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CLASSIFICATION OF QUADRUPLE
GALOIS CANONICAL COVERS I

FRANCISCO JAVIER GALLEGO AND BANGERE P. PURNAPRAJNA

Dedicated to Ignacio Sols

Abstract. In this article we classify quadruple Galois canonical covers of
smooth surfaces of minimal degree. The classification shows that they are
either non-simple cyclic covers or bi-double covers. If they are bi-double, then
they are all fiber products of double covers. We construct examples to show
that all the possibilities in the classification do exist. There are implications

of this classification that include the existence of families with unbounded
geometric genus, in sharp contrast with triple canonical covers, and families
with unbounded irregularity, in sharp contrast with canonical covers of all other
degrees. Together with the earlier known results on double and triple covers,
a pattern emerges that motivates some general questions on the existence of
higher degree canonical covers, some of which are answered in this article.

Introduction

Classification problems are of central importance in algebraic geometry. In the
realm of algebraic surfaces, the geography of surfaces of general type, by far the
largest class of surfaces, is much less charted and understood. An important sub-
class of surfaces of general type are those whose canonical map is a cover of a
simpler surface, most notably, a surface of minimal degree. In the seventies and
eighties Horikawa and Konno ([Ho], [Ko]) classified these covers when the degree
of the cover is 2 and 3. In this article and in its sequel [GP4] we classify surfaces
of general type whose canonical map is a quadruple Galois cover of a surface of
minimal degree.

Covers of varieties of minimal degree have a ubiquitous presence in various con-
texts. They appear in the classification of surfaces of general type X with small c2

1

and play an important role in mapping the geography of surfaces of general type.
They are also the chief source in constructing new examples of surfaces of general
type, as the work of various geometers illustrates. These covers occur as well in the
study of linear series on important threefolds such as Calabi-Yau threefolds, as the
work in [BS], [GP1] and [OP] shows. They also become relevant in the study of
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the canonical ring of a variety of general type, as can be seen in results from [GP2]
and [Gr].

Compared to the canonical morphism of a curve, the canonical morphism of a
surface is much more subtle and allows a much wider range of possibilities due to
the existence of higher degree covers. The degree of the canonical morphism of a
curve is bounded by 2. In contrast, results of Beauville show that the degree of
the canonical morphism from a surface of general type X onto a surface of minimal
degree, or more generally, onto a surface with geometric genus pg = 0, is bounded
by 9 if χ(X) ≥ 31 (see [Be]).

Surfaces of minimal degree are classically known to be linear P2, the Veronese
surface in P5 and rational normal scrolls, which can be smooth (these include the
smooth quadric hypersurface in P3) or singular (these are cones over a rational
normal curve). As pointed out before, the classification of the canonical covers of
these surfaces is only complete when the degree of the cover is 2 and 3. Horikawa
also studied quadruple covers of linear P2. The next step in this classification is
the study of quadruple covers of an arbitrary surface of minimal degree.

In this work we classify all quadruple Galois canonical covers of smooth surfaces
of minimal degree W . In [GP4] we classify quadruple Galois covers of W when W
is singular. There are many interesting consequences of the classification done here
and in [GP4]. Our classification yields, among other things, some striking contrasts
with double and triple covers. Before we look at them we state the main result of
this article:

Theorem 0.1. Let X be a canonical surface and let W be a smooth surface of
minimal degree. If the canonical bundle of X is base-point-free and X

ϕ−→ W
is a quadruple Galois canonical cover, then W is either linear P2 or a smooth
Hirzebruch surface Fe, with 0 ≤ e ≤ 2, embedded by |C0 + mf | (m ≥ e + 1). Let G
be the Galois group of ϕ.

A) If G = Z4, then ϕ is the composition of two double covers X1
p1−→ W

branched along a divisor D2 and X
p2−→ X1, branched along the ramification

of p1 and p∗1D1, where D1 is a divisor on W and with trace zero module
p∗1OW

(−1
2D1 − 1

4D2).
B) If G = Z⊕2

2 , then X is the fiber product over W of two double covers of W
branched along divisors D1 and D2, and ϕ is the natural morphism from
the fiber product to W .

More precisely, ϕ has one of the sets of invariants shown in the following table.
Conversely, if X

ϕ−→ W is either

I) the composition of two double covers X1
p1−→ W , branched along a divisor

D2, and X
p2−→ X1, branched along the ramification of p1 and p∗1D1, and

with trace zero module p∗1OW (−1
2D1 − 1

4D2), with D1 and D2 as described
in rows 1, 3 and 5 of the table below; or

II) the fiber product over W of two double covers X1
p1−→ W and X2

p2−→ W ,
branched respectively along divisors D2 and D1, as described in rows 2, 4,
6, 7 and 8 of the table below,

then X
ϕ−→ W is a Galois canonical cover whose Galois group is Z4 in case I and

Z⊕2
2 in case II.
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W pg(X) G D1 ∼ D2 ∼ q(X) c2
1/c2

P2 3 Z4 conic quartic 0 1
11

P2 3 Z⊕2
2 quartic quartic 0 1

11

Fe 2m − e + 2 Z4 (2m − e + 1)f 4C0 + (2e + 2)f 0 2m−e
4m−2e+9

Fe 2m − e + 2 Z⊕2
2 2C0 + (2m + 2)f 4C0 + (2e + 2)f 0 2m−e

4m−2e+9

F0 2m + 2 Z4 (2m + 4)f 4C0 1 m
2m+3

F0 2m + 2 Z⊕2
2 2C0 + (2m + 4)f 4C0 1 m

2m+3

F0 2m + 2 Z⊕2
2 (2m + 2)f 6C0 + 2f m 2m

m+9

F0 2m + 2 Z⊕2
2 (2m + 4)f 6C0 m + 3 2

Remark 0.2. Note that, whereas W is always simply connected, the intermediate
cover X1 in A) and I) of Theorem 0.1 is sometimes simply connected and sometimes
not. An example of the former is the case in row 1 of the above table, provided D2

is smooth, and the case in row 3, when e = 0, 1, provided again that D2 is smooth
(see [No]). An example of the latter is the case in row 5; in this case π1(X1) = Z×Z,
as X1 is the product of a smooth elliptic curve and P1. That is why in order to
determine p2, in general, we need to specify not only the branch divisor but also
the trace zero module of the cover.

Theorem 0.1 is split inside the paper into Corollary 2.5 and Theorems 4.1, 5.1, 5.2,
6.1 and 6.2. We also construct families of examples to show the existence of all the
cases that appear in the classification. A notable fact that is not mentioned in the
statement of the theorem is that there exist families of smooth surfaces of general
type X for every case described in rows 2, 4, 6, 7 and 8 of the above table (that
is, all cases where G = Z⊕2

2 ). In comparison, we show that the quadruple cyclic
canonical covers of smooth surfaces of minimal degree are always singular. We also
show that quadruple cyclic canonical covers are non-simple cyclic.

One of the interesting implications of the main result of this article is the ex-
istence of families of quadruple canonical covers with unbounded geometric genus
and the existence of families with unbounded irregularity. The unboundedness of
the geometric genus is in sharp contrast with the situation of triple covers, and the
unboundedness of the irregularity is in sharp contrast with the canonical covers of
all other degrees. The geometric genus of canonical double covers is unbounded,
but they are all regular, and even simply connected surfaces. The classification of
triple covers by Konno shows that the geometric genus of canonical triple covers is
bounded by 5 and that they are all regular. For quadruple Galois covers we show
the existence of families of surfaces X for each possible value of pg(X) (see rows
3 to 8 of the above table). We also show that there exist unbounded families of
surfaces X for each possible value of q(X) (see rows 7 and 8 of the table).

