Then, Hosking (1980) proved

18



that:

vec(Ĉ) = Dvec(C), (35)

where D is idempotent of rank m2(k − p− q).

Let now define β̂∗ = Z̄fZ̄
′
p(Z̄pZ̄

′
p)−1 as the β matrix estimated using the

(standardized) residuals of a VARMA(p, q) model. As these residuals have been

previously standardized (see Section 3.1), β̂∗
a.s.→ ₡̂(I i ⊗ Im)−1 = ₡̂ where

₡̂ =


Ĉ k̄−i+1 Ĉ k̄−i . . . Ĉ1

Ĉ k̄−i+2 Ĉ k̄−i+1 . . . Ĉ2

...
...

. . .
...

Ĉ k̄ Ĉ k̄−1 . . . Ĉ k̄−i+1


im

being k̄ ≡

{
k if k is odd

k + 1 if k is even.
(36)

Then, we can writeB†vec(β̂∗) = D̄B†vec(β̂) as it was done in equation (35), since

B†vec(β̂∗) and B†vec(β̂) have, asymptomatically, the same elements than vec(Ĉ)

and vec(C), respectively, although sorted in different order. Likewise, D̄ has the

same rows than D, but ordered differently, and hence rank(D̄) = rank(D) =

m2(k − p− q).

Finally, we have previously shown that B†vec(β̂|Zp)
d→ N

(
0, T−1

∗ Im2k) and,

consequently, B†vec(β̂∗|Zp)
d→ N

(
0, T−1

∗ D̄), which leads to:

T∗vec(β̂∗)
′P vec(β̂∗)

d→ χ2
m2(k−p−q)

�
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(1-φB) zt = at , k = 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

φ

s(WÔ)
s(β)
QLB

(1-.8B) zt = (1-θB) at , k = 3
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(1-φB) zt = at , k = 5
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zt = (1-θB) at , k = 5
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Figure 1: Empirical power of s(WÔ), s(β̂) and QLB for a sample size T = 50,
different ARMA processes and lags (k). The empirical powers are computed with
a χ2

k distribution except for the ARMA(1,1) process where a χ2
k−1 is employed as

H0 is tested over the residuals of a misspecified AR(1) model. Results computed
with 5000 replications.
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Table 2: P-value of the statistics. H0 : there are no correlations up to lag k in zt.

k (lag) s(WÔ) s(β̂) QLB

1 .000∗ .000∗

 .168 .025∗ .045∗

.099 .026∗ .053
.043∗ .017∗ .063



5 .281 .042∗

.813 .404 .491
.704 .408 .475
.453 .295 .533



10 .184 .000∗

.938 .707 .552
.896 .698 .460
.737 .644 .475



Table 3: P-value of the statistics. H0: there are no correlations up to lag k in the
residuals of model (14).

k (lags)
Statistic 2 5 10 15

Q†LB .413 .855 .698 .779

s(WÔ) .003∗ .219 .150 .359

s(β̂) .000∗ .028∗ .002∗ .000∗

Q†LB presents the lowest p-value among all the elements of the QLB matrix

Table 4: P-value of the statistics. H0: there are no correlations up to lag k in the
residuals of model (15).

k (lags)
Statistic 2 5 10 15

Q†LB .447 .729 .642 .744

s(WÔ) .944 .953 .611 .704

s(β̂) .942 .934 .331 .288

Q†LB presents the lowest p-value among all the elements of the QLB matrix
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