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ABSTRACT

In this paper we consider some stochastic bottleneck linear programming problems. In the
case when the coefficients of the objective functions are simple randomized, the minimum-
risk approach will be used for solving these problems. We prove that, under some positivity
conditions, these stochastic problems are reduced to certain deterministic bottleneck linear
problems. Applications of these problems to the bottieneck spanning tree problems and
bottleneck investment allocation problems are given. A simple numerical example is
presented.

RESUMEN

En este articulo se consideran algunos problemas de programacidn lineal estocdstica "cuello
de botella”. Se utiliza la aproximacién de minimo-riesgo para el caso en que los coeficientes
de las funciones objetivo de los problemas siguen aleatorizacién simple. Se demuestra que,
bajo determinadas condiciones de positividad, estos problemas estocdsticos se reducen a
ciertos problemas lineales deterministicos "cuello de botella”. Se dan dos aplicaciones de
estos problemas y se presenta un ejemplo numérico.
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1 Imtroduction

In Frieze (1975) two algorithms (Primal and Threshold algorithm) are de-
scribed for solving the bottlenedk linear programming problem:

Problem BL.P

min {z =max {¢; | § € L(z)}}
subject to : Az =bx 2 0.

where Ax,b and c=(¢1,...,c,) are respectively an mxn matrix , an n-

vector, & vector m-dimensional, and an n-vectorand L(x) ={j € I = {1,....n} { z; > 0}.

Let
S={z|Az=bo20}

the feasible set of problem BLP.

The problem BLP consists of finding a feasible solution which minimizes
a bottleneck type objective. According to Bansal and Puri {1980, Theorem 1)
the function z is a concave function , and the global minimum of z occurs at
an extreme point of § (Corollary p.192). Moreover,any local optimal solution
of Problem BLP is a global optimal solution of Problemn BLP (Bansal and
Puri (1980, Theorem 2),Seshan and Achary (1982, Theorem 2).

Garfinkel and Rao(1976) established a relationship between the problem
BLP and a problem solvable by a "greedy algorithm” and developed iwo
algorithms for solving the problem BLP.

The bottleneck problem was also studied by many authors. Bansal and
Puri (1980) have given a procedure for ranking of solutions of the Problem
BLP and also for finding its alternate k¥ best (k> 1) solutions.

Burkard and Rend1 (1991) have studied the lexicographic bottleneck prob-
lem.

Minoux (1989) has given many applications of and studied the problem
in which the objective function is the sum of a linear part and a bottleneck
part.

Mathur et al (1995) studied the bicriteria bottleneck inear programming
problem

iy (F(x) , (<)
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where I' and T are concave botileneck funciions and S is the non-empty
feasibie region defined by linear constraints.

Emetichev et al. (1995) studied a ¢lass of discrete vector problems with
one linear criterion and several "bottleneck” criteria, and proved that any
efficient solution can be obtained by solving a single-criterion problem with
an aggregated criterion which is a linear function.

Some real-world problems can be modeled as bottleneck problems, as
for instance some problems in plant layout (Franeis and White (1974)),the
political districting problern (Garfinkel and Nemhauser (1970)), and the m-
center plant location problem ((Garfinkel, Necbe and Rao (1974)),

The problem BLF is a generalization of two well-known bottleneck prob-
lems: The bottlenedk assignment ( Yechiali (1968}, Garfinkel (1571),Gross (1959),Geetha
and Vartak (1994; ) and the bottleneck transportation ( Yechiali (1971),Stancu-
Minasian and Tigan (1085) ).In what follows we refer to these two problems,

The bottleneck transportation problem has the form

Problem BTP

min {z = max {&; | (¢,7) € LX) }}

n
subject to : Zmij sag,i=1,.,m
=l

k(3

domy=byi=1.n

i=1

Tz 0i=1,..,mi=1..,n

where

8; is the available amount at the i** supply point,

b; is the requirement at the j** demand point,

1;; is the transportation time (independent of the amount of commodity
shipped) from i* supply point to the j** demand point,

X==(x;) is an element of the set of all feasible solutions of the classical
transportation problem which we denote by 5*,

LA(X)={(L)) € {%,...,m} x {1,...,n} | %;; > 0} is the positive graph of X.

The protfem BTP is to find a transportation plan which makes the most
time-consuTiing trip as short as possible.

