Pullback attractors and extremal complete trajectories
for non-autonomous reaction-diffusion problems.

James C. Robinson' Anibal Rodriguez-Bernalt
Alejandro Vidal-Lépez?

July 4, 2005

t Mathematics Institute,
University of Warwick, Coventry CV4 7TAL, UK
! Departamento de Matematica Aplicada
Universidad Complutense de Madrid, Madrid 28040 SPAIN

Abstract

We analyse the dynamics of the non-autonomous nonlinear reaction-diffusion
equation uy — Au = f(t,z,u), subject to appropriate boundary conditions, proving
the existence of two bounding complete trajectories, one maximal and one mini-
mal. Our main assumption is that the nonlinear term satisfies a bound of the form
f(t,z,u)u < C(t,z)|u|? + D(t, z)|u|, where the linear evolution operator associated
with A + C(t, z) is exponentially stable. As an important step in our argument we
give a detailed analysis of the exponential stability properties of the evolution op-
erator for the non-autonomous linear problem u; — Au = C(t,z)u between different
LP spaces.

1 Introduction

In this paper we analyse the dynamics of the following non—autonomous nonlinear parabolic
model problem
up—Au = f(t,z,u) in Q t>s
u(s) = us (1.1)
u = 0 on 0f,

where ) is a bounded domain in IRY and f(¢,z,u) : IRXQx IR — IR is a suitable smooth
function. We denote the solution of this equation by u(t, s; us).

Our goal is to prove that under suitable conditions there exist two extremal complete
trajectories (defined for all ¢ € IR), one maximal and one minimal, which give bounds for



the asymptotic behaviour of solutions in an appropriate sense. We will assume that the
nonlinear term satisfies

ft,z,u)u < C(t,z)|u|®* + D(t,z)|u| forallu € IR (1.2)

for some C' € C*(IR, L*(Q2)) with 0 < o < 1 and p > N/2, and some function D with
values in L"(€2), 1 <r < co. The assumption crucial to our analysis is that the evolution
operator associated with A + C(t, z) is exponentially stable.

This paper makes two essentially independent contributions, which are combined in
our treatment of the reaction-diffusion equation (1.1).

The first is a well-developed general theory concerning the properties (in particular the
exponential stability) of the evolution operators associated with non-autonomous linear
problems of the form

u — Au = C(t,x)u (1.3)

posed in LI(Q) (1 < ¢ < oo) or C(R2), with C' € C*(IR, L*(2)), where 0 < o < 1 and
p > N/2. We present a complete study of the norms of the solution operator Uc(t, s)
between different LP spaces.

The second ingredient is a dynamical argument that, under certain natural conditions,
guarantees the existence of extremal complete trajectories of a nonlinear problem. The ar-
gument makes key use of the order-preserving property of our equations, thereby deducing
the existence of extremal trajectories for the nonlinear equation (1.1) from their existence
for the associated linear problem (1.3). Although for the sake of simplicity we consider
this problem in the phase space C(Q), under suitable growth conditions we could also
consider Sobolev spaces of initial data in L?(£2): the dynamical arguments would remain
almost identical, but the analysis would become much more technically involved.

Also, note that in our analysis no prescribed time dependence is assumed (e.g. peri-
odic, quasiperiodic or almost periodic).

Since our fundamental tools are comparison techniques, the results are valid for more
general operators than the Laplacian and other boundary conditions provided that the
problem admits a comparison principle. We also use the smoothing effect of the equations
in an essential way.

The dynamical results here are the non-autonomous counterpart of those for au-
tonomous parabolic problems established in Rodriguez-Bernal and Vidal-Lépez [19] and
Vidal-Lépez [23].

1.1 Summary of results for the nonlinear equation

Since the initial time plays a central role in non-autonomous problems, in order to analyse
the behaviour of solutions of (1.1) it is natural to make use of the notions of pullback
attraction and pullback attractors. The basic idea behind these is that the relevant
dynamics at the current time ¢ are those that have arisen from initial conditions long ago,
i.e. we take s — —oo in order to discount the transient behaviour (rather than taking
t — oo which is more natural in the autonomous case). The pullback attractor is then



the set of possible current states, {.A(t) };cr, for solutions that started arbitrarily far in
the past. Of course, the more familiar concept of forwards attraction (as t — +o00) is
still relevant, although some care is needed with the definition of a ‘forwards attractor’ in
non-autonomous systems.

In this paper we are going to show (under suitable conditions on f, C, and D as
described above) that there exist two extremal complete trajectories for (1.1), @u (¢, z)
and ¢, (t,z), that are maximal and minimal respectively, in the sense that any other
complete trajectory v (t,z) satisfies

om(t,z) <Y(t,z) < pup(t, x) forall telR.

We also prove that if f(¢,x,u) is T—periodic in time then so are ¢, and @y.
A relatively simple argument shows that the ‘order interval’ [, (%), ©ar(t)], consisting
of all functions lying between ¢,, and ,,, is positively invariant, i.e. for any ¢ > s

Pm(s,7) Sus(2) < ou(s,2) = omlt,2) <ult,sius) (@) < oult, ),

and also attracts the dynamics of the system uniformly in the pullback sense, i.e. for every
t € IR we have

Om(t,z) <liminfu(t, s, z;us) < limsupu(t, s, z;us) < @ar(t, x) (1.4)

§—=—00 5——00

uniformly in x € Q for all {u,} in a bounded set of initial data B.
Moreover, ¢ps(t) is globally asymptotically stable from above in the pullback sense,
i.e. for all v € Cy(IR, X) such that v > ¢ we have

lim u(t, s;vs)(x) = em(t, x)
§——00
uniformly in z € €. In a similar sense, ¢,,() is globally asymptotically stable from below.
As a consequence, there exists a pullback attractor for (7.1), denoted by A = {A(t) }4,
and
A(t) C [om(t), om(t)] for all t € IR.

The two extremal trajectories lie in the pullback attractor: ¢, (t), oa(t) € A(t) for all
telR.

A full and exact statement of these results is given in Theorem 7.1.

Observe that it is possible (and it is indeed the case in certain problems) that the
extremal solutions are not uniformly bounded for all ¢. While in such a case the pullback
attractor can still exist, there can be no bounded forwards attractor.

1.2 Outline of the paper

In Section 2 we recall some definitions from the theory of attractors and order-preserving
dynamical systems. In particular we introduce the notion of pullback attraction in a
formal way.



In Section 3 we first sketch the dynamical arguments using the simple example of a
scalar ordinary differential equation, and then give a more extended presentation in the
context of the reaction-diffusion model, but with no attempt to treat the problem in full
generality or to give all the details of the proofs. This avoids the technicalities from the
theory of PDEs required to obtain the sharp results that follow later, but enables us to
present the underlying ideas in what we hope is a relatively transparent way.

In Section 4 we analyse in detail the evolution operators associated with linear homo-
geneous non-autonomous parabolic equations. In particular we discuss questions related
to regularisation and exponential stability in several function spaces. We give sufficient
conditions for exponential stability, and prove its persistence under various classes of
perturbation.

In Section 5 we study complete trajectories for inhomogeneous linear non-autonomous
parabolic equations, giving suitable conditions for their existence and analysing their
asymptotic behaviour both as ¢t — +o00 and as t — —oo. Further to this in Section 6 we
consider asymptotically autonomous and asymptotically periodic problems: we prove that
in such cases the complete trajectories inherit the properties of the underlying equation
(asymptotically autonomous/periodic).

In Section 7 we prove our main result concerning extremal complete trajectories and
the pullback attractor for (1.1), as outlined above. In Section 8 we analyse the case in
which the extremal trajectories are bounded forward in time and give a description of the
asymptotic behaviour of (1.1) starting from the pullback attractor.

In Section 9 we show how the general results from previous sections can be applied
to some logistic non-autonomous model problems. Finally, in Section 10 we extend
the results to some non-autonomous parabolic equations with nonlinear non-autonomous
boundary conditions.

2 Some useful concepts for non-autonomous equa-
tions.

Throughout the paper we will recast our equations as abstract families of (non-autonomous)
evolution operators acting on an appropriate phase space.

Definition 2.1 Given a metric space (X, d), we say that a family of mappings {U(t, s) }>s
15 a process or a family of evolution operators if it satisfies

1. U(t,t) =1 for allt € IR,
2. U(t,s)U(s,r)u=U(t,r)u forallr <s<t,ue X, and

3. ur U(t,r)u is continuous in X, t > r.



2.1 Different notions of attraction in non-autonomous problems

We begin with some useful definitions from the theory of attractors for non-autonomous
systems which we will use throughout this paper (see for example Crauel, Debussche, &
Flandoli [8], Kloeden & Schmalfufl [14], or Schmalfuf [21]).

We define formally the notions of attraction and absorbtion in both the ‘pullback’
and ‘forwards’ senses. In what follows we denote by B and I time-dependent families
{B(s)}ser and {K(s)}scr of bounded sets. We begin with attraction.

Definition 2.2 i) We say that K attracts B in the pullback sense if for each ty € IR
lim dist(U(to, s)B(s), K(ty)) = 0.
S—>—0Q

ii) We say that IC attracts B (forwards in time) if for each s € IR
tlim dist(U(t, s)B(s), K(t)) = 0.
—00
We say that IC attracts bounded sets (in whichever sense) if the above definitions hold
for B(t) = B, where B is a fized bounded set.

Stronger than this, but key to the existence results for pullback and forwards attrac-
tors, is the notion of an absorbing set.

Definition 2.3 i) A bounded set K absorbs B in the pullback sense at time ¢y if there
exists T = T (ty, B) < ty such that

Ulto,s)B(s) C K forall s <T < to;

ii) a bounded set K C X absorbs B forwards in time if for each s € IR there exists
T =1T(s,B) > s such that

U(t,s)B(s) C K forallt>T.
A time-dependent set K is invariant if it preserved under the action of U(t, s):

Definition 2.4 We say that K is forwards invariant (with respect to U) if
U(t,s)K(s) C K(t) forallt> s,

and that IC is invariant (with respect to U) if
U(t,s)K(s) = K(t) forallt> s.

In the following we will fix some nonempty class D of families of bounded sets of X,
{B(5)}scr, as the basin of attraction. See Schmalfufl [21] for details of some of the prop-
erties required for such a class (a “universe”), but we remark here that in particular the
classes that we will consider will include all time-independent bounded sets, i.e. families
where B(t) = B for all t € IR where B C X is bounded.

As a general notation used below, if an element in D is of the form {v(s)}s with v(s)
being a single element in X then we denote it by v,.

We are now in a position to define the pullback attractor.
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Definition 2.5 We say that a family of compact sets A = {A(t)}; in X is the pullback
attractor (for U) with respect to D if it is invariant with respect to U, pullback attracts

all B € D, and is minimal in the sense that if {K(t)}er is another pullback attracting
family of closed sets then A(t) C K(t) for allt € IR.

To treat the asymptotic behaviour of solutions forwards in time we define the notion
of a forwards attractor.

Definition 2.6 We say that a compact set F is the forwards attractor for U if F is the
minimal compact set such that for any s € IR and any bounded set B C X,

lim dist(U (¢, s) B, F) = 0.

t—00

Note that the notion of a pullback attractor, as introduced above, is relative to some
chosen basin of attraction D. On the other hand the domain of attraction for the forwards
attractor is restricted, as is customary, to the class of time-independent bounded sets.

The next result reproduces the standard conditions guaranteeing the existence of a
pullback attractor (see Crauel et al. [8], Langa and Sudrez [15], Schmalfuf} [20]).

Theorem 2.7 If there exists a time-dependent compact set that is pullback absorbing for
all B € D then there exists a pullback attractor with respect to D.

For a somewhat similar result for the case of the forwards attractor, see Section 8.

2.2 Order-preserving & exponentially stable evolution opera-
tors

One of the main tools we use in our analysis of (1.1) is the monotonicity of solutions, in
various senses. To formalise these, suppose that we have an order structure on the phase
space X, which we will denote by <. We will use evolution operators that preserve the
order in the following sense:

Definition 2.8 We say that an evolution operator is order-preserving if there exists an
order relation in X (<) such that

uy <wvg = U(t,s)ug < U(t,s)vy forallt>s
while both solutions exist.
Definition 2.9 Given u < v, the order interval defined by u and v is
[u,v] ={we X : u<w< v}

The next definition gives us the non-autonomous analogues of the concepts of an equilib-
rium point and of sub- and super- solutions from the theory of autonomous problems (see
Amann [1], Arnold and Chueshov [4]). In particular the notion of a complete trajectory
is central to all that follows.



Definition 2.10 We say that a continuous map v : IR — X is a complete trajectory for
U if forallt > s
U(t, s)v(s) = v(t).

We say that v is a super-trajectory for U if for allt > s
U(t, s)v(s) < o(?),
and that v is a sub-trajectory for U if for allt > s
U(t, s)v(s) > v(t).

Finally, we give define a concept that will be crucial in the rest of this work, namely,
an exponentially stable evolution operator.

Definition 2.11 If X is a Banach space and U(t,s) € L(X), we say that the evolution
operator U(t, s) is exponentially stable if for some 8 >0 and M > 0

U (t, 8)||cx) < Me B3 for allt > s.

2.3 Existence, uniqueness, and comparison results for our parabolic
problem

We now recall some existence and uniqueness results for the nonlinear parabolic problem

u—Au = f(t,z,u) in Q, t>s
u = 0 on 000 t>s (2.1)
u(s) = wuo,
posed in X = C(Q2). The following theorem gives the existence of a local solution for
(2.1) (e.g. see Amann [2], Danners and Koch-Medina [9], Henry [12] or Lunardi [16] or
Mora [18]).

Theorem 2.12 Suppose that f(t,z,u) is a continuous function, locally Hélder in t and

locally Lipschitz in u. Then for every ug € X = C(S)) there exists a unique local solution
u(t, s;ug) of (2.1) given by the variation of constants formula

t
u(t, s;up) = ey, +/ e f(,u(r, 55 u0)) dT.
S

Moreover, if uy € Cy(Q), the class of continuous functions vanishing at 05, then u is
continuous at t = s.

If the solutions of (2.1) are globally defined then U(t, s)up = u(t, s;ug) defines an
evolution operator in X = C(€) as in Definition 2.1. Due to the smoothing effect of (2.1)
we know that for any ¢ > s, U(t, s) is a continuous and bounded map from C(Q2) to C;(Q)

(the class of C' functions vanishing in 99).



If we consider the problem posed in L?(2) with 1 < ¢ < oo then the smoothing prop-
erty of the evolution operator guarantees that all the solutions enter C(Q2) immediately
(for t > 0), and so it is sufficient to study the problem in the phase space C(Q). However,
notice that we need to impose some growth restrictions on f to ensure the existence of a
solution of problem (7.1).

Notice that if ug € Cy(£2) then the mild solution defined in Theorem 2.12 is continuous
at ¢ = s and then Theorem 2.12 is obtained directly from the references above.

However, if we deal with initial data uy € C(Q) or even uy € L*°({2) then the mild
solution defined above is not continuous at ¢ = s and this makes the proof of Theorem
2.12 more subtle. To prove the result in such case, problem (2.1) is considered in a
Lebesgue space LI(2) with 1 < ¢ < co. Then, given any initial data uy € L*°(Q2) C L(2)
and truncating the nonlinear term we obtain the existence and uniqueness of a solution
in L(Q) starting from wug for a certain time interval. Notice that by truncating the
nonlinearity we avoid the need to impose growth restrictions on f. Now, by the smoothing
property of the evolution operator in L?(fQ), the solution belongs to Cy(Q) for all ¢t > s
while it is defined. Thus, we have proved the existence of a unique solution starting from

Ug € LOO(Q)

One of the main tools we will use is the following consequence of the maximum principle
that we will refer to as the comparison principle (see e.g. Appendix A in Arrieta et al.
[5])- In all that follows we use f < g to denote the standard ordering, i.e. f(z) < g(z) for
almost every x € ().

Theorem 2.13 Let f,g: IR x Q) x IR — IR be continuous functions, locally Holder in t
and locally Lipschitz in u. Suppose that for allt € IR, x € €2 and u € IR we have

flt,z,u) < g(t,z,u).
Then, if ug < vy are two ordered initial conditions in X = C(f2), we have
us(t, s, z;u0) < uy(t, s, x;vo)

while both solutions exist, where we have denoted by uy(t, s, z;ug) the solution at time t
of problem (2.1) with initial data uy at time s and nonlinear term f.

3 A short review of the dynamical plot.

The statements and proofs in Sections 5 and 6 contain dynamical arguments that could
be hidden on a first reading because they make use of technical arguments from the theory
of PDEs (in particular various smoothing properties between different spaces) in order to
treat the problem in wide generality.

Our aim in this section is to give a more abstract, but thereby we hope more trans-
parent, outline of the key arguments without these technical distractions. We begin by
showcasing the argument in the context of a scalar ODE, and then present an abstract
version of the PDE results.



3.1 A simplified version of the dynamical argument for scalar
ODEs

Since our argument makes fundamental use of the order-preserving properties of equation
(1.1), we will use a scalar ODE (which is also order-preserving) as a model problem, and
prove the existence of maximal and minimal complete trajectories (in a certain class) for

= f(t,x) z(s) = zs € IR, (3.1)

where we assume that f is sufficiently smooth to guarantee the existence of unique solu-
tions for any x; and all ¢ > s. It will be convenient to write the solution of this equation
at time ¢ in terms of a solution operator U(t, s), i.e. (¢, s;xo) = U(t, s)xo. Because we
have a scalar ODE solutions maintain their initial ordering, i.e.

zo < Yo = U(t,s)xg < U(t,s)yo forall t>s.
Under the assumption that f is bounded above by a linear function of z,
zf(t,z) < —C(t)z® + D(t)|z|, (3.2)
we have d
il < ~C(Ol] + D),

and so we can expect to obtain some results on the behaviour of the nonlinear equation
by understanding that of the inhomogeneous linear equation

y=—-C(t)y + D(t). (3.3)
Indeed, we have the ‘comparison principle’
\U(t, s)zo| < yl(t, s;|zol). (3.4)

In order to control the behaviour of (3.3) we assume that the solution operator ®(, s)
of the corresponding homogeneous problem z = —C(t)z is exponentially stable, i.e. for
some M, [ > 0,

0<®(t,s) < MePt=5)  forall t>s.

It is then easy to show that if D € Dg, where
Dp = {z(-): for some y < B, e"|z(t)] >0 as t— —oo},

then .

b(t) = / B(t, 5)D(s) ds
is the unique complete trajectory of (3.3) in Dg, and that it attracts all y € Ds ‘in the
pullback sense’, i.e.

lim y(t,s;y(s)) =¢(t) forall ye Dg. (3.5)

S——00



It follows from (3.4) and (3.5) that

lim sup |U (£, s)o| < 6(2), (3.6)

§——0Q

and that ¢(t) is a super-trajectory of (3.1), i.e. that

Ul(t,s)p(s) < ylt,s; d(s)) = o(t) for all t>s.

We now consider a candidate for the maximal complete trajectory of (3.1), namely

ep(t) = lim U(t,s)o(s). (3.7)

Since ¢(+) is a super-trajectory, for each fixed ¢ we have
Ult,s)p(s) =U(t,s +e)U(s+¢€5)p(s) <U(t, s+ €)d(s +€),

and so U(t,s)¢p(s) is non-increasing as s — —oo. Since we also know from (3.6) that
liminf,,_ U(t, s)¢p(s) > —¢(t), we know that the limit in (3.7) exists pointwise. That
o (t) is a (complete) trajectory of (3.1) follows from the continuity of U(t, s),
Ult,s)em(s) = Ult,s) im U(s,r)p(r) = lim U(t,s)U(s,r)o(r)
r——00 r——00

= lim U(t,1)é(r) = en(t),

which also shows that the limit in (3.7) is in fact a continuous function of ¢.
To prove that ¢y, is the mazimal complete trajectory, suppose that z(t) is another
complete trajectory contained in Dg. Then

U(r,s)z(s) <y(r,s;|z(s)]),

and acting with U(¢,7) on both sides we have

x(t) S U, r)y(r, s;|x(s)]).

Since this holds for all s we use the fact that |z(-)| € Ds to take limits as s — —o0 to
obtain

z(t) < U(t,r) limsupy(t, s; |z(s)]) < U(E, 7)o (r);
S§—>—00
since this holds for all 7 we now take the limit as t — —oo to obtain z(t) < ¢ (t) as
required.
Of course, in our more detailed analysis we also consider other variations and refine-
ments of this argument, but it is the use of the comparison principle and the ‘pullback’
idea that is at its heart.

10



3.2 Review of the arguments for parabolic PDEs

Here we give a short review of the dynamical arguments in the context of a PDE problem,
and point the reader towards the complete proofs in the following sections. The arguments
are given in more detail than those for the ODE in the previous section.

The type of linear equations that we will consider in Sections 5 and 6 can be written

in an abstract form as
v+ Aty = f(t), t>s
v(s) = s
(

in a certain Banach space X, with A(¢) a time—dependent operator in X with a time-
independent domain and f : IR — X.
We begin by studying the homogeneous case, i.e., f =0,

{wﬁ—At)w =0, t>s (3.9)

w(s) = wo.

We assume that A(t) defines a linear evolution operator U(t,s) and then (3.8) has a
unique solution w(t, s; wg) = U(t, s)wy.

For 8 > 0 we define Dg = Dg(IR, X ), the “basin of attraction”, consisting of families
of bounded sets that grow slower than e™#* as ¢t — —oo, i.e. families of bounded sets of
the form {B(t)}: such that for some vy < 8 we have

|B(t)||x =0 as t — —o0,

where
|1 B x := sup ||b]| x
beB

In a slight abuse of notation we will also say of a function f : IR — X that ‘f € Dy’ if

{f(s)}sER S Dﬂ-
In this case Theorem 5.1 can be stated as:

Theorem 3.1 Suppose that the evolution operator U(t,s) for (5.1) in X is exponentially
stable, i.e, for some B > 0

U (¢, 8)|lcxy < Me™ P~ for all t > s. (3.9)

Then the unique complete trajectory for (3.8) in Dg is the trivial solution. Indeed,
A = {A(t)}+ such that A(t) = {0} is the pullback attractor with respect to Dg.
Moreover, the trivial solution also attracts bounded sets in X forwards in time.

We then consider the following linear inhomogeneous problem

{vt+A(t)U = f(0), t>s, (3.10)

v(s) = ws

11



which, under suitable assumptions on f, has a unique solution given by the variation of
constants formula, i.e.

v(t,s;vs) = U(t, $)vs +/ U(t,7)f(r)dr. (3.11)

Assuming the exponential stability of the evolution operator U associated with A(t)
as above (see (3.9)) we can obtain following result (see Theorem 5.3):

Theorem 3.2 Suppose that the evolution operator U(t,s) is exponentially stable in X,
i.€.,
U (t, 8)||cx) < Me P9 with 8> 0 and M > 1.

i) If f € Ds(IR, X) then (3.10) has a unique complete trajectory ¢ € Dg.
i) If f € L°(IR,X) then (3.10) has a unique complete trajectory ¢ € Cy(IR,X) N
L?(IR,X) C Dg, and ¢ is the unique complete trajectory within Dg.

Furthermore, A = {A(t)}+ = {¢(t)}+ is the pullback attractor with respect to Dg for
(3.10).

Also, A = {A(t)}: = {o(t)}+ attracts bounded sets of X forwards in time. More
precisely, for every bounded set B C X, we have

lv(t, s;v0) — d(2)||x < Ke P9, t>s, (3.12)

for all vy € B, where K = K(B).

Proof. It can be shown that
t
o(t) = / U(t,7)f(r)dr (3.13)
is a complete trajectory for (3.10).

Let B = {B(s)}s € Ds and fix {v,}s € B. Let w(t, s;vs) = v(t,s;v5) — ¢(t). Then w
solves the homogeneous problem

wy+ A(t)w = 0, t>s
{ w(s) = wvs— P(s). (3.14)
So, since {B(s) — ¢(s)}s € Dg, from Theorem 3.1, we have
w(t,s;vs) >0 as s — —o0
uniformly for v, € B(s), where {B(s)}; € Ds.
Therefore, the complete trajectory ¢ is the pullback attractor for (3.10).
Notice that if we fix s € IR and a bounded set B C X, we have
[v(t, 5300) — $(t) 1 x < Ke 7"y — ¢(s)l|x < Kre ™7 — 0 (3.15)
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as t — +oo, for all vy € B, where K; depends on the bounded set B. Hence ¢(t) also
attracts bounded sets of X forwards in time.

We now give a brief outline of the proof that ¢(¢) is well-defined and belongs to the
right space. For further details see the proof of Theorem 5.3. In the first case, when
[ € Ds we have || f(t)||x — 0 as t = —oo for some v < (: with this choice of v we can
write .

(1) = / DYt 7)e f(r)dr,

and taking norms yields

t
ol < ([ D ar) sup o))
7<t

—0o0

M
= sup (e""||f (7 .
s (@ 1£(0))
Since || f(t)||x — 0 as t — —oo this implies that ¢ € Dg and, by Theorem 3.1, ¢ is the
unique complete trajectory in Dg.

If f € L*°(IR, X) then a simple computation gives

: M B(t—s
I6(0)lx < timsup = (1= ¢ ) |y < G o=

§—>—0Q

M
E

The proof of the fact that ¢ € L'(IR,X) when f € L'(IR,X) follows using Fubini’s
Theorem (for further details see Theorem 5.3). The result in the case f € L"(IR, X)
follows from the interpolation theorem for L"(IR, X) spaces. Finally, using the Holder
inequality one can prove that in any case ¢ € L*°(IR, X). m

When f is integrable or, more generally, when f is small at +00, we then show that
¢ vanishes at t = £oo (see part (iii) of Theorem 5.3). More precisely (see Corollary 5.6):

Corollary 3.3 Assume that either
feL’(R,X) with 1<o0 < o0,

or that
feL®R,X) and |[f(t)|lx =0 as t— +oc.

Then ¢, the complete trajectory given in the theorem above, also satisfies ¢ € Co(IR, X).

We next consider the T-periodic problem associated with (3.10), i.e., we suppose that
A and f are T-periodic. The following result states that, in the T-periodic case, the
unique complete trajectory given by Theorem 3.2 is T-periodic (see Corollary 5.8).

Corollary 3.4 Assume that the evolution operator associated with A(t) is exponentially
stable (see (3.9)) and f € L*(IR,X). If both A and f are T-periodic functions then the
unique complete trajectory ¢ € Dg for (3.10) is T-periodic.
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Proof. Note that the hypotheses of Theorem 3.2 ii) with 0 = oo hold. Thus, let ¢ € Dg
be the unique complete trajectory given by Theorem 3.2. Then,

¢u(t) + A(t)o(t) = f(t)
and, by the periodicity of A and f we have
¢u(t) + At +T)o(t) = f(t+T)
which, after a change of variables, gives

Gt =T) + At)o(t = T) = f(t).

So, w(t) = ¢(t — T) is a complete trajectory of the problem (3.10). But Theorem 3.2
guarantees the uniqueness of such a complete trajectory, and so we must have ¢(t) = w(t)
for all t € IR, that is, ¢(t) = ¢(t — T) for all t € IR. In other words, ¢ is T-periodic. m

We then consider asymptotically autonomous linear problems. That is, we suppose
that in problem (3.10), A(t) — A% and f(t) — f* as t — £oo (in an appropriate sense).
As we said before it is not our purpose here to give detailed proofs of the results but only
to give an idea of how to proceed, so we delay a formal statement to Theorem 6.1 and
content ourselves for now with an outline of the argument.

Assume that the semigroup generated by A* in X has exponential decay. Then there
exists a unique solution ¢* of the equation

Atgt = [+, (3.16)
Setting w(t) = v(t) — ¢+ we have,
w+A)w = f(t)— A(t)g"
w(s) = vy— o

Now,
fO) = A" = (f(t) = f1) + (fT = Alt)o")
and, from the definition of ¢+

fT=At)e" = (A(t) — AT)e™.

Thus,
@) =A™ = (f(t) — f7) + (A@) — AT)¢" =0

as t — oo.
Then, a similar argument to that in the proof of Corollary 3.3 and part iii) of Theorem
5.3 guarantees that w(t, s;vg — ¢7) — 0. Therefore

’U(t, S5 U'O) - ¢+'

14



In particular, ¢(t) — ¢+ as t tends to infinity.

The study of the behaviour as ¢ tends to —oo follows similar arguments.

The case in which A(t) and f(t) converge (in the appropriate senses) to a T-periodic
operator or function, respectively, is obtained using an analogous argument (see Theorem
6.2).

In the following sections we will use the arguments above on the PDE model problem

v—Av = C(t,z)v+ D(t,xz), in Q, t>s,
v = 0, on 00, t>s (3.17)
v(s) = wvs
For this, we will take X = L(Q), 1 < ¢ < oo or X = C(Q). Then, we will obtain sharp
conditions on the time-dependent potential C(t, z) such that the corresponding evolution
operator U = Ug(t, s) is well-defined and exponentially stable, see Section 4.
Afterwards, using the smoothing effect of Ug(t, s) we will give sharp conditions on
D(t, ) for the existence of the complete trajectory ¢ for the linear problem. Note that
the smoothing effect allows us to reproduce the arguments above without assuming that
for all ¢ € IR, f(t) € X. Instead, we need only assume that f(¢) takes values in a
weaker Lebesgue space L"(2) for some suitable 7 < ¢. For the case of asymptotically
autonomous or periodic problems, we give adequate conditions on the convergence of
C(t,z) and D(t,x) as t — 400 to obtain the results above in a rigorous way. All these
arguments require the use of technical results from the theory of PDEs.

4 Evolution operators for linear non-autonomous prob-
lems.

We now apply the abstract results about linear evolution operators found in Amann [3]
to the following problem

u—Au = C(t,z)u, in Q, t>s
u = 0, on 00, t>s (4.1)
u(s) = u
posed in X = L(Q) with 1 < ¢ < oo orin X = C(Q).

If C € C*(IR,LP(R2)), with 0 < o < 1 and some p > N/2, then the time-dependent
operator A(t) = A+ C(t, z) satisfies (4.2.1), p. 55, in Amann [3]. Therefore, by Theorem
4.4.1, p. 63, in Amann [3], A(t) generates an evolution operator with constant domain
D(A(t)) = WZU(Q) = W2(Q) N W, %), 1 < ¢ < oo, for all t € IR. We denote this
evolution operator by Uc(t, s), i.e. u(t, s;ug) = Uc(t, s)ug is the solution of (4.1).

Using Theorem 4.4.1, p. 63, and Lemma 5.1.3, p. 69, in Amann [3] plus the sharp
Sobolev embeddings of complex interpolation spaces (see Amann [2]), it can be shown
that for each ¢ and r with 1 < ¢ < r < oo the evolution operator Uc(t, s) satisfies
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eﬁ(t—s)

1Uc(t, s)uollro) < M—Nl_l)HUOHLq(Q)a t>s (4.2)

(t—s)F

for some M > 0 and 6 € IR (potentially depending on r and q).
Finally, Theorem 6.4.2, p. 85, in Amann [3] guarantees that the evolution operator
Uc(t, s) is order-preserving.

4.1 Exponential stability in LY.

The following results show that in fact the exponent ¢ in (4.2) is independent of ¢ and r
and is strongly related to the exponential growth of the evolution operator. In particular
they show that the evolution operator is exponentially stable in L7(2) iff it is so in L"(€2)
for any 1 < r,q < co. As exponential stability will be a crucial property that we will use
repeatedly below, these results will be very useful in what follows.

Lemma 4.1 Assume that U = Ug, as above, is an evolution operator in L1(2), 1 < g <
00, such that there exist M > 0 and 8 € IR such that

U (t, 8) || cepaqay < MePC forall t > s. (4.3)
Then, as an operator in L"(2), with 1 < r < oo, U satisfies
WU, 8)|l e ) < KeP=9)  forall t—s>1

for some K > 1. In particular, the exponential type of the evolution operator, that is, the
best exponent B in (4.8), is independent of the L1(2) space.

Proof. First, note that from (4.2) we have

forall te€elR, gq>r

U+ L)llewr @,y < C '
< C forall telR, ¢g<r (4.5)

U+ 1,8) || o),

Now, suppose that r > ¢, so that L"(Q2) C L%(2). Then, since U(t + 1,s) = U(t +
1,H)U(t, s),

[U(t+1, 8)uoll @) < U+ 1, D)l eroq),r@plU(E, 5)uoll o(e)-
Using now (4.3) and (4.5) we have
Ut + 1, 8)uol|zr(q) < OMe Pl lyg| ooy < CMe PP ||ug)| 1rq)-

Thus
U, 8) |l ey < KePO~?)

forallt —s>1.
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Suppose now that 1 < r < ¢, and therefore LI(Q2) C L"(f2). Now, we remark that
Ult+1,5)=U(t+1,s+1)U(s+1,s). So, using (4.3) and (4.4)
C“U(t -+ 1, S)Uo”Lq(Q)
C“U(t + 1, s+ 1)||£(Lq(Q))||U(S + 1, S)UOHLq(Q)
CMe = NU (s + 1, 8) || cqur, ooy luoll oo
C'Mef’Beﬂ(tH*S)||u0||Lr(Q).

”U(t + 1, S)UOHLT(Q)

VAN VAN VAN VAN

Thus,
||U(t7 $)||£(L’I‘(Q)) S Ke[)’(tfs)

forallt—s>1. =

We also have the following estimate between different Lebesgue spaces:

Lemma 4.2 Suppose that U(t, s) satisfies (4.3). Then, for 1 < q¢<r < oo
1U(, 8)|lc(zo(),Lr@ <{K(t—8)%(“) ift—s<2 (4.6)
) leea@ir@) <\ s A
for some constant K.

Proof. From (4.2) for t — s < 2, there exists a constant K; such that
_ﬂ(l_l)
WU, s)|lcza),r)) < Ki(t—s)"2\a™7
and, for t — s > 2, from (4.5), there exists a constant K5 such that

WU )l ca,r@y < U E— Dle@a@),er@)lUE =1, 8)|| e
< KQQﬂ(t_S).

Thus, (4.6) holds for some K > 1. =

4.2 Sufficient conditions for exponential stability

Now we give sufficient conditions for the exponential stability of an evolution operator
U(t,s) = Uc(t, s), for which we will make use of the Hilbert structure of the space L?(2)
and Lemma 4.1. We therefore consider

u—Au = Ct,x)u in Q, t>s
v = 0 on 00, t>s (4.7)
u(s) = wup.

In the simplest case, when C does not depend on ¢, i.e. C'(¢,2) = C(x) and the operator
A+C(z) does not depend on time, we know that the semigroup associated with A+C(z)
is exponentially stable if and only if the first eigenvalue of

—(A4+C(x))u = M in Q
u = 0 on 00
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is positive.
To treat the time-dependent case, we therefore take X = L*(Q) and for any fixed
t € IR, consider the first eigenvalue of

—Au—C(t,x)u = At)u in
U 0 on OS2

which satisfies

[ (962 = cta)i0P) o> Mol 9

for all smooth functions ¢ vanishing on 052, where we have denoted by || - || the norm in
L2(Q).
Multiplying the first equation in (4.7) by u(¢) and integrating in 2, we have

GO+ [ (vuP o)) do =0,

By (4.8) we have
d
F @O+ M @llu@l* <0

and by Gronwall’s Lemma
lu()]? < e M|y (s))2.

Exponential stability is therefore guaranteed provided that, for some R, > 0 and
t> R, s < —R, with R large enough, we have

f: A (r) dr

> 92
t—s 2 25

which, in turn, is satisfied if
lim inf A, (¢) > 0.

t—+oo

We have thus proved:
Lemma 4.3 Let C € C*(IR, LP(2)) with 0 < o < 1 and p > N/2. Suppose that

liminf A; (¢) > 0

t—+o0

where A1 (t) is the first eigenvalue of the problem

—Au—C(t,x)u = At)u in
u = 0 on 0S2.

Then A+ C(t,x) generates an exponentially stable evolution operator in L1($2) for all
1 < g < o0.
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4.3 Persistence of exponential stability under perturbation

We now turn our attention to perturbations of the evolution operators U = Uy defined
by the solutions of (4.1) in L%(f2), 1 < ¢ < oc. Our goal is to estimate the effects of the
perturbation on the exponential type of the resulting evolution operator.

Proposition 4.4 Assume that U = Ug s the evolution operator defined by the solutions
of (4.1) in L1(Q), 1 < ¢ < 00, as above, and that there exist M > 0 and 8 € IR such that

|Uc(t, 8) |l craqay < MePC for all t > s. (4.9)

Assume that P € C*(IR,LP(Q2)) with 0 < a < 1 and some p > N/2, is a given
time—dependent perturbation of C, and denote by Pt the positive part of P.
i) If Pt € L'(IR, L*(2)) then

|Ucsp(t, s)||ceray < KePU™) for all ¢ > s.

for some constant K.
it) If PT € L7 (IR, LP(Y)), with 1 < 0 < 0o and p > % then for every e > 0 there exists
a K. such that

|Ucsp(t, s)||cray < KB forall ¢ > s.
iii) If P+ € L°(IR, LP()) then
|Uctp(t, 8)llcray < KePHUE=) forall ¢ > s

for some v which depends on |P*|| (g, r(0)) and for some constant K.
w) If PT € L®(IR, LP(2)) N L'(IR, L*(Q)), p > N/2, then for every ¢ > 0 there exists a
K, such that

1Uctp(t, 8)lleoqy < K0 forall t > s.

Proof. First we prove that non-positive perturbations do not increase the exponential
type of the evolution operator. More precisely, we prove that if 0 > P € C*(IR, L?(12))
with 0 < @ < 1 and some p > N/2 then

[Uc+p(t, s)uol < Uc(t, s)|uol

pointwise in Q for every ug € L1(2). To see this note first that if ug > 0 then Ug, p(t, s)ug >
0 which implies that |Ug,p(t, s)ug| < Ucyp(t, s)|ug|. Therefore it is enough to prove the
claim for non-negative initial data. In such a case, let u(t, s;uq) = Ucyp(t, $)ug > 0 then,
since P < 0 we have

{ u— Au = C(t,z)u+ P(t,z)u < C(t,z)u
u(s) = up.

Hence, by the comparison principle, 0 < u(t, s; ug) < Uc(t, s)ug and the claim is proved.
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Now let P be as in the statement of the proposition, i.e., P € C*(IR, LP(2) with
0 < a <1 for some p > N/2. Writing P = P™ — P~ and using the evolution operator
Uc_p-(t, s), which still satisfies (4.9), we have, by the variation of constants formula, that
for every uy € L1(2) the solution u(t, s, ug) = Ucyp(t, $)ug satisfies

t
u(t, s;ug) = Uo—p-(t, $)uo +/ Uc_p-(t, )Pt (T)u(r, ;1) dT-

Case A). Assume that p > ¢'. Then the term P*(7)u(r, s;ug) can be estimated, using
Holder’s inequality, in L (2) with * = %4—%. Hence denoting z(t) = e ?=9||u(t, s, ug)|| ra(a),
using (4.2), and (4.9) we get

M
[P (7)o ()
p

t
Z(t) S M”UO“LQ(Q) +/
s (t — T)

and moreover, for every s <ty <t

z(t) < Mz(tp) +/ LZJ”P_'—(T)”LP(Q)Z(T) dr

to (t—17)

The argument in this case is concluded using the singular Gronwall Lemma below,
with g = % < 1.

Case B). Assume that p < ¢’. Now the term P*(7)u(7,s;u) can only be estimated
(using Holder’s inequality) in L'(£2), but since the case ¢ = p' is included in Case A),
above, we get

|lu(t, s;u0) || Laqe) < MePt=) l|uol| ()

t Meﬂ(t—T)
tﬁ“}ﬂ—(T)”Lp(Q)”u(Tas;UO)“LP’(Q) dr
s — 7)) 2

and then

lut, s;u0)lpa@) < MePE || pago
t Pt(r
M Nl [ ar
s (t—T1) (1 —s)2 V)

where 1 equals 5+ ¢ or § + 7 according to cases ii), iii) or iv) of the statement. Now the
result follows after using Holder’s inequality and observing that setting 7 = s + 2(t — s)
we get
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with & N

(l _ ]%) < 1 because ‘T'TN < p < ¢'. Therefore,

1
P

N
2

l[u(t, 55 uo)[|Lagy < M%) |Jug|| Lo (1 +(t—s)7 PC(U,q,p)||P+||L0(R,Lv(Q))>-

We now prove the singular Gronwall lemma used above.

Lemma 4.5 A singular Gronwall lemma
Assume that a € L7([0,00)) with 1 < 0 < oo and that z(t) > 0 is a locally bounded
function that for every 0 <ty <t satisfies

2(t) < Mz(t) + /t ATy dr (4.10)
- VT E=1)P '
with Bo' < 1. Then fort >0
0 < 2(t) < M(y)e™
where y =0 if o =1 (and B =0), v is arbitrarily small if 1 < 0 < o0 and Bo’ < 1, ory
is proportional to ||CL||1L/00102) ifo=00and0< B <1.
In particular, if a € L*([0,00)) N L*([0,00)) and 0 < 8 < 1 then fort > 0

0 < 2(t) < M(y)e™

where 7y is arbitrarily small.

Proof. Note that the case 0 = 1, = 0 reduces to the usual Gronwall lemma and then
2(t) < Mz(0)els ®®)9s and the result is obvious.

On the other hand the case 0 = o0 and 0 < 8 < 1 is a particular case of the singular
Gronwall lemma in Henry [12, Lemma 7.1.1, page 188] which gives v = (||a| 1o (0,00) (1 —
5))1/(1—/3)‘

Therefore, we will consider now the case 1 < ¢ < 0o and o’ < 1. Note that in this
case we can take Tj large enough such that ||a||zo(7,,0) is as small as we want. Also, from
(4.10) we get that for Ty < ¢y <t < to+T we have, denoting w(to, T') = sup;, < <7 2(T)
and using Hoélder’s inequality

t 1/0’
t) < Mzt to, T o —d
0 < Mxt) +ue. Dl iosoon (| g 47)
< MZ(to) + ’w(t(), T)é(T(), T)

where we have set (7, T) = ||al|ro(1,00)C(B, 0') T =P, for some constant C(3, o).
Now, given Ty, choose T such that §(Zo, T) = ||al| 1o (1y,00C (8, 0") T # = 1/2. Tak-
ing the supremum for t5 <t <ty + 71 we get

z(t) < w(to) < 2Mz(tg) forall to <t <ty+T.
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Writing t; = to+7 and repeating the process and the estimate above we get a sequence
t, = to + nT such that

z(t) < (2M)"2(tp), forall to+ (n—1)T <t <ty+nT.

From here it follows that

t—tg

2(t) < (M) T2 (t) < (2M)T T 2(t), for all ¢ > t.

Since choosing T, large enough, we can make 7" as large as we want, we obtain the result.
Finally, if a € L*®([0,00)) N L*([0,00)) and 0 < 8 < 1 then we can always choose o

such that a € L?([0,00)) and fo’ < 1 and we are finished. m

As a consequence of the above results we get the following corollary which will be of
great help below.

Corollary 4.6 Under the assumptions of Proposition 4.4, assume furthermore that the
evolution operator Uc(t, s) is exponentially stable in L1(S?), i.e. that (4.9) is satisfied with
B < 0.

i) If P* € L'(IR, L*(2)), or P* € L7 (IR, L?()) with 1 < 0 < 00 and p > N, then the
evolution operator U = Ug,p is exponentially stable in L1().

it) If PT € L*(IR, LP(2)) with p > &, then the evolution operator U = Ucyp is exponen-
tially stable in LI(QY) provided that

B+ (M| P*H|| oo (r,roap (1 — 6))07 < 0,

where § = % < 1.
ii) If PT € L®(IR,L*(Q)) N LY(IR, L*(Q)) with p > ¥

5, then the evolution operator
U = Uc,p is exponentially stable in L1(S2) .

A close look at the proof above prompts the following remark which will be used below:

Remark 4.7 Notice that Proposition 4.4 and Corollary 4.6 remain true if we only assume
that
Pt € L?([sg,0), LP(Q))

for some sy € IR and o and p as in the statements of these results. In this case we obtain
the estimate

|Ucsp(t,5)||lcera) < Msoe(ﬂﬂ)(t_s) for all t> s> s

where v is arbitrarily small or depends on || Pt || 1o ((se,00),L7(02)) @cCOTding to the cases above.
In order to obtain a constant My, independent of sy we will then need to have a uniform
bound on || P™|| Lo ((so,00),L7(02)), Which requires PT € L7 (IR, LP(R)).

The next corollary gives a result that will be useful for the study of asymptotically
autonomous problems.
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Corollary 4.8 Let C € C*(IR, L?(?)) with 0 < o < 1 and some p > N/2, such that the
evolution operator generated by A + C(t,x) is exponentially stable.

i) If there exist CT € LP(Q) and Ty € IR such that C — C* € L7([Tp, o), LP(R?)) with
either 1 < o < oo and p > NT"', or o =00 and p > % and

: + —
lim [|C(t) = C7[|ri) = 0
then the semigroup generated by A + CT has exponential decay.

ii) If there exist C~ € LP(Q) and Ty € IR such that C — C~ € L°((—o0,Ty|, LP(2)) with
either 1 <o < oo and p > NT"', or o =00 and p > % and

Jim_[[C(8) = O ey = 0
then the semigroup generated by A + C'~ has exponential decay.

Proof. Since the evolution operator U¢ is exponentially stable we have, for some g < 0,
||Uc(t, 8)||£(Lq(g)) < Me’B(t_S) for all ¢ > s.

i) Set P(t,xz) = Ct(z)—C(t,z). Our assumptions imply that for sy large enough the norm
| P|| e ([s0,00),L7(c2)) is as small as we want. Therefore from Proposition 4.4 and Remark 4.7
we know that

|Ucyp(t, S)HL(L‘I(Q)) < MSOG(’B+E)(t_S) forall t> s> s (4.11)

for arbitrarily small ¢.

Since C(t,z) + P(t,z) = C*(x) we know that Tc+(t) = Ug+(t + So,80), t > 0 is an

autonomous evolution operator, i.e. a semigroup which is actually the semigroup generated
by A+ CT . Hence, from (4.11), T+ (t) has exponential decay.
ii) Set P(t,z) = C~(x) — C(t,z). Our assumptions now imply that for ¢, sufficiently
negative the norm || P|| 1o ([so,t0],L2(2)) 1S as small as we want. Therefore from Proposition
4.4 and Remark 4.7 it follows that (4.11) holds for sy < s < t < t; with arbitrarily small
€.

As before, since C(t, )+ P(t,x) = C~(z) the semigroup generated by A+ C~ satisfies
Te-(t) = Uctp(to, to — t). Hence, from (4.11), we can find ¢ such that

1 To- Ol ezagy <1

and once more obtain exponential decay. m

5 Complete trajectories for the linear problem

5.1 The homogeneous case

We begin by studying the homogeneous case. For this, we will consider the following
problem

wy—Aw = C(t,zr)w, in Q, t>s
0 on 09, t>s (5.1)
w(s) = wp

g
I
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where Q is a bounded domain in IRY and C' € C*(IR, LP(f2)) with 0 < @ < 1 and some
p> N/2.

Let Ug(t, s) be the evolution operator associated with the above problem in X = C(Q)
orin X = LI(Q) with 1 < ¢ < 00, i.e. Ux(t, s)wy = w(t, s;wp).

As in Section 3.2, given 8 > 0 we define Dg = Dg(IR, X ), the “basin of attraction”,
consisting of families of bounded sets that grow slower than e ! as t — —o0, i.e. families
of bounded sets of the form {B(t)}; such that for some v < 3 we have

|| B(t)||x =0 as t - —oq,

where
| B|x := sup ||b]| x
beB

As remarked before, in a slight abuse of notation we can also include single-valued
functions in Dy via the identity ¥ <> {¢(¢) }1er. Similarly, we can regard D as containing
all fixed bounded sets B, via the identity B <> {B(t) }icr, where B(t) = B for all ¢t € IR.

Outstandingly we note that although the class Dz imposes some bound on the growth
as t — —oo, it imposes no restrictions at all as ¢ — oo.

Theorem 5.1 Let X = C(Q) or LY(Q) with 1 < ¢ < oco. Suppose that the evolution
operator Uc(t, s) for (5.1) is exponentially stable in X, i.e. for some >0

|Uc(t, 8)|lcxy < Me P9 forall t > s. (5.2)

Then the unique complete trajectory for (5.1) in Dg is the trivial solution. Indeed,
A = {A(t)}+ with A(t) = 0 is the pullback attractor with respect to Dg.
Moreover, the trivial solution also attracts bounded sets in X forwards in time.

Proof. It is clear that {0}; € Dg is a complete trajectory for (5.1) so we only have to
prove the uniqueness. Let ¢ € Dg be a complete trajectory. Then

W(t) =Uc(t,s)(s) forallt>s
and if we take norms in the above expression, for some v <  we have
[9®)llx < [V, $)llex) 19(s)llx < Me P My (8)e”.
Letting s tend to —oo shows that
|v(t)[|x =0 foralltelR

since vy < . So the unique bounded complete trajectory in Dg is 0.
Now let {B(s)}s € Dg. