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Summary

 

Usually, the calibration process for three-dimensional micro-
scopy involves the use of  a reference flat surface. The random
fluctuations of  the topographic image for this reference sur-
face are used for determining the uncertainty of  the micro-
scope. When the sample material or the measuring conditions
of  the microscope are modified (such as the objective used in a
confocal microscope, or the tip in an atomic force microscope),
the measuring conditions vary and thus a new calibration is
required. In this work, a technique based on spatial statistics
methods (more specifically, the variogram function) is proposed
to determine accurately the standard deviation for three-
dimensional microscopy that does not require a reference flat
surface and therefore eliminates the need for a previous cali-
bration process of  this parameter.
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Introduction

 

In three-dimensional (3D) microscopy, such as scanning
probe microscopy (SPM) and confocal microscopy (CM), the
final result is a topographic image 

 

Z
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x

 

, 

 

y

 

), which, as with every
measurement process, is affected by random fluctuations,
which can preclude a faithful representation of  the objects,
when microscopy is used for visualizing (Conan 

 

et al

 

., 1992).
Thus, the image is usually filtered, using a number of  techniques
such as linear, median and adaptive filtering (Pratt, 1978).
The topographic images of  3D microscopy are frequently used
to calculate dimensional parameters of  the object (for example,
the radius of  curvature, the height of  a step, etc.) and therefore

the uncertainty of  the heights needs to be determined for
calculating the standard error of  the dimensional parameters.

For a quantity without spatial dependence 

 

Q

 

, the usual
technique for determining the standard error is to perform a
calibration first, obtaining a number of  measurements under
the same conditions, and calculating the standard error (

 

u

 

)
from the standard deviation (

 

s

 

) (ISO, 1995). When several
measurements (
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i
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 = 1, … , 

 

N

 

) are performed, a certain ran-
domness around the correct value is expected (random vari-
able), and the most accurate prediction of  

 

Q

 

 is the arithmetic mean
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�

 

•

 

�

 

i

 

 means average with respect to 

 

i

 

. The dispersion
of  the magnitude is determined by the experimental variance

 

s

 

2

 

 (ISO, 1995). The square root of  this quantity is the well
known experimental standard deviation, 

 

s

 

(

 

Q

 

), standard devi-
ation for short (Bevington, 1969), and the standard error is
obtained from the standard deviation of  a random variable by

.
When the measured quantity presents a spatial depend-

ence, as in topographical images, the result of  the measure-
ment consists of  a number of  data at different locations, 
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where 
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 = 1, … , 
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 = 1, … , 
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 represent the position. Normally
in imaging and microscopy, data are equidistantly distributed
and then 
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), where 

 

∆

 

x

 

 and 
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 are the distances
between consecutive data in the 

 

x

 

 and 

 

y

 

 axis, respectively. To
determine the standard deviation, several (

 

K

 

) 3D images should
be obtained, being the experimental variance at each position

(1)

where 

 

x

 

i

 

,

 

j

 

 are vectors and 

 

k

 

 stands for each image.
A more common approach to determine the standard

deviation for 3D microscopy is using a reference flat surface, as
only one image is required. The variations in the experimental
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data are assumed to be due only to random fluctuations, not to
variations in the topography. In this case, the variance is

(2)

where

The variations in the height of  the flat surface should be much
lower than the standard deviation obtained, because small
variations in the topography may increase the calculated
standard deviation considerably.

The measuring conditions of  the microscopes may vary
with time, making a periodical recalibration necessary. A
calibration of  the standard deviation is also required when the
device is modified, for example, changing the objective in CM,
or the probe in AFM. In addition, the measuring conditions in
3D microscopy may depend on the sample to be measured.
For example, in AFM, the interaction forces depend on the
material, and in CM the quality in the reconstruction of  the
topography is influenced by the intensity of  the reflected light,
which also depends on the material of  the sample. Therefore,
the material of  the reference flat surface and that of  the sample
should be the same. If  not, the standard deviation computed
for the flat surface could be not suitable for the sample. This
would mean having one reference surface for each material to
be measured.

In this work, a technique, based on spatial statistics, is
proposed in order to determine the standard deviation for a 3D
microscope with only one non-uniform topographical image.
As a consequence, a previous calibration of  this parameter is
not required, as it can be easily determined for each image.
The technique has been applied to 3D images obtained with
AFM and CM.

 

Estimation of  the standard deviation using the variogram

 

To determine the standard deviation using a non-flat surface,
the spatial correlation of  the topography will be used. For this,
the variogram function (Cressie, 1991) has been used, which
is defined as

(3)

where 
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 is a vector, and 
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 means averaging with respect to 
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.
Let us obtain 
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 images of  the same topography, regularly sam-
pled at locations 
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 axis,
respectively (Fig. 1). Then the value of  the pixel (
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, 

 

j

 

) for the
image 

 

k

 

 is denoted by 
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k
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). An estimation of  the variogram
for such case is

(4)
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sum in Eq. (4) is made over 
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. As shown in Sanchez-
Brea & Bernabeu (2002), the value of  the semivariogram at
the origin 

 

γ
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) is the average of  the variances at all positions 
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(5)

where 
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, and 
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the variance of  the heights 

 

Z

 

 at each location 
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 and it is defined
as in Eq. (1). Therefore, when 

 

s

 

2

 

[

 

Z(xi,j)] is assumed to be inde-
pendent on the position the standard deviation of  the heights Z at
a given location xi,j due to the random fluctuations is given by

(6)

Our interest is to determine the standard deviation with
only one topographical image (K = 1). Then, γ(0) cannot be
computed as there are not pairs [Zk(xi,j), Ζk′(xi′, j′)] and Eq. (1)
is not well defined. This inconvenience can be overcome by
extrapolating the semivariogram

(7)

This extrapolation may be performed in several ways
(Christiensen, 1985; Cressie, 1991), such as a minimal squares

fitting. In most samples measured, the first data of   fits
well to a straight line, being then possible to perform a linear
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Fig. 1. Sketch representing the different topographical images obtained
and the pixels of  each image.
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extrapolation for determining sγ. This procedure is not very
time consuming and the error when computing sγ can be ana-
lytically obtained, resulting in

(8)

where b is the slope of  the fitting and ∆h is the distance between
two adjacent points of  the discrete variogram. That means
that the error in the estimation of  sγ decreases with high mag-
nifications and using flat profiles. A quick and easy technique
for implementing the linear extrapolation is to consider only
the first two points of  the variogram (at ∆h and 2∆h). In this
case, the standard deviation is determined by

(9)

When the first data of  the variogram cannot be approximated
to a straight line, then other functions can be used for the
fitting, but then the error in the standard deviation proposed
in Eq. (8) is not valid and it has to be obtained for each case.

Application to 3D microscopy

The proposed technique has been applied to 3D images obtained
by confocal microscopy (CM) and atomic force microscopy
(AFM). A Burleigh’s ARIS 3300 atomic force microscope
(Burleigh Instruments Inc, Fishers, New York) and a Sensofar
Tech’s PL confocal imaging profiler (Sensofar Tech, Barce-
lona) have been used.

The standard calibration procedure [Eq. (2)] has been per-
formed using a 3 × 3 cm2 reference flat surface with a nominal
maximum variation in height of  10 nm. This variation is
long range and, thus, it is much lower for the measured area
(150 × 150 µm). If  it is considered that the long range varia-
tion is approximately linear with the length, the maximum
variation in height is around 0.1 nm at the measured area
(we think that it will be larger, but no more than 1 nm). Never-
theless, the reference flat surface that has been used presents
several surface defects (with a vertical size of  around 40 nm
that may contaminate the determination of  the standard
deviation (Fig. 2a).

The standard deviation calculated with the standard tech-
nique for this reference surface was s = 6.2 nm for the AFM.
This flat surface was also measured with the CM, using three
optical objectives: 20×, 50× and 100×. The results for the
standard technique were s = 11.5 nm, 6.1 nm and 2.0 nm,
respectively. As an example, in Fig. 2(b), the histogram obtained
for the case of  100× is shown.

The standard deviation for this reference flat surface has
also been computed using the variogram [Eq. (7)]. In princi-
ple, the determination of  the variogram can be performed with
the complete data set of  the image. However, the computing
time is usually prohibitive. As a consequence, the use of  a
small part of  the image, such a 2D profile, was preferred. Any

profile is valid, although there may be certain variability in the
determination of  the standard deviation. Five hundred ran-
dom profiles with a length between 50 and 400 points have
been used. The mean standard deviation computed with the

e b h  ≈ ∆ 3

s h hγ γ γ  ( )  ( )≈ −2 2∆ ∆

Fig. 2. (a) Profile of  a reference flat surface obtained with a Sensofar’s
PLµ Confocal Imaging Profiler (objective 100×). A surface defect (hole
with a depth of  10 nm) is detected. (b) Histogram of  the heights measured
for this reference flat surface. The standard deviation of  the heights s
obtained with the standard technique is 2.0 nm. (c) Histogram of  the
standard deviations sγ computed with the variogram for 500 random
profiles (objective 50×).
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variogram resulted in sγ = 10.2 nm, 5.4 nm and 1.3 nm for
the 20×, 50× and 100×, respectively, using the extrapolation
of  Eq. (9). These results are in accordance with those obtained
by the standard technique. As an example, in Fig. 2(c) the
histogram for the computation of  sγ for the 50× objective is
shown. A linear fitting to the variogram produced similar
results. The variability in the determination of  sγ was
measured using the standard deviation of  these 500 random
profiles, resulting in 1.3 nm, 1.4 nm and 0.2 nm, respectively.
For the AFM, the value of  sγ for the reference flat surface was
sγ = 5.6 nm.