The classification of quadruple covers provides other significant contrast with
double and triple covers and clearly brings out the marked difference between even
and odd degree covers. The only smooth targets of quadruple Galois canonical
covers that occur are linear P2 and rational normal scrolls which correspond to only
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three Hirzebruch surfaces, namely F0, F1 and F2. In the case of canonical double
covers, linear P2 and smooth rational scrolls corresponding to every Hirzebruch
surface appear as an image of the canonical morphism. In the case of canonical
triple covers, the list is reduced drastically and the only possible smooth target is
linear P2.

The geography of Chern numbers of quadruple Galois canonical covers is marked-
ly different from that of double and triple canonical covers. For double covers the
ratio c2

1/c2 approaches 1/5 as pg approaches ∞, c2
1/c2 always being less than 1/5.

In the case of triple covers, c2
1/c2 only takes three values, the largest of them being

1/7. For both double and triple covers, (c2
1, c2) lies well below the line c2

1 = 2c2.
By contrast, quadruple Galois covers have a much richer geography and traverse a
larger region, as can be seen from the previous table. In particular, Chern pairs
(c2

1, c2) from different families approach two different lines, namely, c2
1 = 1

2c2 and
c2
1 = 2c2. The latter line is actually attained.

The classification of quadruple covers of singular targets in [GP4] together with
earlier results on double and triple covers exhibit a striking pattern. Indeed, we
show that quadruple covers of singular targets form a bounded family with respect
to both the geometric genus and irregularity as in the case of double and triples
covers of singular targets. The results in this article and in [GP4] predict a precise
numerology, regarding pg and q, that might hold for higher degree covers. The
following facts make it clear what we mean: there do not exist canonical covers of
odd degree of smooth scrolls (see [GP2, Proposition 3.3]) and there do not exist
Galois canonical covers X

ϕ−→ W of prime degree p > 3 of surfaces W of minimal
degree if X is regular or if W is smooth (see Theorem 7.2, Corollary 7.3 and [GP2,
Corollary 3.2]). This motivates us to pose a general question (see Question 7.4)
on the non-existence of higher, prime degree Galois canonical covers of surfaces of
minimal degree.

The classification obtained in this article and in [GP4] has further applications.
In a forthcoming paper we determine the ring generators of the quadruple covers
classified here and in [GP4]. These results show that quadruple Galois covers serve
as examples and counterexamples to some questions on graded rings and normal
generation of linear systems on an algebraic surface.

1. Notation and conventions

Convention. We work over an algebraically closed field of characteristic 0.

Notation 1.1. We will follow these conventions:
(1) Throughout this article, unless otherwise stated, W will be an embedded

smooth projective algebraic surface of minimal degree, i.e., whose degree is
equal to its codimension in projective space plus 1.

(2) Throughout this article, unless otherwise stated, X will be a projective alge-
braic normal surface with at worst canonical singularities (that is, rational
double points). We will denote by ω

X
the canonical bundle of X.

We recall the following standard notation:
(3) By Fe we denote the Hirzebruch surface whose minimal section has self-

intersection −e. If e > 0 let C0 denote the minimal section of Fe and let f
be one of the fibers of Fe. If e = 0, C0 will be a fiber of one of the families
of lines and f will be a fiber of the other family of lines.
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(4) If a, b are integers such that 0 < a ≤ b, consider two disjoint linear subspaces
Pa and Pb of Pa+b+1. We denote by S(a, b) the smooth rational normal
scroll obtained by joining corresponding points of a rational normal curve
in Pa and a rational normal curve of Pb. Recall that S(a, b) is the image
of Fe by the embedding induced by the complete linear series |C0 + mf |,
with a = m − e, b = m and m ≥ e + 1.
If a = b, the linear series |mC0 + f | also gives a minimal degree embedding
of F0, equivalent to the previous one by the automorphism of P1×P1 = F0

swapping the factors. In this case our convention will always be to choose C0

and f so that, when W is a smooth rational normal scroll, W is embedded
by |C0 + mf |.
If in addition m = 1, C0 and f are indistinguisable in both F0 and S(1, 1),
so, in such a case, for us C0 will denote the fiber of any of the families of
lines of F0 and f will denote the fiber of the other family.

For details about rational ruled surfaces and rational singularities we refer the
reader to ([Ba]).

Definition 1.2. Let X and W be as in the previous notation.

a) We will say that a surjective morphism X
ϕ−→ W is a canonical cover of W

if X is a surface of general type whose canonical bundle ω
X

is ample and
base-point-free and ϕ is the canonical morphism of X.

b) If G is a finite group acting on X so that X/G = W and X
ϕ−→ W is the

projection from X to X/G, then we will say that X
ϕ−→ W is a Galois

cover with group G.

Remark 1.3. If X
ϕ−→ W is a Galois cover, ϕ is flat since W is smooth.

Remark 1.4. Although we have assumed X to have canonical singularities, some
results hold in greater generality. Precisely, if for the purpose of this remark we
ignore notation 2) above and X is assumed to be a normal, locally Gorenstein
surface instead, then Definition 1.2 still makes sense and Theorems 4.1, 5.1, 5.2, 6.1
and 6.2 hold. We can further relax the hypotheses on X in the converse parts
of Theorems 4.1, 5.1, 5.2, 6.1 and 6.2 , and they hold if X is just assumed to be
smooth in codimension 1, since in that case these covers are Gorenstein.

2. Some general results on quadruple canonical covers

The fact that a cover X
ϕ−→ W is induced by the canonical morphism imposes

certain constraints on ϕ∗OX . In this section we exploit this to obtain some useful
information on the vector bundle structure of ϕ∗OX . We get more information if
ϕ∗OX splits as a direct sum of line bundles. This is the case for Galois covers, so
we will use the results of this section when we study Galois covers in the subsequent
sections.

Proposition 2.1. Let X
ϕ−→ W be a quadruple canonical cover of W . Let H =

OW (1).
(1) Then ϕ∗OX is a vector bundle on W and

ϕ∗OX
= O

W
⊕ E ⊕ (ω

W
⊗ H∗)

with E a vector bundle over W of rank 2.
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(2) If in addition ϕ∗OX
splits as a sum of line bundles, then

ϕ∗OX
= O

W
⊕ L∗

1 ⊕ L∗
2 ⊕ (ω

W
⊗ H∗)

with L∗
1 ⊗ L∗

2 = ωW ⊗ H∗.

Proof. Recall that, by Definition 1.2, ϕ is finite, W is smooth and X is locally
Cohen-Macaulay. Then ϕ is flat and hence ϕ∗OX

is a vector bundle over O
W

of
rank 4. Moreover, ϕ∗OX

= O
W
⊕E′, where E′ is the trace zero module of ϕ. From

relative duality we have
ϕ∗ωX = (ϕ∗OX )∗ ⊗ ωW .

On the other hand, by hypothesis, ω
X

= ϕ∗H, hence, by projection formula,

ϕ∗ωX
= ϕ∗OX

⊗ H .

