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Abstract
Starting from a purely algebraic procedure based on the commutant of a subal-
gebra in the universal enveloping algebra of a given Lie algebra, the notion of
algebraic Hamiltonians and the constants of the motion generating a polyno-
mial symmetry algebra is proposed. The case of the special linear Lie algebra
sl(n) is discussed in detail, where an explicit basis for the commutant with
respect to the Cartan subalgebra is obtained, and the order of the polynomial
algebra is computed. It is further shown that, with an appropriate realization
of sl(n), this provides an explicit connection with the generic superintegrable
model on the (n — 1)-dimensional sphere S"~! and the related Racah algebra
R(n). In particular, we show explicitly how the models on the two-sphere and
three-sphere and the associated symmetry algebras can be obtained from the
quadratic and cubic polynomial algebras generated by the commutants defined
in the enveloping algebra of sl(3) and s[(4), respectively. The construction is
performed in the classical (or Poisson-Lie) context, where the Berezin bracket
replaces the commutator.
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1. Introduction

A lot of work has been devoted in recent years to a full characterization and structural com-
prehension of exactly solvable, integrable and superintegrable systems on various classes of
spaces, both at the classical and quantum level [1-5]. Several new connections with different
areas as nonlinear differential equations, the theory of special functions, the Painlevé tran-
scendents and algebraic structures beyond Lie algebras have emerged from this work, provid-
ing alternative techniques and tools complementary to the traditional analytical approach. In
particular, certain types of algebras have been shown to be of special interest in this con-
text, from which several criteria for the construction of (super-)integrable models have been
deduced (see e.g. [6-9]).

More recently, it was observed that quadratically superintegrable systems can be connected
with purely algebraic schemes, where the integrals of the motion are in fact associated to an
underlying Lie algebra and the corresponding universal enveloping algebra [10, 11]. Albeit
these approaches are mainly based on specific superintegrable systems realized by differential
operators, the ansatz can be extrapolated to arbitrary pairs of Lie algebras and subalgebras
without reference to a given realization [12], hence allowing us to define generically the notion
of algebraic Hamiltonians and their corresponding (algebraic) constants of the motion.

The purpose of this paper is the following. Starting from the conventional notion of a com-
mutant in the enveloping algebra of a Lie algebra s, we reformulate the problem by means
of the Lie-Poisson structure of the corresponding symmetric algebra S(s), which provides a
computationally more adequate frame. We then define the notion of algebraic Hamiltonian
with respect to a subalgebra a, and show that the commutant defines a polynomial algebra
that can be identified with the symmetry algebra of the Hamiltonian, with the constants of the
motion obtained from the elements belonging to the centralizer Cgs) (a). As an illustrating
example of the procedure, we analyze the commutant of the Cartan subalgebra b in the special
linear algebra s[(n) and obtain explicit expressions for the linearly independent elements in
the enveloping algebra. It is further shown that the polynomial algebra A, generated by these
linearly independent monomials is of order n — 1 for n > 3. For values n > 3, the polynomial
algebras A, are associated, via an appropriate realization of s[(n), with the Racah algebra R(n),
corresponding to the symmetry algebra of the generic superintegrable models on the sphere
S"! (see [13—17] and references therein). The reduction of 4, to R(n) is explicitly computed
for n = 3,4, with the general case outlined due to high dimension of the polynomial algebras.

2. The commutant of Lie subalgebras in enveloping algebras

Let s be an n-dimensional real or complex Lie algebra and ¢/ (s) be its universal enveloping
algebra. For positive integers p, we define /() (s) as the subspace generated by monomials
X{'--- X} subjected to the constrainta; +a, + - - - + a, < p, where {X;,--- , X, } is an arbitrary
basis of 5. In this context, an element P € U(s) has degree d if d = inf {k | P € U (s) }. Due
to the natural filtration in U (s), for any p,q > 0 we have

Z/{(o) (s) =C, U(,,) (E)U(q) (s) C U(,,+q) (s). 2.1

It follows in particular that any 1/, (s) is a finite-dimensional representation of s, a fact that
allows us to represent U/ (s) as a sum of finite-dimensional representations of s (see [18]).
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In terms of a given basis, the adjoint action of s on Z/(s) and on the associated symmetric
algebra S(s) is respectively given by

PEU(S)H P.X[Z:[X,‘,P]:X[P—PX[EU(S),

S oP
Plxiy ) €5(8) b Xi(P) = Chn— € S(s), 22
Xj
. . . . S i 0 e
where in particular the differential operators X; = Cl-jxka— correspond to infinitesimal gen-
Aj
erator of the one-parameter subgroup associated to the generators X; by the coadjoint
representation [19]. The symmetric algebra S (s), that we can identify with K[x,,--- ,x,] with
K = R, C, admits naturally a structure of Poisson algebra through the prescription’
OP 0Q
P,Q} = Clxi——, P,O€5S(s). 23
{P,0} l]xkaxi ox; 0 (s) (2.3)

It follows that (S (s),{, }) is a Lie algebra containing a subalgebra isomorphic to s. By means
of the symmetrization map

1
Ay, x,) = ] Z X Xi o (2.4)
o€y,

with 3, being the symmetric group of p letters, we obtain the canonical linear isomorph-
ism A : S(s) — U(s) that commutes with the adjoint action. If S?)(s) denotes the homogen-
eous polynomials of degree p, the identity ") (s) = A (S(P) (s)) induces the decomposition

U (s) =Y r_ UM (s), implying that for arbitrary P € U, (s), 0 € U, (s), the relation
[P7 Q] € u(17+q71)(5>
holds. A distinguished (Abelian) subalgebra is given by the centre of U(s)
Z(U(s)) ={P<cU(s) | [s,P] =0}, 2.5)

consisting of the invariant polynomials of s. Within the commutative frame with the Lie-
Poisson bracket, we have the centre

Z(S(s)) ={PeS(s) | {P,Q} =0, Q€ S(s)},
which is not only linearly but also algebraically isomorphic to Z(U(s)), albeit only for the

class of nilpotent Lie algebras this algebraic isomorphism coincides with A (see e.g. [21]).

Definition 1. The commutant Cy;(,)(a) of a subalgebra a C s is defined as the centralizer of a
inl(s):

Cus)(@) ={Q€U(s) [ [P,Q] =0, VPea}. (2.6)
Commutants of subalgebras can have quite a complicated structure, and no generic charac-
terization exists for arbitrary types of Lie algebras and subalgebras. However, for semisimple

or reductive Lie algebras, there are several criteria that allow their study (see e.g. [18]). In
this context, it can be ensured that the commutant Cy;(s)(a) is Noetherian and finitely gener-

ated whenever the subalgebra a is reductive in s*. We call {Py,---,P,} a (linear) basis of the
commutant Cy(s)(a) if it is spanned as vector space by the elements
P'PY?---P¥, a;€NUO, 2.7)

3 Usually called the Lie-Poisson or Berezin bracket [20].
4 This means that for any element X in a the adjoint operator is semisimple [18].
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and where the coefficients a; are subjected to some algebraic constraints. It is important to note
that these polynomials are linearly but generally not algebraically independent. The require-
ment on linear independence is necessary if the elements in Cy(s)(a) are supposed to gener-
ate a (finite-dimensional) polynomial algebra. If P, Q € Cyy(s)(a), the Jacobi identity implies
that

[a,[P, Q)] +[Q; [a, P]] + [P, [Q, 0] = 0, (2.8)

and since PQ annihilates the subalgebra a, it admits an expression of the type (2.7) and is thus
specified by at most s scalars a; (see (2.7)). In this sense, we say that the linear dimension of
the commutant is s, denoting it by dim; Cy;(s)(a) = s. As a general rule, for a maximal set of
algebraically independent polynomials that commute with a, we do not obtain a polynomial
algebra with respect to the commutator, as the algebraic dependence relations may be determ-
ined by rational non-polynomial functions, hence not belonging to the enveloping algebra, but
to its field of fractions [22].

A commutant Cy(5) (@) contains, in particular, the invariant polynomials of the subalgebra
a, in addition to the Casimir operators (whenever these exist) Cy,---,C, of 5. With respect to
the latter, the commutant Cy;(s)(a) has the structure of a free module over C[Cy,---,Cy], as
follows at once from the Schur lemma (see [18]).

Using the canonical isomorphism A allows us to translate the problem of determining the
commutant of a subalgebra a of s in the enveloping algebra U (s) to the Lie-Poisson context:
for a* C s* we define the centralizer

Cse)(0) ={Q € S(s) | {P,Q} =0, PEa}.

Elements in the latter space are obtained as (polynomial) solutions of the system of partial
differential equations

~ 0
%(0) = (6,0} = Chu 52 =0, 1 <i<m=dima, 2.9)
Xj
where {x;,---,x,} are coordinates in a dual basis of a* (see equation (2.2)). The number of

functionally independent solutions of system (2.9) is given by ryp = dims — rank(A), where
A is the m x n-matrix with entries (ngk) [23, 24]. As solutions of (2.9) are not neces-
sarily polynomials, the number &, of independent polynomials commuting with a is upper
bounded by &, < ry, thus providing a lower bound for the linear dimension of the commutant:
dimy, Cyy(5)(a) = &o-

2.1. Algebraic integrability and superintegrability

The analysis of superintegrable systems from the perspective of algebraic structures (see e.g.
[8, 9, 16, 25, 26]) suggest to consider a more general frame, which is suitably placed within
enveloping algebras. In this context, various approaches have recently been proposed to define
an algebraic notion of integrability and superintegrability [10, 12].

Definition 2. Let a C s be a Lie subalgebra and Cy(s)(a) be the commutant. An algebraic
Hamiltonian with respect to a is defined as

Ho= Y aiXX;+ > _ BXe+ > Ce, (2.10)
iy k ¢

where X;, X;,X; € a, Cy is a Casimir operator of s and ayj, Bk, ¢ are parameters.

The advantage of such a definition relies upon the fact that the commutant automatically
provides a set of constants of the motion. If P € Cy(5)(a), it commutes with both the subalgebra
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and the Casimir operators of s, hence satisfies the condition [H,,P] = 0. The notion can be
easily translated to the Lie-Poisson frame, considering the Hamiltonian

H=> agpx+ Y B+ Y vece, (2.11)
ij k ¢

with ¢, being the symmetric counterpart of the Casimir operators. If P = A(Py) for some
Py € Cs(s) (a), then clearly {#, Py} = 0. Depending on the number of functionally independ-
ent solutions of system (2.9), a sufficient number of constants of the motion that implies the
(super-)integrability of the corresponding system can be extracted [10, 12].

The preceding prescription leads to two possible cases that are conveniently separated:

(a) The polynomials in Cg,) (a) have all vanishing commutator/Berezin bracket, in which
case the algebraic Hamiltonian #, is integrable and the symmetry algebra is Abelian.

(b) There are non-commuting elements in Cy(q) (a). In this case we say that the algebraic
Hamiltonian H, possesses a non-commutative (super-)integrability property and the sym-
metry algebra is a non-Abelian polynomial algebra. The dimension of the symmetry
algebra will be given by the number of linearly independent elements among the constants
of the motion.

Once a specific realization (by differential operators) of the Lie algebra s has been chosen,
the Casimir operators and the previously computed constants of the motion can either decom-
pose or satisfy additional dependence relations in the functional space associated to the real-
ization, imposing further constraints among the generators that can reduce the dimension of
the symmetry algebra. The realized Hamiltonian and invariants eventually still lead to well-
defined exactly, quasi-exactly, integrable or even superintegrable systems in the usual sense,
i.e. where the variables are in terms of generalized coordinates and their momentum (see e.g.
[3, 6, 15, 27, 28] and references therein). Such an approach has been successfully applied to
various Lie algebras such as su(3) and gl(3) in order to recover the Smorodinsky—Winternitz
systems, as well as the generic model on the sphere S?, which connects to the 58 superinteg-
rable systems on conformally flat spaces [29, 30]. The approach chosen here is quite different,
and is mainly based on the algebraic setting, where integrals are polynomials in the enveloping
algebra of a Lie algebra and the (non-commutative) integrability or superintegrability will be
deduced from commutation relations of the polynomials in enveloping algebra of s, or either
using the simpler relations in terms of the Lie-Poisson or Berezin bracket.

In the following, the construction will be performed in the classical (or Poisson-Lie) con-
text, where the Berezin bracket replaces the commutator, for computational reasons. It is
understood that all the algebraic structures considered in this paper also have a quantum ana-
log, i.e. when using the commutator and the symmetrization map (2.4).

3. The commutant of § in s((n)

In this section we compute the commutant of the special linear Lie algebra s[(n) with respect
to the Cartan subalgebra §. It is shown that the elements in a basis of polynomials commuting
with b can be identified with cycles in the symmetric group X, thus providing the dimension
for arbitrary values of n. It is further shown that the resulting polynomial algebras are deeply
related, via an appropriate realization, with the description of superintegrable models on the
spheres and the Racah algebras [4, 15, 17].
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We consider the special linear Lie algebra sl(n) in its defining representation. A basis is
given by the generators Ej; with 1 < i,j < n subjected to the constraint Z?:l E; = 0. The com-
mutator is then given by

[Eij, Ex) = 0jkEit — 1iEyg (1<i,j,k1<n). 3.1

It can be easily verified that a minimal set of generators for sl(n) is given by the 2(n— 1)
elements E; ; 1, E;1; for 1 <i<n— 1, with the Cartan subalgebra ( being determined by

[Eiiv1,Eiz1,) =Eii—Eit1,i41:=H; (I<i<n—-1). (3.2)

As the restriction of the Killing form « to the Cartan subalgebra h is non-degenerate, b is
reductive in sl(n) and thus the commutant Cy;(s((n)) () is finitely generated, so that it admits
a basis of type (2.7).

As already mentioned, for computational purposes, it is more convenient to use the Poisson—
Lie setting, i.e. to determine the centralizer Cs(s((,)) (h) of b in S(sl(n)). To this extent, we have
to solve the system of partial differential equations (PDEs)

{f:h} =0, 1<i<n—1. 3.3)

Using the analytical approach, it can be easily verified that the system (3.3) possesses
dimsl((n) —n+ 1 =n(n—1) functionally independent solutions, that can always be chosen
as polynomials since the Lie algebra is semisimple. In particular, the Cartan subalgebra b is
contained in Cg(s((»)) (), and corresponds to the only linear elements in the centralizer. The
symmetric counterpart c¢?!, - - - | ¢! of the Casimir operators of s[(12) also belong to C s(st(n)) (h)-
In order to determine the generic shape of polynomials satisfying the system (3.3), suppose that
P=P;+---+ P, is a polynomial with homogeneous components P of degree k =1,--- ,r.
Then {h;,P} = {h;,P1} +---+ {h;, P,} = 0 if and only if

{hi,P} =0, 1<i<n—1, 1<k<nr (3.4)

This allows to reduce the analysis of the centralizer to homogeneous polynomials. On the other
hand, if P, = X""""x;, ---x;, is homogeneous of degree k, with x; arbitrary elements of sl(n)*,
we conclude from the properties of the Lie-Poisson bracket that

{he, Pk = N5 (pf 4o+ g ) xi, oo, (3.5)

where ,uf;_ is the eigenvalue of x;, with respect to ;. As the monomials x;, - - - x;, are independent,
equation (3.4) is satisfied if and only if i} +--- 4 puf =0 for each £ and iy,--- ,ir. We con-
clude that it suffices to determine, for each order d > 2, a maximal set of linearly independent
monomials that satisfy the system (3.3). Any other element is obtained as a polynomial in
these elements.

For computational purposes, it is convenient to use the following (lexicographically
ordered) basis in sl(n)*:

]’li, 1<1<n—1
Ciits, 1<i<n—1,1<s<n—i (3.6)
litsi, 1<is<n—1,1<s<n—1i

It follows at once from (3.2) that for arbitrary indices i,j,k we have
{h,-,ej,k} = §{e,»)k — 5]1l+i€,'+1’k — 5[]»(6j’,' + 5]f+l-ej’1+,-, 3.7
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showing that h* acts diagonally on the generators of the basis. Rewriting the latter expression
as

{hisejn}t = 11} e (3.8)

we denote by u;’k the weight of e; ; with respect to the Cartan generator A;. It can be easily
verified that for 1 <j < n — 1 these weights are given by

—1 ' j+1 . ..
Wi ==l W =2 mi ==l w =0 A Lij+l (39

If A denotes the matrix with entries u} S+ it follows at once from (3.9) that A coincides with
the Cartan matrix of s[(n):

2 -1 0
-1 2 -1
0o -1 2

A= . (3.10)

This shows that the (column) vectors v;; = (u}’k,--- ,u]’.‘,?) with 1 <j < k< n actually

behave like the positive roots of the root system R associated to sl(r), with the v; 4 cor-
responding to the simple roots, implying that the v; are linear combinations of the v; ;| with
positive integer coefficients [31]. Specifically, for any e;; with j < k we have the following
algebraic relation for its weight vector:

k—1
Vie= D Ve, 1<j<k<n. (31D
=j

In analogous way, for the generators e;; with j < k, the eigenvalue vector is given by
Vij = —V;j . It is worthy to mention two immediate but relevant consequences of (3.11):

(a) Linear combinations of the v;; with j < k (respectively j > k) and positive integer coeffi-
cients cannot be zero, as the vectors v; j; are linearly independent.

(b) For any v;;, the multiplicity of the weight vector vy | (1 <s <n— 1) in the sum (3.11)
is either one or zero.

These properties enable us to construct recursively a maximal set of linearly independent
sets that generate the centralizer. As already mentioned, the only linear solutions to (3.3) are
the Cartan generators themselves. As any element in h* has weight zero, it follows that for any
monomial P commuting with h*, the product F(hy,--- ,h,_)P also satisfies (3.3). In order
to discard these decomposable solutions, we can suppose without loss of generality that the
monomials P satisfying system (3.3) additionally fulfill the constraint

oP

— =0, 1<l<n—1. 3.12
any O n (3.12)
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We start with d = 2 and consider quadratic monomials e; e;,,. By condition (3.5), the
monomial is a solution of system (3.3) if and only if the eigenvalue vectors satisfy the con-
straint v; x + v; , = 0, hence v; y = —Vv; ,, = v,,; must hold, implying that m = j and [ = k. We
conclude that the monomial has the form

Djk = € k€. 1<j<k<n. (3.13)

As can be easily seen, the number of independent monomials of this type is given by the num-
ber of transpositions in the symmetric group .,,, and equals v, = 2(nn7—’2)' We observe that the
monomials p; ; are not only linearly independent, but moreover functionally independent. This
can be easily verified considering the Jacobian matrix A; with respect to the set of variables
ej  with j < k, the determinant of which is given by

n—1

det(4)) = [J es+1.0 #0. (3.14)
s=1

Let us now consider d = 3 and a cubic monomial ¢;, j e;, j,€;, j,. It is a solution whenever
Vi ji + Vi, j» + Viy j; = 0 holds. As we are assuming that the constraint (3.12) holds, none of the
weight vector vanishes. On the other hand, If i, < j, for a = 1,2,3,> the sum of the weight
vectors cannot be zero as a consequence of equation (3.11). Up to a reordering of the indices,
there are two possibilities: either i, < j, for « = 1,2 and i3 > j3 or i, > j, for o = 1,2 and
iz < j3. For both cases, the argumentation is the same, thus let us assume that the first possibility
is given. We can further assume that i; < i,. Equation (3.11) leads to the identity

Ji—1 j2—1 i3—1
Vit T Vi = sz,s+l + ZVS,S+1 = —Vijs = Vi3 = sz,erl- (3.15)
S:il S:i2 S:j3

On the right-hand side of the identity, each v, ;| appears with multiplicity one, with the chain
from s = j3 to s = i3 — 1 being uninterrupted. Therefore, the sums of the left-hand side must
exhibit the same property. In order to avoid multiplicities, we must have the ordering of indices
i1 <Jji1 < iy <Ja, while the identities i} = j3, j; = i2, jo = i3 are a consequence of the fact that
the sequence from s = j; to s = i3 — 1 is uninterrupted. We conclude that the cubic monomial
is given by

€i,j1€in, joCis, s = €ir1€1,j>Cnin s (3.16)
where the indices i1,j; and j, are all distinct. As before, identifying the index set with the three-
cycle (i1/1/>), we obtain that the number of linearly independent cubic monomials Poisson-
commuting with h* is given by v3 = 3(,1"7_'3),

Before proceeding with the analysis, we observe that the monomial solutions of equation
(3.3) up to degree three subjected to the constraint (3.12) contain a maximal set of functionally
independent solutions. Considering the monomials p; j; with 1 <j < k jointly with the basis
of the Cartan subalgebra and the p, ;, we get exactly n*> — n elements, that is, the number of
independent solutions of the system (3.3). The Cartan generators are clearly independent, so
that it suffices to show that the nonlinear polynomials above are independent. We consider the
complementary ® of the set of variables {hy, - ,h,—1,€,,—1, 2 < s < n} in the basis (3.6),
and determine the Jacobian matrix Ay with respect to the variables in ®. A long but routine
computation shows that

5 The same holds if i, > jo for a =1,2,3.
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n—1 n
det(A)) = H ejx X He'fj,f*l X He’,gff £0, (3.17)

Y k=2 k=4
where ¥ = {e| ,, ey, 4 <k <n, k—2<s<n—2}. This shows in particular that the p;;
along with py ; ; constitute a maximal set of functionally independent solutions of (3.3) satis-
fying the constraint (3.12).

In order to simplify the analysis of linearly independent monomial solutions ¢;, ;, - - - ¢;, ;, for
orders d > 4, we first extract some general consequences from equation (3.11). First of all, if
there exists some reordering of the indices and an integer ¢ < d such thatv; ; +---+v; ; =0,
then clearly

Virji T Vigge = Vigp g T Vi, =0 (.18)

and the monomial is decomposable as a product of a monomial of order g and a monomial
of order d — g. We can thus restrict the analysis to those sums of weight vectors for which
no partial sum of ¢ < d indices vanishes. We next consider a partition of the index set S as
follows:

Si={ia<jall<a<d}, S_={ia>jol|ll<a<d}. (3.19)
Lemma. If the cardinal card (S—) > 2, then the monomial e;, j, - - - e, ;, is decomposable.

Proof. Suppose that card (S_) = 2. Reordering the indices if necessary, the condition (3.5)
can be rewritten as

Vivgi T T Vi gas = “Vigsvjact = Viaga = Viaovia—r T Viaia: (3.20)

Without loss of generality we can suppose that the first indices are ordered lexicographically,
ie. i) <ip < - <liy—pandj,—; < jy. By the decomposition (3.11)

Ji—1 Ja—2—1 ig—1—1 ig—1
§ Vs,s+1 + -+ § Vos+1 = § Vs,s+1 + § Vos+1- (321)
s=i] S=ig—2 S=ja—1 S=ja

It follows from the sum on the right-hand side that the multiplicity of each v, is at most
two. Further, there must exist a partition of the indices such that

{(iaaja)7 1<a<d—2}:{(ar,ﬁ,), 1<r<m0}u{()‘m%)v 1<S<d—2—m0} (3.22)

and such that

ig_1—1 mo ig—1 d—2—my
E Vs,s+1:E Voo, B, E Vsst+1 = E Vv (3.23)
S=jd—1 r=1 S=jq s=1

From these identities we conclude that

a—1 = a1, br =y 1<r<my—1), By =ia—1,
Ja—1 1, B +1(d30 )s By = la—1 (3.24)

Ji=A, Vs =Ap1 (1 <5 <d—3—my), Vg—2—my = la,

showing that the monomial decomposes as

m()fl d727m071
€y Clgyjag = H Cay,arit | Comgy,on H XN st | Xamamy A (3.25)
r=1

s=1

The same argument holds for any card (S_) > 2. O

9
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As a consequence of this result, an indecomposable monomial of order d satisfying equations
(3.3) and (3.12) satisfies either card (S_) = 1 or card (S_) = d — 1. In the following, we will
assume that the first possibility holds, the second being completely equivalent.

Let the monomial e;, j, ---e;,;, satisfy the system (3.3). By the preceding lemma, it suf-
fices to consider the case where i, <j, for | <a <d—1 and i; > j,;. Writing the condition
Viiji + -+ Vi, = 0 on the weight vectors as

Vigi T+ Vi gumr = ~Vigja = Viias (3.26)

and using again that multiplicities in the decomposition (3.11) are at most one, a routine com-
putation shows that the monomial necessarily has the form

Piy o jig = €iy,i Cia,iz " " Cig_y,iqCig i - (3.27)

The number of linearly independent elements of this type is given by v; = d(n”iid)!. It is import-
ant to observe that, due to the commutativity of the variables &y, e, x, the cyclic symmetry of
indices in the monomials p;, ... ;, gives rise to the same element, i.e.