The value of  sγ for the four cases (CM with three microscope
objectives and AFM) was lower to that obtained with the
standard technique. We think that it is due to the small surface
defects of  the reference flat surface, that strongly affect the
standard technique. However, the value of  sγ computed with
the variogram is not affected by these defects. This is clearly
shown when the standard deviation is computed for selected

2D profiles which do not pass over the surface defects, as the
standard deviation computed with Eq. (2) is very close to the
value obtained with Eq. (7).

The variogram technique has also been applied to non-flat
surfaces. As an example, the 3D topography of  a steel wire
with a diameter of  300 µm, obtained with the AFM is shown
in Fig. 3(a). The conditions for the microscope were the same
as those for the measurement of  the reference flat surface. The
value of  sγ for 1000 random 2D profiles with a length between
50 and 400 points has been determined. In Fig. 3(b) it is
clearly shown that √γ is approximately linear. The mean value
of  sγ for these 1000 profiles was sγ = 7.53 nm, with the stand-
ard deviation 1.9 nm. These results are in accordance to that
obtained with the flat surface. The variability is due to the
strong differences of  the profiles. As it has been mentioned
before, the best results are obtained with profiles of  flat
surfaces (profile B).

Also, several samples have been measured with CM, giving
results in accordance with those obtained with the standard
technique. As an example, a sample consisting of  a diffraction
grating with a nominal period of  40 µm and a nominal height
of  240 nm is shown in Fig. 4(a). The microscope objective was
100×. As a first step, sγ has been computed using the complete
data set resulting sγ = 2.09 nm. To see that the 2D profiles are
valid for determining sγ, 1000 random profiles with lengths
between 50 and 300 points have been used (Fig. 4b). The mean
value for these profiles resulted in sγ = 2.30 nm. The variability
in the estimation of  sγ for these 1000 samples resulted 0.5 nm.
We have also obtained sγ by means of  a linear interpolation of
the first 10 points (using the same 1000 computations of  the
former approach). The mean standard deviation computed for
these cases was sγ = 2.25 nm, with the variability for these
data being 0.3 nm.

Conclusions

In this work, a technique for estimating the standard devia-
tion in 3D microscopy by means of  spatial statistics has been
shown. This technique consists of  estimating the variogram at
the origin, which is equal to the variance of  the random fluctu-
ations. When only one image is used, the variogram at the
origin is not well defined. Thus, an extrapolation of  the vario-
gram function is required. The technique has been applied to
3D images obtained with CM and AFM. The experimental
results achieved with this new technique are in good agree-
ment to those obtained using a reference surface. In Table 1,
a comparison of  the standard technique and the variogram
technique is presented, for flat and non-flat surfaces.

Since the standard deviation can be easily computed for
each topographic image using the variogram, a previous cali-
bration, using flat reference surfaces, is not longer necessary.
Also, a better estimation of  the standard deviation is obtained
with the variogram even when reference flat surfaces are
used, since the surface defects that it may present do not effect

Fig. 3. (a) 3D topographic image of  a steel wire with a diameter of  a diameter
of  300 µm obtained with a Burleigh’s ARIS 3300 AFM. (b) Variogram for
several profiles. It is clear that √γ is approximately linear and therefore a
linear extrapolation can be used for computing sγ. Profiles A and B are
shown in (a) and are those with a highest and lowest slope. For computing
sγ, Profile B is better than Profile A, as the error in the estimation is lower.
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the calculation of  sγ, whereas the standard technique is quite
affected by such surface defects. On the other hand, our
proposed method presents a higher workload of  computations,
whereas the standard deviation according to the standard
method may be obtained with a table calculator. One draw-

back of  our method is that there is a need to know previously
the functional dependence of  the variogram at the origin. Fur-
ther tests are required to evaluate the new method in routine
applications to different objects.
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Table 1. Comparison between the standard technique, using a reference 
flat surface, and the variogram technique for computing the standard 
deviation of  the heights in 3D microscopy
 

Flat surface Non-flat surface

s sγ sγ

CM 20× 11.5 10.2 11.6
CM 50× 6.1 5.4 5.3
CM 100× 2.0 1.3 2.3
AFM 6.2 5.5 7.53