Then
ω

W
⊕ (ω

W
⊗ (E′)∗) = H ⊕ (E′ ⊗ H) .

Since ω
W

= H is not possible, for W a rational surface, E′ = E ⊕ (ω
W

⊗H∗), with
E a vector bundle of rank 2. If ϕ∗OX

splits, let E = L∗
1 ⊕ L∗

2. Then

ωW ⊕ (ωW ⊗ L1) ⊕ (ωW ⊗ L2) ⊕ H

= H ⊕ (H ⊗ L∗
1) ⊕ (H ⊗ L∗

2) ⊕ ωW .

Then taking the determinant of both sides of the equality gives (L∗
1 ⊗ L∗

2)⊗2 =
(ω

W
⊗ H∗)⊗2. Since W is either P2 or a Hirzebruch surface, then L∗

1 ⊗ L∗
2 =

ω
W

⊗ H∗. �

Now we study in more detail the possible splittings of ϕ∗OX
depending on what

surface W is. We start with this observation about linear P2:

Proposition 2.2. Let X
ϕ−→ W be a canonical cover. If W is linear P2, then X

is regular if and only if ϕ∗OW
splits as a direct sum of line bundles.

Proof. By Proposition 2.1 we know that

ϕ∗OX
= O

W
⊕ E ⊕ ω

W
(−1) .

Since W = P2, the intermediate cohomology of line bundles on W vanishes, so by
projection formula H1(ϕ∗OW (k)) = H1(E(k)). By Kodaira vanishing and duality
H1(ϕ∗O

W
(k)) = 0 except maybe if k = 0, 1. Then X is regular if and only if

H1(E(k)) = 0 for all k, and by Horrock’s Splitting Criterion, this is equivalent to
the splitting of E. Thus X is regular if and only if ϕ∗OX

splits as a direct sum of
line bundles. �

The following proposition tells how the restriction of ϕ∗OX to a smooth curve
in |ω

X
| splits:

Proposition 2.3. Let W be a surface of minimal degree r, not necessarily smooth,
let X

ϕ−→ W be a canonical cover of degree 4 and let C be a general smooth irre-
ducible curve in |OW (1)|. If X is regular, then

(ϕ∗OX
)|C = OP1 ⊕OP1(−r − 1) ⊕OP1(−r − 1) ⊕OP1(−2r − 2) .

Proof. See [GP2, Lemma 2.3] for details. �
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Finally we describe more accurately the splitting of ϕ∗OX
in the case where X

is regular:

Proposition 2.4. Let X
ϕ−→ W be a quadruple canonical cover. If ϕ∗OX

splits as
a direct sum of line bundles, then:

(1) If W is linear P2, then

ϕ∗OX
= OP2 ⊕OP2(−2) ⊕OP2(−2) ⊕OP2(−4) ;

(2) W is not the Veronese surface; and
(3) if W is a rational normal scroll and X is regular, then

ϕ∗OX
= O

W
⊕O

W
(−C0 − (m + 1)f)
⊕O

W
(−2C0 − (e + 1)f) ⊕O

W
(−3C0 − (m + e + 2)f),

where 2m − e is the degree of W .

Proof. To prove (1) recall that, by Proposition 2.2, X is regular. Then by Propo-
sition 2.3 the restriction of ϕ∗OX to a line of W is

OP1 ⊕OP1(−2) ⊕OP1(−2) ⊕OP1(−4),

so (1) is clear.
For (2) W is isomorphic to P2 and OW (1) = OP2(2). Then, by Proposition 2.1,

ϕ∗OX
= OP2⊕E⊕OP2(−5). Let C be a smooth conic in W . If X is irregular, then

by Proposition 2.2, ϕ∗OX
cannot split completely. If X is regular, then according

to Proposition 2.3

(ϕ∗OX
)C = OP1 ⊕OP1(−5) ⊕OP1(−5) ⊕OP1(−10) .

Then if E = L∗
1 ⊕ L∗

2 with L1 and L2 line bundles, L∗
1|C = L∗

2|C = OP1(−5),
but since C is a conic the degrees of L1|C and L2|C are even integers, so we get a
contradiction.

For (3) recall that ωW = OW (−2C0−(e+2)f) and that OW (1) = OW (C0 +mf).
Then it follows by assumption and Proposition 2.1 that

ϕ∗OX
= O

W
⊕ L∗

1 ⊕ L∗
2 ⊕O

W
(−3C0 − (m + e + 2)f) ,

and L1 ⊗ L2 = OW (3C0 + (m + e + 2)f). Then, if we set L1 = OW (a1C0 + b1f)
and L2 = O

W
(a2C0 + b2f), it follows that

a1 + a2 = 3,

b1 + b2 = m + e + 2 .

We now show that ai ≥ 1 for i = 1, 2. Since ϕ is induced by the complete linear
series of ϕ∗O

W
(C0+mf), then (1−ai)C0+(m−bi)f is non-effective. Then, if ai ≤ 0,

bi ≥ m + 1. On the other hand, since X is regular and H1(L∗
i ) ⊂ H1(ϕ∗OX

) = 0,
it follows that H1(OW (−aiC0 − bif)) = 0. Then, if ai ≤ 0, bi ≤ 1, then m ≤ 0,
which is impossible, because m ≥ e + 1 ≥ 1. Then, since a1 + a2 = 3, ai is
either 1 or 2. Let us set a1 = 1. Then, since (1 − a1)C0 + (m − b1)f cannot
be effective, b1 ≥ m + 1. On the other hand, a2 = 2, and since 0 = h1(L∗

2) =
h1(OW (−2C0−b2f)) = h1(OW ((b2−e−2)f)) = h1(OP1(b2−e−2)), then b2 ≥ e+1.
Since b1 + b2 = m + e + 2, then b1 = m + 1 and b2 = e + 1. �

The purpose of this paper is to study canonical quadruple Galois covers, and we
will focus on them in the next sections. Meanwhile, Proposition 2.4 already yields a
fact regarding these covers which is worth remarking. Note that a canonical Galois
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cover of the Veronese surface is flat, because the Veronese surface is smooth. Then,
being ϕ flat and Galois, ϕ∗OX

splits completely, so we have this

Corollary 2.5. There are no quadruple Galois canonical covers of the Veronese
surface.

3. General description of quadruple Galois canonical covers

If X
ϕ−→ W is a Galois cover, it is well known that the action on X of the Galois

group descomposes ϕ∗OX as a direct sum of eigensheaves. On the other hand ϕ∗OX

is a sheaf of OW -algebras, whose multiplicative structure can be described explicitly
and is well known (see for instance [HM] or [Ca]). In the case of Galois canonical
covers of surfaces, Proposition 2.1 (2) gives us some extra information, and the
multiplicative structure becomes simpler to state. This is done in Remark 3.1
below; in Corollary 3.2 we translate this data into a geometric description.