Diryeesia = Pigyeesigsin = 0 = Pigyia o jia— - (3.28)

This property allows us to identify the monomials of degree d satisfying equations (3.3) and
(3.12) with the d—cycles of X,,.

Lemma. Any monomial P of order d > n satisfying equation (3.3) is decomposable.

Proof. LetP =e¢;, j, ---¢;,,, ., be amonomial solution of (3.3). If card (S_) > 2, the previous
results show that P is decomposable, hence we can suppose that card (S_) = 1. Without loss
of generality, we can assume that i} < i, < --- < i, and that i, | > j,+. The condition on the
eigenvalues reads

Vi ji +ee Viuign = Vit tsing1: (329)

It is clear that the indices i; cannot be all distinct, as otherwise, up to a reordering of indices,
we would have iy =k for 1 < k < n and thus k < j; < n. However, as the right-hand side of
(3.29) has no multiplicities greater than one, necessarily jy = ix41 = (k+ 1) for 1 <k <n—1
and j, = i,41. As i, =n <j, < n, this leads to a contradiction. Therefore, there must exist
at least two equal indices i = ix4 for some 1 <k <n— 1. Let & = min(j,jk+1). It follows
from the decomposition that all v, ;1 with i <5 < §p have at least multiplicity two. Again,
as each term on the right-hand side of (3.29) has multiplicity one, and since by assumption
i < jx holds for k < n, one of the following constraints must hold:

Viege T +V[§0J50 =0 or v+ +V,'§1 Jey o (3.30)

where £ = max(j,ji+1). But each of these possibilities implies that the monomial P is decom-
posable, proving the assumption. O

Using the analogy with the symmetric group, the result is intuitively clear, as there do not exist
d-cycles in X, for d > n. Summarizing, it has been shown that a basis of linearly independent
elements in the centralizer Css1(,))(h) is given by the polynomials

he, Diiy, 1<€<n—1, 2<d<n. (3.31)

Its linear dimension is therefore given by
dim; C =(n-1 = —F 1. 3.32
im, Cs(si(n)) () = (n )+;Vd ; (n—d)d (3.32)

10
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As only n> — n of these elements are functionally independent, the basis elements will satisfy
several algebraic relations, the number of which increases with the value of n. In the following,
we present some of these relations.

Proposition. For any n > 3 and 3 < d < n, following dependence relations hold:

k—1
I |piu7iu+] Piriy = Piig, - ixPiyiix—1,+ iz

u=1

n—2 n
H Pu’=P1,2,.--,np1,n71,---,2H H Pm.s; (3.33)

1<i<jgn m=1s=m+2
(k) k—1
H Diriz, iy = <Hpr,s> . plk) = H(n —5).
i1 FipF e Fiy r<s s=2

The proof follows by direct verification, taking into account the structure of the monomials
(3.31) and the number (3.32) of linearly independent elements. Although these identities do
not exhaust all possible dependence relations, they are useful for simplifying computations. As
follows from (3.31), the commutant Cs(q1(,)) () defines a polynomial algebra A, with respect
to the Lie-Poisson bracket, and possessing an (n — 1)-dimensional centre generated by the
hi, - gy

We remark that n = 2 is the only value where the number (3.32) of linearly independent
monomials coincides with the cardinal of a maximal set of functionally independent solutions
of the system (3.3). In this case, a basis of the centralizer Cy(2)~(h*) is given by hy,p 2, and
the resulting algebra is two-dimensional and Abelian. In particular, the symmetric counterpart
cl? of the Casimir operator C of s\(2) is given by ¢/l = %h% +pip.

For computational purposes, it may be convenient to consider some variant of the basis (3.31)
that takes into account additional symmetry properties, in order to simplify the expression of
the Lie-Poisson brackets in the centralizer. For instance, the generic bracket of two quadratic
monomials is given by

__ st 2
{pivgi Py} =6;; (Pivjigs = Piviogt) T 6 (Pivinds — Pisin)
j2 i
+ 05 (Pir o = Pivsins) + 05 (Pisjo,is = Piv,inin) »

an identity that suggests to consider an alternative choice of cubic monomials, namely repla-
cing p; j « by their symmetric and skew-symmetric counterparts

(3.34)

1 1
8ijk =5 (Pijk+DPikj), fijk= 5 (Pijk — Piky) > (3.35)

and where the coefficient % is a consequence of the index cyclic symmetry (3.28). The same
transformation can be considered for higher orders, where it may be appropriate to consider
monomials possessing additional symmetry properties to simplify the expression of the Lie-
Poisson bracket.

The polynomial algebra .4, is of order at most n — 1 in the generators satisfying the con-
dition (3.12). This can be easily verified considering for example the monomials of maximal
degree P =pi ... p and Q = p12.nn—1,..- 4,3, Where the brackets gives, among other terms

{P,Q} =p123p34 Pn—ipPon+-+, n=4 (3.36)

and where the first term cannot be written in terms of a lower number of basis elements. This
actually corresponds to the maximal possible order of brackets. As the bracket of a monomial

1
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of degree d (i.e. 2d indices) with one of degree m (i.e. 2m indices) has degree d +m — 1, the
total number of indices in each terms is given by 2d + 2m — 2. Each quadratic monomial p; ;
involves four indices, thus the maximal number ¢, of quadratic terms in a Lie-Poisson bracket
is upper bounded by ¢y < %(Zd +2m — 2). Longest possible chains can result for d = m = n,
with {y < i(4n —2). This shows that £y =n — 2 is the maximal value, with six remaining
indices that must correspond to a cubic monomial, hence leading to a maximal length of n —1.

Using the canonical chain of embeddings s((2) C s[(3) C --- C sl(n), it further follows
from the basis (3.31) that for the polynomial algebra A, associated to centralizer Cs(si(,))(h)
we have the ascending filtration A, C A3 C --- C A, meaning that each 4, can be seen as a
non-central extension of A;_.

4. Cs(s(3)(h) and Racah-type algebras

For n = 3, the system (3.3) possesses six functionally independent solutions, while the dimen-
sion of the centralizer CS(E[@))(U), according to formula (3.32), is seven. Following (3.31), a
basis may be taken as B = {hy,h2,p1,2,P13,P2,3,P12,3,P1,32 ) The algebraic dependence of
these elements is given by
P1.2P1,3P23 —P1,2,3P1,32 = 0. 4.1)
We remark in particular that p; 3, cannot be expressed as a polynomial in the remaining
monomials &, hy,p1 2,1 3,P2,3,P1,2,3, showing that a maximal set of functionally independent
polynomial solutions of (3.3) does not generate in general a polynomial algebra. The elements
in B generate a quadratic algebra with nontrivial brackets
{Pl,z,P1,3} = —{Pl,z,P2,3} = {P1,37P2,3} =P1,23 —P1,3,2
{Pl,z,P1,2,3} =p12(p13 —P2,3) —hip123,
{P13:p123) =P13(P23 —p12) + (h +h2)p1 23,
{P2,3,P1,2,3} =p23(p12 —P1,3) —hap123,

“4.2)
12,0132} =—Pi2P13—P23) Fhupi 3o,
{P13,0123} = —P13(P23 —p12) — (i +h2)pi 32,
{P23.0123} = —P23(P12 —P13) +hapi 32,
{P123.p132} =hip13p2s +hopiopi 3 — (h + ha)piop2 3.
The classical counterpart of the Casimir operators of s[(3) turn out to be:
1
P =piotpistpst g(h% +hihy + h3),
1
Bl =piostpisat 3 ((hi +2h)p12+ (b — ha)pi 3 — (2h + ha)p2 3) 4.3)
1 2
—hihy(hy — h) + — (B3 — 13).
+gh 2 (M 2)+27( 1 —h)

4.1. Connection with Racah-type algebras: change of basis

We show now that there exists an explicit connection of the previous quadratic algebra asso-
ciated to Cs(s((3))(h) with a Racah-type quadratic algebra. To this extent, instead of &1, h; we
consider the three elements

1 1 1
cl|i= 5(2]’11 —|—/’l2), Cp 1= g(l’lz —hl), Cc3 1= _§(h1 +2h2), “4.4)

12
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subjected to the linear relation:
c1+c+c3=0, 4.5)
as well as ¢; := p; ;. We also introduce skew-symmetric and symmetric elements (see (3.35))

1 1
fioz = 5(}’1,3,2 —Dip23), 8123 = 5(1’1,3,2 +p123). (4.6)

In terms of these generators and central elements, the relations of the quadratic algebra read:

{c12,e23} = {c23,c13} = {c13,c12} =2 fias,

{C127f123} = (CZ3 - C13)C12 + (Cl - CZ)gIZB

{c13.fiz} = (12— c3)ci3 + (c3 — 1) 8123

{c23.fin3} = (c13 —c12)cas + (c2 — €3) 8123

{61278123} = (Cl - Cz) 123 4.7)
{01378123} = (C3 - Cl) 123

{23,813} = (c2 — &3)f123

1
{23,813} = 5 ((Cl —c3)caen + (e3 — e2)crpciz + (e — 01)613623),
to which the algebraic dependency relation

8123 — 1123 — ci2caaci3 =0 (4.8)

must be added. The Casimir of the quadratic algebra reads

1
K = f + cineasers — (creas + cacrs + csenn) (8123 - 2(616‘23 + o3 +C36‘12)) . 49

This can be re-expressed in terms of the third order Casimir of s/(3)* and the central elements
as:

1
K= Z(C[B] — 010203)2. (4.10)

At this point, to make the connection with Racah-type algebras more explicit, we consider the
second and third-order Casimir elements {c/?, cll} in (4.3). The generators are related to the
Casimirs through the following functional relations:

1
clatci3+ep=c - E(c%+c§+c§) 4.11)
1
28123 — €3¢12 — ac13 — crep3 = B — g(c? +a+c3). (4.12)

Taking into account these relations, and considering the following redefinitions:

_ _ 1 B 1
Ci: :c,~/2, Clp i= C12+Z(Cl_02)27 Cc13 = C13+Z(Cl_03)27
_ 1
o3 =cnt gla—a), (4.13)
we get the quadratic algebra:
1. 1 1. _
fioz = 5{0127623} = 5{6237613} = 5{613,612} 4.14)

13
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C12,f1235 = (€23 — C13)C c1—c2)(c ci+ ) —(cr+ )
{en.fins} = ( )ein+ (e1— &) (P + (e + ) — (@1 +&)°)
{e13.finz} = (€12 — ex)ers + (e — 1) (P + (e1 +¢3)c? = (¢4 +3)%)
C23, 1235 = (€13 — C12)C23 + (€2 — C3) (¢ ct+c)c — (et
{e2.fins} = ( )23 + (62— &) () + (@2 +03)cP = (@2 + &)°)
{€12,8123} = 2(¢c1 — 2)f 123
{C13,8123} = 2(¢3 — ¢1)fins
{C23,8123} = 2(¢2 — ¢3)f123 (4.15)
123,8123 5 = (€1 — €3)C12€23 + (€3 — C2)C12€13 + (€2 — €1)C13C23
{h F=( ) +( ) +( )

—(c1—e) x (2—6)(c3—¢1) (C[z] - %((51 —o)’

+ (Z’] - E‘z)((‘z — 53) + (E‘z 63)2)>.

A quick check shows that {¢1, + ¢13 + 23, P} = 0 for P =fi,3 and P = gj23, as expected.
In this rescaled basis, the previous relations can be cast into the form:

ci+c+c3=0 C12+C13+C23—C[]+Cl+C2+CS7
o o o 1 . 5 4 4 s (4.16)
8123 — C3C12 — €2€13 — C1C23 = EC‘ + g(ci +6+¢3)

together with:

g — 13— (€ — (€1 —)?) (c13 — (€1 —23)?) (¢23 — (c2 — 23)*) = 0. (4.17)
At this point, two comments are in order. First, we notice that from the functional relations it
is possible to extrapolate the Casimir associated to the above quadratic algebra. In particular,
from (4.16) we can obtain g,3 expressed in terms of the other generators and central elements.
Then, we can replace its expression into (4.17). The resulting equation can be separated into
two parts, with the Casimir written in terms of generators and central elements on the left-hand
side, whereas on the right-hand side we obtain an expression depending only on the central
elements. Explicitly, on the left-hand side we have

2 G Pial 22 IS N
K = fir3 + C12€13¢23 — E CiCii — E (€ +cF)ewcy

ij#k ij#k
10 (4.18)
+ > ( ¢ — )2 (e —Ek)z—a(cm +5 @ +5§+c3)>) Cik,
i#j7k
while the right-hand side of the equation reads:
K= %(CB])Z-Fg(Z‘? +a3+83) e +2(et +83) (e +&3) (S + ). (4.19)

We further observe that, taking into account the functional relation (4.17), we can restrict to
consider just a subset of the relations (4.14) and (4.15). These share some similarities with the
defining relations of the Racah algebra R(3) [14, 26]. In this setting, however, we see that the
second-order and third-order Casimir of the Lie algebra appear on the right hand side of the
relations. To the best of our knowledge, this represents a new Racah-type quadratic algebra,
here arising from suitable combinations of the elements of the commutant of the Cartan sub-
algebra. We prove in the following that the well-known relations of Racah algebra R(3) can be
recovered after considering explicit canonical realizations for the generators, the latter being
associated to the generic superintegrable system on the two-sphere after reduction.

14
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4.2. Connection with the superintegrable system on the two-sphere S?

In order to provide an actual physical application to superintegrable systems we provide here
a connection with the generic superintegrable system on the two-sphere S?, determined by the
Hamiltonian model (see [4]):

N O

H= — < 2
2+2+2+2s1+2%+2s§

N \

3 3
1 a; s1p1 + sop2 +s3p3 =0
2 1P1 2D2 3P3
; sipi)°+ = — U 4.20
; i) = 5P 22 ? {s%+s§+s§=1 *20)

This problem has been faced in the paper [16], in relation to the Lie algebra su(3) (see e.g.
[32]). In this context, the canonical realization for the generators of the underlying Lie algebra
s[(3) that allows us to connect with the generic superintegrable system on the sphere (4.20)
reads:

h = i(a) —ag), hy=i(ag —a3),
=4 (-3 02
eji=—3 ((SjPi— Sipj) — (0@5 + ;i ))

Asaresult of (4.21), we get the following identifications for the second and third-order Casimir
invariants:

(1<i<j<3). 421

1 1
= -3 <H+ 8(041 +ay+ a3)2> (4.22)

Pl = 3(a1 +az+ az)cl + %(Otl +ar ). (4.23)

Notice that the third-order Casimir collapses to a combination of the second-order Casimir and
the constants «; appearing in the Hamiltonian, the latter being:

1
H=—-2%— gl +an +a3)? (4.24)

In terms of these elements, exactly the same relations given in (4.7) are obtained. In particular,
the element g,3 collapses as a consequence of the reduction:

gi23 =1 (azcin + anci3 + ez + ajonas). (4.25)

This leads to the usual Racah algebra R(3). In fact, we see that the elements c;; of the commutant
of the Cartan subalgebra adopt the well-known expression:

1 2

=7 ((sipj—sjp,) +a+a+2aaj> 1<i<j<3 (4.26)

l

namely, they collapse to the constants of the motion associated to the model (4.24). At this
point, by performing the change of basis as in (4.13), re-expressing all in terms of the Hamilto-
nian H and the rescaled constants of motion, that now read:
) 1 ol o o
Cj=—7 ((sipj —sjpi)2 + (s? +sf) (Sz + é)) (I<i<j<3) @27
i J

15
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we obtain the symmetry algebra associated to the generic superintegrable system on the
sphere S?:

1. _ 1. | B
fiz = S{en ent = S{em a3} = 5 {e, e,
1
+ (0 —03)(2H ~a3)
G D S 1 2 2
{0137f123}:C13(c12—cz3)—|—R(O@—a])(ZH—az)

{C12.fi23} = ¢12(C23 — C13)
(4.28)

1
{2, iz} = ca3(Ciz —¢i2) + B(a% —a3)(2H — ).

along with the functional (actually linear) relation among the four constants of the motion:

H 1
3 +Cip+Ci3+Cr3+ Z(a% + a% + a%) =0. 4.29)

Notice that the Casimir (4.19) collapses to the following quadratic function of the
Hamiltonian:

K= Q](O&],OQ,O@)Hz —|—Qz(a],a2,o¢3)H—|— Q3(0¢],(12,0¢3), (4.30)

where:

O (ar,,a3) = a1+ +a3)? (4.31)

1
~ a3
1 3
Wy, 00,03) = Taa (1 +a+a3) | (u++a3)

-5 Z ai(o; + )+ 30a1a2a3)> (4.32)
ik
1
576
—2(ax+a3) o (403 —3azan +403) + (903 — 20303
+60303 — 2030 +903) af — 2 (ax + a3) (a3 +a3)
X (20[% — 30300 + 2a§) oy + (a% + a%)

x (a3 —4az03 + 80303 —4adar +al)). (4.33)