If we consider the problem BTP in a prodaction context,instead of the
time t;; we have the rate of production Ry; (on a production line) of a man
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belonging to group (origin) i when he is assigned to job (destination) J. Here
a;’s are interpreted as the number of men available in the i** group and b;
men required for the j** job.

‘We have the problern

Problem PP

max {R = min {R; | () € L*(OH
Considering that B;; is a continuous nonnegative tandom variable with
distribution fanetion Fy;(.), Yechiali (1971) reduces the solving of the Problem

PP to maximization of the expected rate of production of the line

= ; 3 (1.1)

i {E(R) B8 R")}
He shows that for the family of Weibult distributions (and in particular
Exponential distributions) with scale parameters Mi; and shape parameter

3, Problem (1.1} is reduced to solving a deterministic fixed charge trans-
portation problem with nonlinear costs and with »set-up’ cost matrix {(As))

min Z Aij p (L2)

el (X)

In the particular case when m=n and a; = b; = 1 for all i and j then
the problems {1.1) and (1.2) are transformed,respectively,into the stochastic
bottleneck assignment problem and the assignment problem as considered by
Yechiali (1968). ‘

Unlike the method from Yechiall (1968 and 1971),Tigan and Stancu-
Minasian (1985) use the minimum-risk approach for solving the Problem
BTP in the case in which t;; are random variables. ) )

This approach consists of finding the optimal solution of the following
problem

v(z) = max P {w | mox {# | (i, 5) € L*(X)} £ 2}
Tigan and Stancu-Minasian (1985) show that this problem is equivalent

qnder certain hypotheses,to a deterministic bottleneck transportation prob-

lem. - '
In this paper we use the minimum-risk approach to obtain the solution of

the stochastic bottleneck linear programming problem.t, is shown that this
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problem can be reduced,under certain hypotheses,fo a deterministic bottle-
neck linear problem.In the particular case of bottleneck transportation prob-
lern we rediscover the results presented by Tigan and Stancu-Minasian (1985).

‘The paper is organized in the following way.Section 2 is a main part of
this paper,we expound our approach to solve the stochastic bottleneck linear
programming problem.In Section 3 we consider a generalization of Problem
BLP ie. the minimax problems and in Section 4 we consider applications to
the bottleneck spanning tree problems and investment allocation problems.In
Section & we give a simple numerical example.

2 The minimum-risk approach

Now let ¢; assurne random values with simple randomization,i.e. they are of
the form:

¢ =c;+ilw,viel (2.1)

where ¢ and ¢ are constants and t(w) is a random variable in a proba-
bility space (£2,K,P),with the continuous strictly increasing distribution func-
tion T(.).

The minimum-risk problem corresponding to level z associated with the
bottleneck linear programming problem (Problem BLP) consists of finding
the optimal solution of the following programming problem.

Find

v(#) = max P {w | ;grg)(cj +i{w)d) € z} (2.2)
We assume that

¢} 2 0,¥j € I and there exists at least § € I, such that €] >0 (2.3)

In what follows,we shall show that ,under assumption (2.3),the minimum-
risk problem (2.2} can be solved by a determiristic bottleneck finear problem
which does not depend on the distribution function of the random variable
tw).

4

e

Theorem 1 If assumption (2.3) holds and if the distribution function T is
contintous and strictly increasing, then the minimum-risk solution of problem
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(2.8) does not depend on T and it can be obtained by soluing the following
bottleneck linear problem:

max min gy
€8 FEL(X)

where

(z—d))fef, if f#0
9;=¢ +oo, if z—c; 2 0,and ¢ =10
if z—¢j <0, and ¢f=0

—0o0o,

Proof:
From (2.1) we get :

Flxz)=F {w ! max, (¢} + t{w))) < z} =Plw|d+tw) <zVje
Hence,accaording to (2.3),we have :

F(:z:,z}r-P{w;t(w)é__gj,VjeL(m)}zP{w[t(w)S )

i
The problemn (2.2) becomes

max F(x,z)iglggci‘“(jgg{g)w)-

Hence,by virtue of the assumption that T(.) is continnous and strictly

increasing, we get:

v(z) = wax F(z,2) = T(max min 93)

Thus,the theorem is proven.
We assume now that

¢ =+ w)elYie I (2.4)

where t;(j € I) are independent random variables with contiruous and
strictly increasing distribution functions T;(.).
Also,we assurne that

¢ >0vjel (2.5)

L(z)}

gg(!; gj} =T{min g;)

jeL(z)
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In this case,the minimum-risk solution of problem (2.2) depends on T5(.).
Indeed,as in the previous case,we have:

F(z,z) = P {u | J;gq&}wc)(c} +t(w)e]) € z} -
= Pl (¢ + b)) < 2,V) € L)} =
= Plu|tw) < g;,V5 € L()} = Wyep)Tilg;) ;where g; =
Hence,
mas F(r,2) = max Wyes1T3(55) (26)

This problem is equivalent to the following optirization problem:
maxIn (Te 15T (95)) = max » " In{T;(g;) @27
Jei(z)

Hence,we have:

Theorem 2 If the assumption (2.5) holds and the distribution functions T;
of 4;(w) are continuous end strictly increasing, then the minimum-risk sofu-
tion of the problem

max P {w | J_Ié’LLa{f}(cg; + t3{w)ef) < z}

o 7(3&11 be obtained by solving the problem (2.6) or,equivalently,the problem
We remark that the problem (2.7) is a fixed charge problern,which however
depends on the distribution functions T; of t;(w).

3 Minimax problems
In this Section we consider a generalization of the Problem BLP.So we con-
sider the following problem:

Pro_l)lemf%fGBLP

min{z = max {¢;(z;) | ; > 0})

—
z CJ

o

3
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where each ¢;(;) Is & piecewise constant increasing function and S is the
feasible set defined by linear constraints.

Here the coefficient ¢;{z;) depends on x; while in Problem BLP ¢;(z;) is
independent of x; and is equal to c; as long as x; > 0.

For the solving of this problem , Achary et al. (1982) presented four
algorithms : a)threshold algorithm, b) ar upper bounding technique , c) a
primal dual approach and d) a branch and bound algorithm.

In what follows,we consider that ¢;{x;) = c;z; such that the problem
GBLP becomes

Problem GBLP1

min {z = max {¢;z; | ©; > 0}}
ZES

This problem is referred to in the literature as one with a minimax ob-
jective function.

Minimax problems of this type arise In various contexts and have been
studied by many authors.Kaplan (1974) considered & maximin problem and
suggested a simple procedure when the probiem possesses an optimum ray
solution x, i.e. ,c;2y = {,V4 = 1,...,n.The general form of Kaplan’s problem
is solved by Ahuja(1985}, which developed two algorithms:a parametric algo-
rithm and a primal-dual algorithm. However these algorithms are presented
for a minimax linear programming problem,but can be easily adapted to solve
the maximin linear prograruming problem.

Yang and Shen {1988) give an algorithm which requires 0{n?) operations
o solve the problem.

max {z = min {¢;2;} | 2; > 0}
sabject to: ijzﬂj <m
i

where hy,¢j, ;,m are positive integer and 3. b; < m.
In what follows,we shall assume that ¢; are random with simple randorn-
ization, le.

&5 = & +tw)ey

where ¢§,¢ (j=1,...,n) are constant scalars and t(w) is a random vari-
able in a probability space {0, K, P) with the continuous strictly increasing
distribution function T{.).
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We assume that
lwy # 0 for all x; and j € {1,...,n} (3.1)

The minimum-risk approach to the minimex problem GBLP1 consists of
finding the optimal solution of the following programming problem

v e P {0 | s ) < 2 (52)
LE J

But the problem (3.2) is a Chebyshev problem in which the functions are

of particular form
#{®) = 5%

According to Stancu-Minasian (1984)(see,also, Tigan and Stancu-Minasian
(1983)) the following theorem is immediate.

Theorem 3 If assumption (3.1) holds and the distribution function T(z) of
#{w) s continuous and strictly increasing,then the minimum-risk solution of
problem (3.2) does not depend on T(z) and can be obtained by solving the
deterministic piecewise lineur fractionol programming problem

!
R Aal 1107 .

max min ——— , i &z; >0 (2.3

e s 3 - L4

)

or
. Z“C}ﬁj e

min max S cjmy <0 (3.4)

TES i c’j':l.J
We remark that these problems can be solved by use of a parametric
algorithm similar to Dinkelbach’s algorithm for fractional programming.

Remark 1 In the case of transportation problems, the form of Problem GBLP

%8

mip, {z = max {esi(az) | mis > 01}
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where c;;(X:;) is the transportation cost from i*" supply point to the j*

demand point.
A particular case is that in which the transportation cost ciplziy) 3s di-
rectly proportional to the amount of commodity shipped,ie.,

cij(mig} = Cos%as
The preblem GBLP1 becomes
)I;nelé'{ {z == max {C,'jﬁ?,'_—,‘ | Tij > 0}} (3.5)

This problem was studied by Achary and Seshan (1081).
Tn the case of simple randomization of the coefficients ¢y, a similar result
to theorem 3 can be stated and proved for the minimax problem (3.5).

Remark 2 In the particular case of @ linear bottleneck assignment problem,
the problem (3.5) was studied by Pfreschy (1995 and 1996).He proved thet
the eaxpected value of the optimal solution tends towards the lower end of the
range of cost coefficients for any distribution function as long as the upper end
of the cost range is bounded.He also derives functions in n as explicil upper
and lower bounds for the expected oplimal value tn the case of uniformly
distributed {00, 1) cost data,

Remark 3 Similar results can be obtained for o more general form of Prob-
lern GBLP1 i.e. |

r&ig{z =max{e;z; | € Sz > 0,i=1,..,p}}
where (81, Sz, ..., Sp ) i @ partition of the index set I={1,2,...,n}.

The deterministic case of this problem was studied by Gupta and Punnen
{1989), who proposed two algorithms.

4 Applications

4.1 Bottleneck spanning tree problems

In this subsection we apply the results of the previous sections to study the
bottleneck spanning tree problem.

Let G = (N, E} be an undirect graph with n vertices IV = {v1, 03, -, Un}
and m edges B = {e1, 9, ... e} ‘
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For each edge e; € E there is an associated cost ¢;. A Spanning tree
T'=T(N.S) of G is & partial graph satisfying the following conditions:

a) T has the same vertex set as (3,

b) 8C B, |§] = n-1,where | S} denotes the cardinality of set S,

c) T is connected.

Denote by < the set of all spanning trees of the graph G,

A spanning tree T in G = (N, E) can be represented by a vector of (-1
variables X = (2, ..., 7,,) ,where

= 1, ’n‘.f €; € T
* 0, otherwise

Conversely,if {e; | z; = 1} becomes a spanning tree on G with vertex set N
, X = (%1, ..., Tm) Is also called spanning tree.Let f be the total cost (weight}
associated with the spanning tree,

)= w.

ees

The minimal spamning tree problem is
Problers STP

min {f(X) = Zc,-xj | X : spanning tree}

=1

The li_near programming formulation of the minimal weight spanning tree
problem is (Andersen et al. (1996))

min f{X)= Z 5
=1

subject to: Zme =n-1 (4.1)
ecl

> w=|P|-LYPCN,PAD (4.2)
ec iy

; %, 2 0 and integer, Ve € E (4.3)

where EE{& € Eje={4,j) whereij € P}.
Constraint (4.1) ensures that exactly n-1 edges are used,and (4.2) ensures
that there are no cycles.
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The bottleneck spanning tree problem is
Problem BSTP

min max {¢; | z; =1}
ar equivalently
min max {c; |e; € T, T : spanning tres}

The minimal spanning tree problem is well-known and efficient algorithros
for solving it exist (Chandrasekaran (1977), Cheritan and Tarjan (1076),
Ford and Fulkerson (1962}, Yao (1975), Andersen et al. (1996) ). The
stochastic spanning tree problem is considered by Ishii et al. (1981 and
1995) , Geetha and Nair (1993) and Mohd (1094). Ishii and Nishida (1983}
consider a stochastic version of bottleneck spanning tree problem in the edge
of which costs are random variables.

min
subject to : P{max{c;|e; €T} < f} 2 a, T : spanning tree

where each c; is assumed to be distributed according to the normal dis-
tribution N{p;,6%) , with mean p; and variance o3 , and they are mutually
independent.

They show that, under reasonable restrictions,the problem can be reduced
to a minimal hottleneck spanning tree problem in a deterministic case.Mohd
(1994) introduced several modifications to the algorithm of Ishii et al. (1981),
including theorems which concern the proxy problem.

Unkke of them , we consider now the minimum-risk approach for solving
the stochastic bottleneck spanning tree problem.

We consider that the costs are linear functions of the same random vari-
able t{w) (the simple randomization case) having a distribution function T(z)
continuous and strictly inecreasing i.e.

ey = + t(w)el (=L ..,m)

The minimum-risk problem corresponding to level zassociated with the
bottleneck spanning tree problem (Problem BSTP) consists of finding the
optimal solution of the following programming problem.

v(z) =max P {w | max {c) +t{w)e] )< z;e,€T, T : spanning tree}(4.4)
2
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The following theorem can be proved by an analogous argument, like the
one in the proof of Theorem 1.

We assume that ¢ # 0 forall j = 1,...n, {4.5;

Theorem 4 If assumption {4.5) holds and if the distribution funetion T is
conbinuous and strictly increasing,then the minimum-risk solution of problem
{4.4) does not depend on T and can be obtained by solving the following
bottleneck spanning tree problem

=g

1
C;

max min{ le; €T, T : spanning tme} yifd =0

ar

min max {57—’ { ey €T, 7T : spanming tree} e <o
£

Remark 4 Although the results presented here are restricted to the boitle-
neck spanning tree problem,the methods can be adapted and applied to various
other problems in graphs.In particular,it is possible to derive similar results
for bottleneck shortest path problems or bottleneck Steiner trees (for a de-
terministic case see,Sarrafzadeh and Wong (1992) and Ganley and Snlowe
(1996)).In the first case F represents path sets between two nodes and in the
second case F represents the set of all Steiner trees. Given a set of vertices
in which each verter is labeled s demand or Steiner, a Steiner tree s a tree
connecting all demand points and some {or none or all) Steiner points. Thus,
the Steiner tree problem is more general than the spanning free problem.

Remark 5 A similar approach can be applied to the stochastic bottleneck
graph partition (RGP} problem. The BGP problem is to partition the nodes
of a graph into twe equally sized sets,so that the mazimum edge weight in the
cut separating the two sets is minimum (Hochbawm and Pathrig {19986)).

4.2 Bottleneck investments allocation problems

Now we shgil present a different approach to investment allocation prob-
lens. These Problems are classical and can be stated as follows:An investor
wishes to invest in n production activities ( or in n securities} a certain
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amount of money.If we denote by x; the percentage of the fund which is go-
ing to be Invested in activity i (or in security i),then the vector == (&1, ..., %)
satisfies the constraints

T
dom=1,m20,
i=1

to which one can add other constraints based on economit.: considerations.
The income corresponding to the investment strategy x is

i
V(z) =3 &
i=1 '
wheze £; constitutes the income obtained when it is invested the whole in
activity i.

The optimal selection problem for an investment portfolio is

max V(r)= Zfi.'l.‘g
-l

n
subject. to: 23681:{12'2:35:1,1'520,}{65}
=1

where S results from other economic constraints.

The problem becornes more complicated since &, are not constants,but
random variables. In the classical approach ,considerm'g that £, are nor-
mal variables,the problem is reduced to a nonlinear fractional programming

m { Stancu-Minasian {1997) ).
pm}l:%::w \Sves shall present a v{a.riant of this problem , different from'th'e clas-
sic one, We suppose that we want to find a solution so as to maximize the
minimum of the income ;. The following botileneck prograraming model

arises:
max min {&; V2 > 0}
TES
T'his problem can be approached by the method of the previous Sec-
tion,i.e. the minimum-risk approach , and we obtain the following problem

max P{w| min{¢;| = >0} > u}
zeS

In the simple randomization case of the random varia,-ble &; (fl =&+
#(w)€)) in which t(w) has a distribution function T which is continuous and
e i
strictly increasing, a similar result, to Theorem 1 can be derived.
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5 Numerical example

Fo illustrate our approach,we consider the following problem:
minmax {¢; | z; > 0}

subject to : @ — Ty —Bxs Fws+ =1
$2+£B4““4I5*$6+:E7 =2
3+ 20y —x5+x6 =10
@2 0i=1,.,7
where the coefficients {cy, ¢y, ..., ¢z) are random variables which depend

linearly on the same random variable t ;whose distribution function is con-
tinuous and strictly increasing,as follows:

c1=21+3t;ca=244+31 ;0 =234+2¢;
cg =105t ;05 =18+ 3 ;5 =21+ 2¢;
C7=9+3t

We choose the level =15 and denote the feasible set by 8.
According to Theorem 1, the solution of our problem can be obtained hy
solving the following deterministic bottleneck linear problem:

max min {c; | z; > 0}

where (¢1,¢9, ..., ¢7) = (—2,-3,-4,1,-1,-3,2).

Applying a modified version of the algorithm given by Bansal and Puri
(1980), we obtain that the optimal solution of this problem and hence of our
initial problem is

x=(0;0;0;1/4;1/2; 0; 17/4).
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