Remark 3.1. Let X
ϕ−→ W be a quadruple Galois canonical cover with Galois group

G and let
ϕ∗OX

= O
W

⊕ L∗
1 ⊕ L∗

2 ⊕ L∗
3

be the splitting of ϕ∗OX
as a sum of line bundles induced by the action of G, for

which L1 ⊗ L2 = L3 (this is possible by Proposition 2.1 (2)). Then
(1) If G = Z2×Z2, there exist effective Cartier divisors D1, D2 and D3 so that

the multiplicative structure of ϕ∗OX
works as follows:

L∗
i ⊗ L∗

i

·Dj+Dk−→ OY,

L∗
j ⊗ L∗

k
·Di−→ L∗

i

and D3 = 0.
(2) If G = Z4, there exist effective Cartier divisors D1 and D2 on W so that

the multiplicative structure of ϕ∗OX
works as follows:

L∗
1 ⊗ L∗

1
·D1−→ L∗

2,

L∗
1 ⊗ L∗

2 −→ L∗
3,

L∗
1 ⊗ L∗

3
·D1+D2−→ OW ,

L∗
2 ⊗ L∗

2
·D2−→ OW ,

L∗
2 ⊗ L∗

3
·D2−→ L∗

1,

L∗
3 ⊗ L∗

3
·D1+D2−→ L∗

2.(3.1.1)

Corollary 3.2. Let X
ϕ−→ W be a canonical Galois cover of a smooth surface of

minimal degree with Galois group G and keep the notation in Remark 3.1. Then,

(1) if G = Z2×Z2, X is the fiber product over W of two double covers, X1
p1−→

W and X2
p2−→ W , branched along D2 and D1, respectively, and ϕ is the

natural map from the fiber product to W ;
(2) if G = Z4, the cover X

ϕ−→ W is obtained as a composition of two double
covers, X

p2−→ X ′ and X ′ p1−→ W , as follows:
a) p1 is branched along D2;
b) p2 is branched along the ramification of p1 and along p−1D1, and its

trace zero module is p∗1(L
∗
1).
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Proof. If G = Z2 ×Z2, then the O
W

-algebra p∗OX
has three subalgebras O

W
⊕L∗

i

corresponding to three double covers Xi
pi−→ W for i = 1, 2, 3 which are branched

along Dj +Dk where i 	= j, j 	= k, k 	= i. Recall (see Remark 3.1) that L1⊗L2 = L3

and therefore D3 = 0, hence X1
p1−→ W is branched along D2 and X2

p2−→ W is
branched along D1. Then a local argument shows that the algebra structure of
p∗OX

described in Remark 3.1 (1) is in fact the tensor product over O
W

of the
algebras O

W
⊕ L∗

1 and O
W

⊕ L∗
2.

If G = Z4, then the OW -algebra p∗OX has one proper subalgebra, namely OW

⊕ L∗
2. This induces an intermediate cover X ′ p1−→ W , branched along D2. Looking

locally at the multiplicative structure described in Remark 3.1 (2) yields the rest
of the geometric description of p2. �

4. Galois covers of P2

In this section we deal with the easier case of canonical covers of the projective
plane. A priori one could distinguish two cases: either W is linear P2 or W is the
Veronese surface. However, as pointed out in Corollary 2.5, there are no canonical
quadruple Galois covers of the Veronese surface, so we will only have to study the
case of W being linear P2.

Theorem 4.1. Let W be linear P2 and let X
ϕ−→ W be a quadruple Galois canon-

ical cover.

(1) If the Galois group of ϕ is Z4, then ϕ is the composition of two flat double
covers X1

p1−→ W and X
p2−→ X1; the cover p1 is branched along a quartic

and the cover p2 is branched along the ramification of p1 and the pullback
by p1 of a conic, and its trace zero module is p∗1OP2(2).

(2) If the Galois group of ϕ is Z2 × Z2, then X is the fiber product over W of
two double covers of linear P2, each of them branched along a quartic, and
ϕ is the natural map from the fiber product to W .

Conversely, let X
ϕ−→ W be a cover of linear P2.

(1′) If ϕ is the composition of two flat double covers X1
p1−→ W and X

p2−→ X1

as described in 1) above, then ϕ is a Galois canonical cover with group Z4.
(2′) If ϕ is the natural map to W from the fiber product over W of two double

covers as described in 2) above, then ϕ is a Galois canonical cover with
group Z2 × Z2.

Proof. Corollary 3.2 tells the general structure of ϕ, so, to prove (1) and (2) we
only need to find out the degrees of the branch divisors. This follows from Propo-
sition 2.4. Now we prove the converse. Clearly, a cover ϕ as in (1′) is Galois with
group Z4. Likewise, a cover ϕ as in (2′) is Galois with group Z2×Z2. On the other
hand, it easily follows from the ramification formula that the canonical of X is
ϕ∗OP2(1), so in particular X is a surface of general type and ω

X
is base-point-free.

Finally to prove that ϕ is indeed the morphism induced by H0(ωX ) we see that
H0(ϕ∗OP2(1)) = H0(OP2(1)). Indeed, a morphism as in 1′) or 2′) satisfies

ϕ∗OX
= OP2 ⊕OP2(−2) ⊕OP2(−2) ⊕OP2(−4),

hence the equality follows from pushing down ϕ∗OP2(1) to W and computing global
sections there. �
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We further describe the Galois covers appearing in Theorem 4.1:

Corollary 4.2. Let W be linear P2 and let X
ϕ−→ W be a Galois canonical cover

of degree 4. If the Galois group of ϕ is Z4, then X is singular and the mildest
possible set of singularities on X consists of 8 points of type A1.

Proof. Just observe that X1
p1−→ W is branched along a quartic D2 of P2 and

X
p2−→ X1 is branched along the ramification of p1 and p∗1D1, where D1 is a conic

of P2. If D1 and D2 are both smooth and meet transversaly, then X1 is smooth
and the branch locus of p2 has 8 singular points of type A1, so X is smooth except
at 8 points, which are singularities of type A1. �

We end the section by remarking the existence of examples of covers like those
appearing in Theorem 4.1:

Proposition 4.3. Let W be linear P2.

(1) There exist canonical covers X
ϕ−→ W with Galois group Z4 (that is, covers

as in Theorem 4.1 (1)) with 8 singularities of type A1 as only singularities.
(2) There exist canonical covers X

ϕ−→ W with Galois group Z2 × Z2 (that is,
covers as in Theorem 4.1 (2)) with X smooth.

Proof. We first deal with (1). By the converse part in Theorem 4.1 and following
the notation and arguments of the proof of Corollary 4.2, it suffices to choose a
smooth quartic as D1 and a smooth conic as D2, meeting transversally. This is
possible by Bertini. Analogously, for (2) it suffices to pick two smooth quartics,
meeting transversally, as branch divisors. Note that, in both cases, one can con-
struct examples of X with worse singularities by allowing D1 + D2 to have worse
singularities. �

5. Bidouble covers of rational normal scrolls

In the next two sections we proceed to classify quadruple Galois canonical covers
of smooth rational normal scrolls. We start by those with Galois group Z2 × Z2.
Having in account Corollary 3.2, we already know that they are the fiber product
of two double covers. Thus to complete their description we will find out what are
the branch loci of the double covers. We start with the case where X is regular:

Theorem 5.1. Let W = S(m − e, m) be a smooth rational normal scroll. If X is
regular and X

ϕ−→ W is a Galois canonical cover with Galois group Z2 × Z2, then
X is the fiber product over W of two double covers of X1

p1−→ W and X2
p2−→ W

and ϕ is the natural map from the fiber product to W . Let the branch divisors D2,
D1 of p1, p2 be linearly equivalent to 2a2C0 + 2b2f and 2a1C0 + 2b1f , respectively.
Then 0 ≤ e ≤ 2, m ≥ e + 1, a1 = 1, a2 = 2, b1 = m + 1 and b2 = e + 1.

Conversely, let W = S(m, m − e) be such that 0 ≤ e ≤ 2 and m ≥ e + 1 and
let X

ϕ−→ W be the natural map to W from the fiber product over W of two flat
double covers p1 and p2 with branch divisors as described above. Then X is regular
and X

ϕ−→ W is a Galois canonical cover with Galois group Z2 × Z2.

Proof. Since X is regular, Proposition 2.4 (3) yields

ϕ∗OX
= O

W
⊕O

W
(−C0 − (m + 1)f)
⊕O

W
(−2C0 − (e + 1)f) ⊕O

W
(−3C0 − (m + e + 2)f).
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Then Remark 3.1 and Corollary 3.2 tell us that X is the fiber product over W

of two double covers of X1
p1−→ W and X2

p2−→ W with trace zero modules L∗
1 =

O
W

(−2C0− (e+1)f) and L∗
2 = O

W
(−C0− (m+1)f), respectively, or equivalently,

branched along divisors D2 ∼ 4C0+2(e+1)f and D1 ∼ 2C0+2(m+1)f , respectively.
Thus a1 = 1, a2 = 2, b1 = m+1 and b2 = e+1. Recall that W is isomorphic to the
Hirzebruch surface Fe. Since W is smooth, m ≥ e + 1, hence the only thing left to
prove is e ≤ 2. The covers p1 and p2 fit in the commutative diagram

X

p′
2

��

p′
1 �� X2

p2

��
X1

p1 �� W

where p′1 and p′2 are also double covers. Moreover the branch divisor of p′1 is p∗2D2.
Suppose that e ≥ 3. Then, since D2 is linearly equivalent to 4C0 + (2e + 2)f , D2

has 2C0 as a fixed component. Then the branch divisor of p′1 is non-reduced, so X
is non-normal and we get a contradiction. Therefore e = 0, 1 or 2.

To prove the converse assume now that X
ϕ−→ W is the natural map from the

fiber product over a smooth scroll W = S(m, m−e) of two double covers p1 and p2

of W , branched, respectively, along divisors D2 linearly equivalent to 2a2C0 +2b2f
and D1 linearly equivalent to 2a1C0 + 2b1f . Assume in addition that 0 ≤ e ≤ 2,
a1 = 1, a2 = 2, b1 = m + 1 and b2 = e + 1. Then it is clear that ϕ is a Galois cover
with Galois group Z2 × Z2 and

ϕ∗OX
= O

W
⊕O

W
(−a1C0 − b1f)
⊕O

W
(−a2C0 − b2f) ⊕O

W
(−(a1 + a2)C0 − (b1 + b2)f).

A standard computation shows that none of the four direct summands of p∗OX

have intermediate cohomology, hence H1(O
X

) = 0. On the other hand if L2 =
O

W
(a1C0+b1f) and L1 = O

W
(a2C0+b2f), then L1⊗L2 = O

W
(3C0+(m+e+2)f) =

ω∗
W

(1). Then, by the ramification formula ωX = ϕ∗OW (1) so X is a surface of
general type whose canonical bundle is base-point-free. The only thing left to be
shown is that X

ϕ−→ W is the canonical morphism of X. For that it is enough to
see that H0(OW (1)) = H0(ωX ). But

H0(ω
X

) = H0(ϕ∗O
W

(C0 + mf))

= H0(O
W

(C0 + mf)) ⊕ H0(O
W

((1 − a1)C0 + (m − b1)f))

⊕ H0(O
W

((1 − a2)C0 + (m − b2)f))

⊕ H0(O
W

(1 − a1 − a2)C0 + (m − b1 − b2)f).

Now, because of the restrictions on a1, a2, b1 and b2, H0(O
W

((1−a1)C0+(m−b1)f)),
H0(OW ((1 − a2)C0 + (m − b2)f)) and H0(OW (1 − a1 − a2)C0 + (m − b1 − b2)f)
vanish. �

Now we go on to classify Galois quadruple covers with group Z2 × Z2 when X
is irregular:

Theorem 5.2. Let W be a smooth rational normal scroll S(m − e, m). If X is
irregular and X

ϕ−→ W is a Galois canonical cover with Galois group Z2×Z2, then
X is the fiber product over W of two double covers of X1

p1−→ W and X2
p2−→ W
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and ϕ is the natural map from the fiber product to W . Let the branch divisors D2,
D1 of p1, p2 be linearly equivalent to 2a2C0 + 2b2f and 2a1C0 + 2b1f , respectively.
Then e = 0, m ≥ 1 and one of the following happens:

(1) a1 = 0, a2 = 3, b1 = m + 1, b2 = 1.
(2) a1 = 0, a2 = 3, b1 = m + 2, b2 = 0.
(3) a1 = 1, a2 = 2, b1 = m + 2, b2 = 0.

In addition, in case (1), q(X) = m; in case (2), q(X) = m + 3; and in case (3),
q(X) = 1.

Conversely, let X
ϕ−→ W be the natural map to W = S(m, m) from the fiber

product over W of two flat double covers p1 and p2 with branch divisors satisfying
(1), (2) or (3) above. Then X is irregular and X

ϕ−→ W is a Galois canonical
cover with Galois group Z2 × Z2.

Proof. From Proposition 2.1 and Corollary 3.2 it follows that X is the fiber product
of two double covers branched along divisors

D2 ∼ 2(a2C0 + b2f) and D1 ∼ 2(a1C0 + b1f),

respectively, that

ϕ∗OX = OW ⊕OW (−a1C0 − b1f)
⊕ O

W
(−a2C0 − b2f) ⊕O

W
(−(a1 + a2)C0 − (b1 + b2)f)

and ωW (−1) = OW (−(a1 + a2)C0 − (b1 + b2)f). Since ωW = OW (−2C0 − (e+2)f),
we obtain

a1 + a2 = 3,

b1 + b2 = m + e + 2.(5.2.1)

On the other hand since Di is effective and linearly equivalent to 2(aiC0+bif), then
ai, bi ≥ 0. We set a1 = 0, 1 (in which case, a2 = 3, 2). Since ϕ is induced by the
complete linear series of ϕ∗OW (C0+mf), then H0(OW ((1−a1)C0+(m−b1)f)) = 0,
hence b1 ≥ m+1, and from (5.2.1), b2 ≤ e+1. Since both b1 and b2 are non-negative,
m + 1 ≤ b1 ≤ m + e + 2 and 0 ≤ b2 ≤ e + 1.

Now assume a1 = 0. Then D2 is linearly equivalent to 6C0 + 2b2f . Assume also
that e ≥ 1. Then 2C0 is a fixed component of D2, therefore by the argument made
in the proof of Theorem 5.1, X would be non-normal, hence, if a1 = 0, then e = 0.
Then, we have two possibilities: first, b1 = m+1 and b2 = 1, and second, b1 = m+2
and b2 = 0. In the first case, q(X) = m. In the second case, q(X) = m + 3.

Now assume a1 = 1. Then D2 is linearly equivalent to 4C0 + 2b2f , and as
we argued in the proof of Theorem 5.1, if e ≥ 3, X would be non-normal, hence
0 ≤ e ≤ 2. Moreover, if b2 < 3e

2 , D2 would have 2C0 as a fixed component and
X would be non-normal, hence b2 ≥ 3e

2 . Recall also that b2 ≤ e + 1. Let us now
assume that b2 = e + 1. Then b1 = m + 1 and in that case

ϕ∗OX
= O

W
⊕O

W
(−C0 − (m + 1)f)

⊕O
W

(−2C0 − (e + 1)f) ⊕O
W

(−3C0 − (m + e + 2)f) .