Q3(ay,0,03) = (a? —4(an+ a3)a? + (904% + 20300 —|—9a§) 0/1‘

It is not surprising that in terms of the following quantities:
Ci==—aj/4, Cj:=c¢j Ci=-H/2, Fis:=fi (4.34)

the relations of the rank-one Racah algebra R(3) are satisfied [13, 14]:

1 1 1
Fio3 = §{C12ac23} = §{C23,C13} = §{C137C12},

{C12,F123} = (C23 — C13)C12+ (C2 — C1)(C3 — C123) (4.35)
{Ci3,F123} = (C12 — C23)C13 + (Cy — C3)(Cy — Ci23)
{C23,F123} = (C13 — C12)Caz3 + (C3 — G2)(Cy — Ci23),

together with the linear relation

Ci3=Ci2+Ci3+Cyzs —Cy — Cy — Cs. (4.36)

16
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The latter is obtained after considering the explicit realisation in terms of canonical coordinates
(si,pi)- An alternative presentation, that will turn out to be the most suitable for higher-rank
cases, is the one involving the generators [33]:

Pii = 2C1 P,] = Clj — C,‘ - Cj, (437)

explicitly, in the given canonical realisation:

1 52 2
Pi,' = —0[52/2, P,’j = —Z ((S,‘pj — Sjp,')2 + (Ollzs]z + afz;)) . (438)
J

l

In terms of these generators, the rank-one Racah algebra R(3) can be rewritten as:

1 1 1
Fi3 = E{Plz,Pn} = §{P237P13} = E{PB’PIZ}’

{P12,F123} = (P12 + P11)P23 — (P12 + P2)P13 (4.39)
{P13,Fi23} = (P13 + P33)P12 — (P13 + P11) P23
{P23,F123} = (Py3 + P2)P13 — (P23 + P33) P12,

where the Hamiltonian of the model is given by

3 3
i=1

1<i<j

At this stage, it is worthy to be mentioned that the algebra can be rewritten in a more compact
form if one takes into account the symmetry properties of the generators with respect to the
indices. In fact, considering that P; = P;; is symmetric on exchange of two indices, whereas
the three-indices generator Fj = —Fj = Fj is antisymmetric, for i #j # k € {1,2,3}, the
algebra can be rewritten as [33]:

{Pij, Pic} =2Fij,  {Pjt; Fiji} = (P + Pyj)Pix — (Pjx+ Pu) i (4.41)

4.2.1. The general form of the quadratic algebra.  In analogy with the Racah case, we can use
the symmetry properties on the indices of generators in Cyy(3)- (h*) to present the associated
quadratic algebra in a more general form.

The defining elements of the quadratic algebra are defined for i #j # k € {1,2,3} as:

i—1

2
D B=h=> ki cii=pij,
=1

j=1 (4.42)

Ci =

Q| —

1 1
Sijk = E(pi,k,j —Dijk) 8ijk = E(Pi,kJ +Pijk)-

The elements c; play the role of central elements of the algebra. In particular, they depend
on the Cartan elements {h;,h,} in such a way ¢; + ¢ + ¢3 = 0. The two and three indices
elements satisfy the following symmetry properties:

¢i = ¢ji (symmetric) (4.43)
fik = —~fix = fui (skew-symmetric) (4.44)

8ijk = &jik = &jki (symmetric) (4.45)

17
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The previous elements, for i # j # k € {1,2,3} satisfy the following quadratic algebra:

{C,’, } =0
{ei e} = i
{cifiiny = (cie — cip)cix + (¢; — i) giji (4.46)

{cji g} = (¢ — ci)fij
1

ik giiny = 3 ((ci = co)eijcin + (cx — ¢j)exici + (¢j — ¢i)cjcri)
together with the additional functional relation:

Siifiii + Sijk&kji = CijCikChi- (4.47)
With this notation, the Casimir invariant of the quadratic algebra can be expressed as:

1
Kije = figdjei + cicircn — (cicik + cjcin + cicyj) (&:ﬂc = g lcicj+ ¢+ Ck%)) , (448)

where the symmetry properties K;jx = Kj = Kji; hold. In particular,

1 2
K= (P —cicjer)”. (4.49)

4.3. Systems on the three-sphere and sl(4)

We next consider the rank three Lie algebra s[(4). In this case, the system (3.3) has 12 func-
tionally independent solutions, while the centralizer Cg(s((4)) () is of dimension 23. Following
(3.32), a basis of Cy(4)~(h*) is given by

hi, ha, hs, pia, P13, Pira, P23, Pr4r, P34 P23,
Pi24s D134, D234; D132, P14z, Plajs, D243, (4.50)
P1,234, D1243, D1324, DP1423, P1432, P1342,
with  {h1,h,h3,p12,P1,3,P1,4:P2,3:P2,4:P3,4:P12,3,P12,4,P134)  being  functionally
independent.

In analogy to the previous case, we can use symmetry properties on the indices of the
generators to determine a more suitable basis that simplifies the expression of the Lie-Poisson
brackets and results in a more transparent description of the polynomial algebra generated by
the monomials in (4.50). We redefine the basis i # j # k # 1 € {1,2,3,4} as follows:

13 i—1
ci= g D G—ih=Y h cyi=piy;
j=1 j=1 4.51)
1 1
Sijx = E(Pi,kd' —Dijk)s 8k = E(Pi,kJ +Pijk)-

Again, the one index elements c; play the role of central elements for the algebra, and fulfill
the linear relation ¢; + ¢; + ¢3 + ¢4 = 0. The ¢;; and g are symmetric, while the f; are skew-
symmetric. For elements depending on four indices, instead of using the symmetric and skew-
symmetric counterparts, it is computationally convenient to consider the elements
1 1
fijkt := E(pi,l,k,j = Pijk); 8 = 5 (PiLkj+ Pijl)- (4.52)

These four-indices elements fx; and g satisfy the following symmetry properties:

fit = ~fiiks  ijt = &jitks (4.53)
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meaning that they are antisymmetric and symmetric with respect to the simultaneous exchange
of the first and second pair of indices, and of the central pair with the external one, respectively.
Besides, they both satisfy the cyclic property. The composition of these two properties provides
several equalities for the four indices elements. Those equalities will be taken into account
when presenting the algebra in general form.

Fori#j#k+#1€{1,2,3,4}, in terms of the previously defined elements, the following
cubic algebra relations are obtained. The elements with one index are central, hence {c;,-} = 0.
For the case of two indices elements we get

{cijeu} =0, {cy,cn} = 2fip, (4.54)

whereas for the bracket of quadratic and cubic elements we obtain

{ejusfiin} = (ci — cij)cjn + (¢j — cr) gk,
{cik g} = (¢ — cxlfi

{eufi} = gijw — gijnts

{ews giy = fij — figuas

(4.55)
{einfin} = (cix — cip)ein + (¢ — )ik
{cj i} = (¢ — )i
{enfin} = gijw — gijua
{ews gi} = fij — fijua-
We next consider the brackets of elements with three indices:
1
{fije giiky = 3 ((ci — cx)cijein + (cx — ;) cricy + (¢ — i) i)
1
iy = 5 (e — cxalfiua + (e — e+ (fiy +fine) i+ (¢ = e,
| (4.56)
{8uw, g} = 5 (e — el + (e — el + (i + )i+ (6 = cilfay):
1
ik g} = 5 (cij — ci) g+ (cr — cjo)gijr + (&ijt — &ina) i + (cx — ¢1)&inj)-
Elements with two indices with those having four indices close as
{ewsfipat = (guj — gin)cu + (cx — 1) &ijua
{ew i} = (i — gup)en + (€1 — ) Gijiks
{ewsfue} = (cjn — cje) gt + (cix — cir) gjuas @57
{ews i} = (fyy — fi)ew + (e — )iy '
{ew, g} = (fi —fijn)ew + (e1 = c)fijues
{ews guk} = (cj — cip)fim + (cix — ci)fus
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while for elements with three and four indices, respectively, we get the relations

Uikt fija } = ((Cjk cx)fim + (8wt — &t + (it — fig) g + ((c1 — ci) e
+ (cx — ¢j)ew)fijt)

{fiwa- S} —% ((cx — ci)fiji + (it — i )i + (fist +firt) g + (¢ — cr)en
+ (1 = c)ei)fi)
Uikt fuie} = ((le ci)fiik + (&ik — g + (fijk + fijt) g + ((¢j — i)
+ (c1 = ¢j)ci)fia)
{gin, gijua} = ((Cﬂc cu)fija + (8t — &ij it + (firr — fis) gina + ((ck — 1) cix
+ (CJ Ck)ckl)fﬂ)
{gjui, gijn} = ((C]l ca)fijie + (&ijt — gia)fim — (fijt +fira) g + ((¢j — 1) cua
+ (e1 = cr)ep)fi z/k)
{gjut, gk } = ((Cﬂ cin )ik + (i — & )fim + (i +fijt) giw + ((ex — ¢j)cji

+ (¢j — c)eje)fim),

{ikt» gijn } = ((C]k cn) it + (¢ — ci)ciker + (fir — fip)fjna + (girt — &ijk) &jwt
((ex = ¢j)en =+ (e — cr)i) i) »
(

_l’_
1
{fixt, gija } =3 ((cjk — cua) giji + (cij — cir)cjecra + (fi — fije)fm + (&ita — &ijic)8ju
+((ex —¢j)en + (e — ) gigt)
1

{fix, i} =3 ((Ckz — ¢j)gijik + (cix — cij)ciicr — (fijr + fira )fa + (ijt — gira) 8jia

+

((¢j = cr)ew~+ (e — cr)ep)giin) »

—

cicjt + (i + filfim + (i — &ij) gjna

)8

{ﬁkhgﬂjk} == ((C/z - Cjk)glljk + (¢ — cu)

((¢j = e)eje + (e — cr)ep)gim)
)

=+

{gju.fiju} == ((C,k —cu) i + (cit — cij) e + (fir — fijr )i + (it — i) gjna

+

((¢j — cx)em + (cx — cr)ci) gin) »

[\

{gju fij} == ((cjt — cu) iji + (cik — cij)citcrr + (fij + fir )i + (it — &ijt) gjnt

+

((¢j —cr)ew+ (cr = c)ep) giir) »

—

)

{gn-fuin} == ((cjp = cjw) i + (it — ci) cjcit + (fi +fijt )i + (e — &ijt) &ja

2
+((¢j — er)ejn + (ex — er)cjn) gin) -
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Finally, the brackets of elements with four indices elements lead to the following
identities

{fijwas fijin ¥ —% (((cix + cjt — cu)fimt + (e — cic — ci)fua) i + (i — ¢t — e )i
+(cie + cjx — ci)fia) eu + (ci — ) (fugiu + fragint) + (1 — cx) (fig&in + fingi) ) »
Ui fuje } = : (( cik + cx — ca)fyi + (e — cij — cp)fim) cix + ((cji + cr — ci )i
+(Cﬂ< — cij — ci)fjua) cin + (¢i — Cz)(ﬁjkgjkz + fuagiie) + (¢ — cx) (fuagin +fiugina) ) »
{fij- S} % (((Ctk — cii — cu)fijk + (Cik —ci)fiwt) cit + (i — cix — cu)fii
+(cji — cij — ca)fm) cin + (ci — Ck) (ﬁkzgyl — fingint) + (c1— &) (finegins — fuagix) )
{gijki iji} —% (((Ckl —cjx — ci)fm + (cin + cit — cu)fa) cis + ((cij — ca — )i
+(cie + cix — cij)fia) cu + (¢; — i) (fimgiu + fragit) + (1 — cx) (fingin + fi&in) ) »
{gijxi, gij } —% (((cit = ci — cu)fiji + (cij + ¢t — cilfwa) cix + (i + e — )i
+(cjx —cij — Cik)ﬁkl) cit + (Ci - )(fjkgjkl + fiuagijk) + (cx — ¢;) (firgit +fjlgzk1))
{8 g} = (((cix — cir — cu)fije + (cix — cij — ) it + ((cix + cur — ci)fii
+ (e + it = cilfpm) cin + (ck )(J?kzgiﬂ —fingia) + (c1 = ¢;) fiugim — fiagiie))
{fit» i } %(( cr)eij — (¢ — Cj)Ciz)Cjkaz + ((Cl —cr)cjx + (e — Cj)Ckz) Cijcil)y
it gijnc } —% ((cxr = ci — i) gina + (cit + it — cua) gina) ¢ + ((cij — i — ¢ gk

+(¢it + Cjk — Cl/)gt]l)ckl +(a— Ck)(f]kf/l +gukgljl) + ( Ci)(fiklf/'kl +giklgjkl)) )
{fijwt i} = ( cit — Cix — ¢) &ijt + (¢ij — i + C]l)glk])cjk + ((C]l + cu — Cik) 8iji

Cjk — Cjj — Czk)gjkz)czl + (cx — ¢)) (fifua + gingina) + (ci — 1) fiiwSia + giikgint)) -

.—_i_[\.)\»—\

((Ckl Cjt — ¢jt)&iki + (Cix + cit — Ckl)gjkl) cij+ ( cit + ¢ji — Cij) 8iji

Cij — Cik — C/k)giil)ckl + (ex — )(fl/kfz/l + &ijk&ij1) + ( Cz)(fklf/kl + glklgjkl))

zjlk7 l]kl} —5

ljlk7gll]k} -

cji — cij — cu)gi) i + (¢; — 1) (fiifim — &ingint) + (cx — i) (finfim — &ingint) ) »

= oy

{fuje gijwa }

)

(

)

((Czk — cit — cu) gijk + (cij — cir + C/k)gzkl) Cji + ((C/k cjt + cu) it

)

((Cjk — cj — ¢ gijk + (¢ + cik — Cjk)gjkl) cii+ ((Czl — Cix — Cul) il
)

cij — ¢+ ci)gin) i + (¢ — i) (fiiefim + &ingina) + (cx — &) (Finfima + ingint) ) »
{fljk7 zﬂk

((C]k — ¢ji+ cu) gijt + (cjt — ¢ij — Cil)gjkl)cik + ((Cil + c — Cik) Giji

(
(
(
(
(
(
(
(
=5 (
(
=5
(

S I

cit — cij — cik) i) it + (1 — &) (fiifim — &ingiwt) + (cx — i) (fuafiji — Giagiit)) -
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Besides the dependence relations enumerated in (3.33), there are some additional functional
identities like

Siifkji + gijk&ii = CijCixCi
Siitfgi + gira&ugi = CijCixCrCii-
Once we have described the general structure of the cubic algebra A4, we next show that,

once a realization associated to the generic superintegrable systems on the three-sphere S* is
considered, the cubic structure reduces to that of the quadratic algebra R(4).

(4.58)

4.4. Connection with the superintegrable system on the three-sphere S*

The superintegrable system on the three sphere S is defined by the Hamiltonian:

P 2 a2 2 2
P P% Py Qs ay
H— 71y P2 24, 7L 2 73y 4
2 + 2 t2 2 + 2 +2%+22+2s§+2s§
4 4
1 p 1 a?
=5 2 Gwi—sp)+35) = (4.59)
1<i<j i=1 1
subjected to the constraints
SIP1+Sapa+53p3+sapa =0, s1+85+55+85=1. (4.60)

In analogy with the rank-two case, we consider the canonical realization for the generators
of sl(4):

/’11 :i(Oé] —Olz), hzzi(Oéz—OZ3), h3=i(0&3—0¢4),
1 (sipj — s;pi) — LA
o= T \ WP P YY) ) @.61)

1 . S Si
eji: 75 (SjPi*Sin) —1 ai;i+aj;j .

From this realization, it is straightforward to derive the following identifications with the quad-
ratic, cubic and quartic Casimir invariants of s[(4)*:

1 1
A= — 3 <H+ Z(Oél +oy+a3 —|—O¢4)2)

16(0&1 +Ozz+0[3+0&4)3
1
(a +a2+a3+o¢4)zc[z] +§(o¢1 +ay+m3) (o +a+as+aq)’

Bl = 2(0[1 + s + a3 +Oz4) [2]

|-

A —

@)}

((Oé[ 4+ ap —|—Oé3)2 +3(Oé]0(2 + s —|—Oé]()é3)) (Oé] + oy + a3 —|—a4)2

+ = (a1 + ) (ar+o3) (a1 +a3) (o + ar + a3 + oy)

N — 00| = =
@

~ 356 (a1 + a2+ a3 +a4) + 201 000304. (4.62)

We observe that both the third-order and fourth-order Casimir invariants collapse to a combin-
ation of the quadratic one and the constants «; appearing in the Hamiltonian, the latter being
given by:

1
H=-2c2— Z(O“ +ar+ a3 +ay)’ (4.63)
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Again, the two indices elements c;; belonging to the commutant of the Cartan subalgebra
assume the well-known expression:

1 2 25 a8t .
=7 (sipj — sjpi) +ais—2+ajs—2+2aiaj (I<i<j<4). (4.64)
i J

These elements, together with the elements {fju, gk} and {fju, giu }, reproduce exactly the
relations of the cubic algebra A4 presented in the previous paragraph (equations (4.54)
onwards) and the related functional relations. The crucial point in this construction is that
the g, as well as the four-indices elements fj;;, g;ii are all expressible in terms of elements
with a lower number of indices after the reduction to canonical coordinates. More explicitly,
the following identities are satisfied for any i #j # k#1€ {1,2,3,4}:

i
8ijk :E(akcij + ajeir + aici + qicoy),

1
i => (cijen + CirCjx — CixCit — Qi — CGOUCik — Q0GOKQY), (4.65)

i
Sijut =5 (oufijn + cufyi + oyfim + ) -

This means specifically that, as a result of the canonical realization, the cubic algebra collapses
to a quadratic one with basis elements:

«;, Cijaﬁjka H. (466)

However remarkable this result may appear, it is albeit expected, as the algebra associated to
the generic superintegrable system on the three-sphere S*, the rank-two Racah algebra R(4),
is quadratic. To make this connection with R(4) more explicit, we introduce the constants of
the motion

i

1 o of
=g ((Sipjsjpi)er(SinFS}) <s£+sé>> ) (1<i<j<4), (467
J
such that the following constraint holds:

H 1
E +Cip+Ci3+Clg +C3 4+ Cog +C3a + E(OZ% + OZ% + a% + 04421) =0. (4.68)

Besides the Abelian relations involving the central elements and {¢;;, ¢} = 0 for disjoint pairs
of indices (ij) and (kl), we have the defining relations:

1 1 1 ..
fzjk = E{E‘ij,fjk} = E{Eﬂﬁzik} = E{E‘ik,f‘ij} (1 Li<j< k< 4) (4.69)

Thus the connection with the Racah algebra R(4), considering that several different bases are
conceivable to give a presentation (see e.g. [34]), is obtained through the following identific-
ations:

Ci:=—al/4, 1<i<4,
Cj:=c;, 1<i<j<4, (4.70)
thk::fijka 1<i<j<k<4.
In analogy with the lower-rank case, we introduce the generators P;; and P; (with the obvious

new range for the indices) as defined in (4.38). Taking into account the symmetry properties
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of the generators Py, Fy, fori # j # k # 1 € {1,2,3,4}, it is easily checked that the following
relations of R(4) [33] are satisfied by the elements:

{Pij,Pu} =0, {Py,Py}=2Fy,

{Pjx, Fije} = (Pj+ Pjj) Pic — (P + Pic) Py,
{Pu,Fijr} = PuPji — PuPj,
{Fijk; Fja} = —(Fiji + Fira) P

The Hamiltonian of the model can itself be expressed as:

4 4
H=-2%" P;j—> Pi (4.72)
i=1

1<i<j

.71

4.5. Extrapolation to the general case n > 5

The pattern observed for n = 4 remains valid for values n > 5, in spite of the fact that the
polynomial algebra A, is of order n — 1. From the basis (3.31) we can again consider altern-
ative elements that reflect some symmetry or skew-symmetry properties with respect to the
indices, generalizing the previous cases fjj, ik etc to a higher number of indices. Concerning
the superintegrable model on the sphere S"~!, the corresponding Hamiltonian H is given by

02 l=a? 1 1 o o?
2
H=Y 25423 K=o N (spj—sp)'+5 Y =,
2 2 s 2 L~ 2 S
k=1 k=1 "k 1<i<j k=1 "k

where the constraints

n n
Zskpk =0, Zs,% =1
k=1 k=1

are satisfied. The appropriate realization of s[(n) is given by

hk:i(ak—ak+1), 1<k§n—1

1 . 8 S
¢ =5 (sipj — s;pi) — 1 i + )
i j

Considering the constants of the motion ¢;; as defined in (4.67), a long but routine computation
leads that H, ¢;; and Y_;_, af are linearly dependent, as expected.

On the other hand, the Casimir invariants c¢/*! of 5[(n) are be easily obtained as trace oper-
ators according to the formula

k
Ay €12 o €ln—1 €ln
e Ay e ey
M =_Tr , (4.73)
1,1 en—12 - Du_1 en_ip
€nl €n2 o €pn—1 An
where
U GO k=1
A= hy — —hy, 1<k<n. 4.74)
n n
s=k s=1
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The quadratic Casimir invariant ¢! is related to the Hamiltonian through the dependence
relation

n 2
[2] n_2 -
268+ H + — <;ak> =0, n>S5, (4.75)

hence leading to the identity

2
n—2 "
H=—2c2_ > (Z ozk> ) (4.76)

k=1

Clearly, the general formula above also holds for the lower-rank cases discussed in the previous
sections. A rather cumbersome but straightforward computation shows that for any n > 5,
analogously to the lower-rank cases, the Casimir invariants ¢! of order k > 3 collapse to a
combination of ¢/ and the constants «; appearing in the Hamiltonian, hence providing the
connection with the Racah algebra R(n), ultimately allowing us to write the Hamiltonian as

H=-2 i P,-j—ipii, (4.77)
i=1

1<i<j

where the generators Pj; for 1 < i,j < n are defined as in equation (4.37).

5. Concluding remarks

Using the Lie-Poisson reformulation of commutants in enveloping algebras of Lie algebras
5, a notion of algebraic (super)integrability based on algebraic Hamiltonians and constants of
the motion has been proposed. These first integrals are obtained as elements of the central-
izer Cy(5)(a) of a given subalgebra a in the symmetric algebra of s. As Cy(s)(a) determines a
finitely-generated polynomial algebra A, the latter can be identified with the symmetry algebra
of the system defined by the algebraic Hamiltonian. For a given realization of the Lie algebra
s, the symmetry algebra A can eventually reduce its polynomial order, due to additional con-
straints that are determined by the realization but that are not relations that hold generically in
the enveloping algebra of s.

In order to illustrate the procedure, we have determined a basis for the centralizer
Cs(si(n))(h) of the Cartan subalgebra b of sl(n) for any values n > 2. The resulting polyno-
mial algebra A, has been shown to be quadratic for n = 3 and of order n — 1 for n > 4,
further defining a chain A, C A3 C --- C A, adapted to the canonical embedding s[(2) C
s[(3) C -+ C sl(n). It has been shown explicitly for n = 3,4 that for suitable realizations of
sl(n), the polynomial algebra reduces to the (n — 2)-rank Racah algebra R(n) obtained with
other techniques (see [13—15] and references therein), providing an alternative derivation of
the symmetry algebras of superintegrable models on the sphere S"~! by means of an algeb-
raic Hamiltonian associated to .4, showing in particular how the cubic algebra reduces to a
quadratic one as a consequence of the realization. The construction can formally be extended
to any value n > 5. This is however computationally cumbersome, as the linear dimension of
the centralizer increases exponentially. So, for the values n = 5,6,7, the dimension is given
respectively by (see equation (3.32))

dimy Cs(s1(5))(h) =88, dimy Cs(s1(6))(h) =414,  dimg Cys(7y)(h) =2371,  (5.1)
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making an explicit presentation of the Poisson brackets quite complicated. In any case, the
construction is feasible for any n > 5, with the centralizer Css((,))(h) determining a polyno-
mial algebra. The approach by commutants in higher-rank Lie algebras provides an alternative
description of these superintegrable models, eventually leading to new integrable models for
other appropriate realizations of the Lie algebra.

In this context, it is natural to ask whether for the remaining classical algebras (and their
real forms) the commutant of the Cartan subalgebra leads to polynomial algebras that are nat-
urally associated to superintegrable hierarchies that have been studied by other methods. As
an extension of this approach, it is also conceivable to combine the approach presented here
with the so-called missing label problem [35, 36], where the subalgebras used have a definite
physical meaning as internal symmetry algebras. Although it is expected that the computa-
tional obstructions are considerable, due to the generally complicated structure of subgroup
scalars, it is not excluded that new systems with interesting properties can emerge from this
ansatz. Work in this direction is currently in progress.
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