But then H1(O
W

), H1(O
W

(−C0 − (m + 1)f)), H1(O
W

(−2C0 − (e + 1)f)) and
H1(O

W
(−3C0 − (m + e + 2)f)) all vanish, hence X would be regular. Therefore

3e
2 ≤ b2 ≤ e. This implies that e = 0 and b2 = 0, in which case b1 = m + 2. Then
q(X) = 1. With this we prove that W = S(m, m) and that the only possibilities
for the ais, bis are (1), (2) and (3).
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To prove the converse, assume now that X
ϕ−→ W is the fiber product over W of

two double covers p1 and p2 of W , branched, respectively, along divisors D2 linearly
equivalent to 2a2C0 + 2b2f and D1 linearly equivalent to 2a1C0 + 2b1f satisfying
one of the cases (1), (2) or (3). Then it is clear that ϕ is a Galois cover with Galois
group Z2 × Z2, and

ϕ∗OX = OW ⊕OW (−a1C0 − b1f)
⊕OW (−a2C0 − b2f) ⊕OW (−(a1 + a2)C0 − (b1 + b2)f)

with a1, a2, b1, b2 satisfying (1), (2) or (3). Computing the cohomology of the four
direct summands of ϕ∗OX in each case shows that X is always irregular. On the
other hand, ω

X
= ϕ∗O

W
(1) by the ramification formula and, in particular, ω

X
is

base-point-free and X is a surface of general type. Finally one easily sees that
X

ϕ−→ W is the canonical morphism of X by showing that H0(OW (1)) = H0(ωX )
as in the proof of Theorem 5.1 �

Remark 5.3. The description of D1 and D2 yields that, in case (2) of Theorem 5.2,
X is actually the product of a curve of genus m + 1 and a curve of genus 3. This
type of surface appears in the examples constructed by Beauville in [Be]. In the
cases described in Theorem 5.2 (1), Theorem 5.2 (3) and Theorem 6.2, there is also
a simpler description for X: it can be seen as a double cover, branched along a
suitable divisor, of the product of C × P1, where C is a curve of genus m or 1,
respectively.

We end the section showing the existence of canonical covers such as the ones
classified in Theorems 5.1, and 5.2:

Proposition 5.4. There exist families of canonical Galois quadruple covers X
ϕ−→

W as in Theorem 5.1 and Theorem 5.2 (1), (2) and (3) with X smooth.

Proof. Families satisfying Theorem 5.1 for W isomorphic to F0 and F1 have been
constructed in [GP2, Examples 3.4 and 3.5] (see also [Pe] for an example of a
bidouble cover of P1 × P1). To construct the remaining examples we argue as in
Proposition 4.3. By the converse part of Theorems 5.1, and 5.2 we only need to
construct the fiber product of two double covers X1

p1−→ W and X2
p2−→ W branched

along suitable divisors D2 and D1 satisfying the conditions in the statement of
Theorems 5.1 and 5.2. Precisely if we choose D1 and D2 smooth and meeting
transversally, X will be smooth. This can be achieved using Bertini once we study
how the divisors D1 and D2 are in each case. Indeed, if we are in the situation
of Theorem 5.1 when W is isomorphic to F2, then D1 ∼ 2C0 + 2(m + 1)f is very
ample and D2, since it is linearly equivalent to 4C0 + 6f , is of the form C0 + D′

2,
with D′

2 · C0 = 0 and D′
2 base-point-free.

In the cases of Theorem 5.2 (1), (2) and (3) recall that W is isomorphic to F0.
In the case of Theorem 5.2 (1) D1 ∼ 2(m + 1)f , hence it can be chosen as the
union of 2(m+1) distinct lines in one of the two fibrations of F0, and D2 is linearly
equivalent to 6C0 + 2f , which is very ample.

In the case of Theorem 5.2 (3), D1 ∼ 2C0+2(m+2)f is very ample and D2 ∼ 4C0

can be chosen as the union of 4 distinct lines of one of the fibrations of F0. Finally,
in the case of Theorem 5.2 (2), D1 and D2 can both be taken as the union of distinct
lines. Note that one can construct X having singularities if D1 + D2 is allowed to
have worse singularities. �
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6. Cyclic covers of rational normal scrolls

In this section we study canonical Galois covers, with group Z4, of rational
normal scrolls. We again split the cases X regular and X irregular. One of the
facts we prove is that these covers are never simple cyclic, as in the case of P2. As
we will see in Section 7, there are deeper reasons for this. Another interesting fact
we see is that these covers are always singular, having at best singularities of type
A1.

Theorem 6.1. Let X
ϕ−→ W be a Galois canonical cover of degree 4 and Galois

group Z4 with X regular and let W = S(m − e, m) be a smooth rational normal
scroll. Then ϕ is the composition of two flat double covers X1

p1−→ W and X
p2−→ X1

which are as follows:
(1) The cover p1 is branched along a divisor D2 on W .
(2) The cover p2 is branched along the ramification of p1 and p∗1D1 and has

trace zero module p∗1OY (−1
2D1 − 1

4D2), where D1 is a divisor on W .
(3) The scroll W = S(m − e, m), with 0 ≤ e ≤ 2 and m ≥ e + 1, and the

divisors D1 ∼ (2m − e + 1)f , D2 ∼ 4C0 + (2e + 2)f .

Conversely, let X
ϕ−→ W be the composition of two flat double covers X1

p1−→ W

and X
p2−→ X1 as described above; then ϕ is a Galois canonical cover of W with

Galois group Z4 and X is regular.

Proof. Corollary 3.2 says that ϕ is the composition of two double covers X1
p1−→ W ,

branched along a divisor D2, and X
p2−→ X1, branched along the ramification of p1

and p∗1D1, and, according to Remark 3.1,

ϕ∗OX = OW ⊕ L∗
1 ⊕ L∗

2 ⊕ L∗
3 ,

where L1 ⊗ L2 = L3. Moreover,

L3 = ω∗
W

(1), L⊗2
1 = L2 ⊗O

W
(D1), L⊗2

2 = O
W

(D2),

p∗1L
∗
1 is the trace zero module of p2 and L∗

2 is the trace zero module of p1. From
this we obtain that the trace zero module of p2 is p∗1L

∗
1 = p∗1OY (−1

2D1 − 1
4D2).

Now we show that W, D1 and D2 satisfy (3). Recall that W is isomorphic to Fe.
Since X is regular we can apply Proposition 2.4 (3). Then, since L3 = ω∗

W
(1) we

have either

L∗
1 = OW (−C0 − (m + 1)f), L∗

2 = OW (−2C0 − (e + 1)f)

and L∗
3 = OW (−3C0 − (m + e + 2)f)

or

L∗
2 = O

W
(−C0 − (m + 1)f), L∗

1 = O
W

(−2C0 − (e + 1)f)

and L∗
3 = O

W
(−3C0 − (m + e + 2)f).

Case 1: L∗
1 = OW (−C0 − (m + 1)f), L∗

2 = OW (−2C0 − (e + 1)f). From the
previous description, ϕ is the composition of X1

p1−→ W , where p1 is a double cover
branched along a divisor D2 linearly equivalent to 4C0 + (2e + 2)f , and X

p2−→ X1,
where p2 is a double cover branched along the ramification of p1 and p∗1D1, where
D1 is linearly equivalent to (2m − e + 1)f . Recall that X is normal, hence the
components of D1 + D2 have multiplicity 1 and in particular, the fixed part of
|4C0 + (2e + 2)f | contains C0 with multiplicity at most 1. Thus e ≤ 2.
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Case 2: L∗
2 = O

W
(−C0− (m+1)f), L∗

1 = O
W

(−2C0− (e+1)f). Again from the
description above, ϕ is the composition of X1

p1−→ W , where p1 is a double cover
branched along a divisor D2 linearly equivalent to 2C0 +(2m+2)f , and X

p2−→ X1,
where p2 is a double cover branched along the ramification of p1 and p∗1D1, where
D1 is linearly equivalent to 3C0 + (2e − m + 1)f . Recall that X is normal, hence
the components of D1 + D2 have multiplicity 1 and, in particular, the fixed part of
|3C0 + (2e − m + 1)f | contains C0 with multiplicity at most 1. Thus m ≤ 1, and
in fact m = 1 and e = 0. So finally, W = F0, D1 is linearly equivalent to 3C0 and
D2 is linearly equivalent to 2C0 +4f . After interchanging C0 and f we see that D1

and D2 satisfy (3) when we set e = 0 and m = 1.
Now we prove the converse. It is clear that the morphism ϕ is a Galois cover

with group Z4. The ramification formula tells us that

ω
X

= ϕ∗(ω
W

⊗O
W

(3C0 + (m + e + 2)f)) = ϕ∗O
W

(1),

so X is a surface of general type with a base-point-free canonical bundle. It is also
clear, in both (1) and (2), that

ϕ∗OX = OW ⊕OW (−C0 − (m + 1)f)
⊕OW (−2C0 − (e + 1)f) ⊕OW (−3C0 − (m + e + 2)f).(6.1.1)

Then to see that ϕ is the canonical morphism of X we compare H0(ω
X

) =
H0(ϕ∗O

W
(1)) and H0(O

W
(1)). The group H0(ϕ∗O

W
(1)) can be computed push-

ing ϕ∗OW (1) down to W and using (6.1.1), and one sees at once that H0(ωX ) =
H0(OW (1)). Finally we see that H1(OX ) = 0 also by pushing down to W and
using (6.1.1). �

Theorem 6.2. Let X
ϕ−→ W be a canonical Galois cover of degree 4 and Galois

group Z4 with X irregular and let W = S(m − e, m) be a smooth rational normal
scroll. Then the irregularity of X is q(X) = 1 and W is isomorphic to F0. More-
over, ϕ is the composition of two flat double covers X1

p1−→ W and X
p2−→ X1 which

are as follows:

(1) The cover p1 is branched along a divisor D2 on W .
(2) The cover p2 is branched along the ramification of p1 and p∗1D1 and has

trace zero module p∗1OY (−1
2D1 − 1

4D2), where D1 is a divisor on W .
(3) The scroll W = S(m, m), with m ≥ 1, and the divisors D1 ∼ (2m + 4)f

and D2 ∼ 4C0.

Conversely, if X
ϕ−→ W is the composition of two double covers X1

p1−→ W and
X

p2−→ X1 as described above, then ϕ is a canonical Galois cover of W with Galois
group Z4 and X is irregular.

Proof. Using Remark 3.1 and Corollary 3.2 as in the proof of Theorem 6.1 we
conclude that ϕ is the composition of two double covers. The first one is X1

p1−→ W ,
is branched along a divisor D2 and has trace zero module L∗

2. The second cover
is X

p2−→ X1, is branched along the ramification of p1 and p∗1D1 and has trace
zero module p∗1L1. Then L⊗2

1 = L2 ⊗ OW (D1), L⊗2
2 = OW (D2) and moreover,

L1 ⊗ L2 = L3 = ω∗
W

(1). Recall that W = Fe and let L1 = O
W

(a1C0 + b1f) and
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L2 = O
W

(a2C0 + b2f). Then we have

a1 + a2 = 3,

b1 + b2 = m + e + 2.

Since L⊗2
1 ⊗ L∗

2 = O
W

(D1) and L⊗2
2 = O

W
(D2) are effective, then a2 ≤ 2a1,

b2 ≤ 2b1 and a2, b2 ≥ 0. Then a1, b1 ≥ 0 also. Moreover, a1, b1 ≥ 1, otherwise we
will contradict a1 + a2 = 3 or b1 + b2 = m + e + 2. We see that a1 cannot be 2. If
a1 = 2, then D1 ∼ 3C0 + (2b1 − b2)f , D2 ∼ 2C0 + 2b2f , L1 = O

W
(2C0 + b1f) and

L2 = O
W

(C0 + b2f). Since X is irregular, and H1(O
W

) = H1(L∗
2) = H1(L∗

3) = 0,
then H1(L∗

1) 	= 0. This implies b1 ≤ e. Then b1 +b2 = m+e+2 implies b2 ≥ m+2.
On the other hand, since X is normal, C0 has at most multiplicity 1 in the fixed
part of |3C0 + (2b1 − b2)f |, and this implies 2b1 − b2 − 2e ≥ 0. Then we have
2e − (m + 2) − 2e ≥ 0, which is a contradiction. Then the only possibilities are
a1 = 1 or a1 = 3.

Case 1: a1 = 1. Then a2 = 2 and X irregular implies b2 ≤ e, since L∗
2 has to

be special. The fact that X is normal implies −3e + 2b2 ≥ 0, since D2 cannot have
2C0 as a fixed component. Then b2 = e = 0, and, summarizing, e = 0, a1 = 1, a2 =
2, b1 = m + 2, and b2 = 0. This implies D1 ∼ (2m + 4)f and D2 ∼ 4C0.

Case 2: a1 = 3. Then D1 ∼ 6C0 + (2b1 − b2)f , and since X is normal, C0 has
at most multiplicity 1 in the fixed part of |D1|, hence 2b1 − b2 − 5e ≥ 0. Now since
H0(ϕ∗O

W
(C0 +mf)) = H0(O

W
(C0 +mf)), we have that b2 > m, hence b1 < e+2.

Then we get 2e + 4 − m − 5e = −3e − m + 4 > 0. But m ≥ e + 1, so this gives
−4e + 3 > 0, hence e = 0. In this case, b1 = 1 and m ≥ 1. Then b2 = m + 1 ≥ 2,
and since D1 is effective, b2 = 2 and m = 1. Summarizing, e = 0, m = 1, a1 = 3,
a2 = 0, b1 = 1 and b2 = 2. Then D1 ∼ 6C0 and D2 ∼ 4f . After interchanging C0

and f we see that D1 and D2 satisfy (3) when we set m = 1.
Finally the irregularity of X is h1(OX ) = h1(ϕ∗OX ). We observe that the

computation of a1, a2, b1 and b2 yields that ϕ∗OX
is

O
W

⊕O
W

(−C0 − (m + 2)f) ⊕O
W

(−2C0) ⊕O
W

(−3C0 − (m + 2)f) or
O

W
⊕O

W
(−3C0 − f) ⊕O

W
(−2f) ⊕O

W
(−3C0 − 3f)(6.2.1)

so h1(O
X

) = h1(O
W

(−2C0)) or h1(O
X

) = h1(O
W

(−2f)), and in both cases, are
equal to 1.

We now prove the converse. It is clear that ϕ is Galois with Galois group Z4.
Now if L∗

2 is the trace zero module of p1 and p∗1L
∗
1 is the trace zero module of

p2, then L1 ⊗ L2 = O
W

( 1
2D1 + 3

4D2). Then if D1 and D2 are as in (1) or (2),
L1 ⊗L2 = ω∗

W
(1). Then the ramification formula also implies that ω

X
= ϕ∗O

W
(1),

therefore X is a surface of general type with a base-point-free canonical bundle.
Finally it is also clear that ϕ∗OX

is as in (6.2.1), so arguing as in the end of the
proof of Theorem 6.1 we see that ϕ is the canonical morphism and X is irregular. �

Corollary 6.3. Let W be a smooth rational scroll of degree r and let X
ϕ−→ W be

a Galois canonical cover with Galois group Z4 (i.e., a cover like the ones classified
in Theorems 6.1 and 6.2). Then X is singular. Moreover,

(1) if X is regular, then the mildest possible set of singularities on X consists
of 4(r + 1) singular points of type A1 and

(2) if X is irregular the singularities of X are exactly 4(r + 4) points of type
A1.
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Proof. The proof is similar to the proof of Corollary 4.2. In this occasion, D1 ·D2 =
4(r + 1) if X is regular (see Theorem 6.1 (1) and (2)) and D1 · D2 = 4(r + 4) if X
is irregular (see Theorem 6.2 (1) and (2)). The surface X has the mildest possible
set of singularities if X1 is smooth and the branch locus of X

p2−→ X1 has the
mildest possible set of singularities. This happens if D1 and D2 are smooth and
meet tranversally. In this case the branch locus of p2 has only singularities of type
A1, and so does X. Now, if X is irregular, Theorem 6.2 together with the fact that
X is normal implies that D1 is a union of distinct lines of one of the fibrations of
P1 × P1 and D2 is a union of distinct lines of the other fibration, so D1 and D2

are smooth and meet transversally in any case. �

Proposition 6.4. There exist families of quadruple Galois canonical covers as
in Theorems 6.1 and 6.2 which have singularities as mild as possible (see Corol-
lary 6.3).

Proof. According to the converse part in Theorems 6.1 and 6.2 we just have to
construct a composition of double covers X

p2−→ X1 and X1
p1−→ W branched

along suitable divisors. Let D1 and D2 be as in Theorems 6.1 and 6.2. Using
the same arguments of Corollary 4.2 and Proposition 4.3, in order for X to have
singularities as mild as possible and, in any case, only A1 singularities, it suffices
to choose D1 and D2 smooth and meeting transversally. We see that such a choice
is indeed possible. For a cover as in Theorem 6.1 (1), D1 ∼ (2m − e + 1)f and
D2 ∼ 4C0 + (2e + 2)f . Then we choose D1 as the union of 2m − e + 1 different
fibers. The divisor 4C0 + (2e + 2)f is base-point-free if e = 0, 1 and if e = 2 is
(3C0 + 6f) + C0, with 3C0 + 6f base-point-free and (3C0 + 6f) · C0 = 0. Thus by
Bertini D1 and D2 can be chosen smooth and intersecting transversally. Finally,
in Theorem 6.2, D1 and D2 are the union of distinct smooth lines belonging to the
two fibrations of the ruled surface F0. Note that, if X is regular, one can construct
X with worse singularities allowing D1 + D2 to have worse singularities. �

7. Non-existence of simple cyclic covers

In Sections 4, 5 and 6, we have seen that quadruple cyclic canonical covers of
smooth surfaces of minimal degree are never simple cyclic. This situation does not
only hold for covers of degree 4, but is more general. For instance, if X is regular
and W is a surface of minimal degree, whether smooth or singular, the authors
proved in [GP2] the non-existence of simple cyclic canonical covers of degree larger
than 3.

In the next theorem we prove the non-existence of simple cyclic canonical covers
of degree larger than or equal to 3 when X is an arbitrary surface of general type
and W is a smooth rational normal scroll.

Theorem 7.1. Let W be a smooth rational normal scroll, and let X
ϕ−→ W be a

canonical cover of degree n. If X
ϕ−→ W is a Galois cover and n ≥ 3, then ϕ is

not simple cyclic.

Proof. Let us assume ϕ is simple cyclic. Then

ϕ∗OX = OW ⊕ L−1 ⊕ · · · ⊕ L−n+1 .

Recall that W is isomorphic to Fe. On the one hand

ω
X

= ϕ∗O
W

(1) = ϕ∗O
W

(C0 + mf),
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with m ≥ e + 1. On the other hand,

ω
X

= ϕ∗(ω
W

⊗ L−n+1) = ϕ∗(O
W

(−2C0 − (e + 2)f) ⊗ L−n+1).

Thus ϕ∗L−n+1 = ϕ∗OW (3C0 + (m + e + 2)f), so that L−n+1 and
OW (3C0 + (m + e + 2)f) are numerically equivalent in W . Since W is a Hirze-
bruch surface, L−n+1 = O

W
(3C0 + (m + e + 2)f), and 3 and m + e + 2 are

both multiple of n − 1. Since n ≥ 3 by assumption, this makes n = 4. Then,
Theorems 6.1 and 6.2 tell that ϕ is not simple cyclic. This can also be seen di-
rectly as follows: since ϕ is induced by the complete series of OW (C0 + mf), then
O

W
((m − 1

3 (m + e + 2))f) should be non-effective; this together with m ≥ e + 1
implies e < 0, a contradiction. �

After Theorem 7.1 we now summarize the status of the existence of simple cyclic
canonical covers in the following theorem. To see the scope of the result, we remark
that Theorem 7.2 implies the non-existence of Galois canonical covers of prime
degree p of smooth scrolls, P2 or the Veronese surface, if p ≥ 5. If in addition X is
regular, the next theorem assures that, if p ≥ 5, then there are no Galois canonical
covers of prime degree p of any surface of minimal degree.

Theorem 7.2. Let W be a surface of minimal degree, not necessarily smooth, and
let X

ϕ−→ W be a Galois canonical cover. If X is regular or W is smooth, and if ϕ
is simple cyclic, then deg ϕ ≤ 3.

Proof. If X is regular, the result follows from [GP2, Corollary 3.2]. So we will
assume that X is irregular and W smooth. The surface W cannot be isomorphic to
P2, for if it were, since ϕ is simple cyclic, ϕ∗OX

would split completely, and so X
would be regular. Thus W is a smooth rational normal scroll. Then we conclude
that degϕ ≤ 3 by applying Theorem 7.1. �

Corollary 7.3. Let W be a surface of minimal degree, not necessarily smooth, and
let X

ϕ−→ W be a Galois canonical cover. If X is regular or W is smooth and ϕ is
a Galois canonical cover of prime degree, then deg ϕ ≤ 3.

Proof. If degϕ = p is prime, then G is cyclic of order p, and the stabilizer of any
x ∈ X is either {id} or G, so ϕ is simple cyclic. �

These results hint towards a positive solution to the following very interesting
question regarding Galois canonical covers of prime degree larger than 3:

Question 7.4. If X
ϕ−→ W is a Galois canonical cover of prime degree, is deg

ϕ ≤ 3?
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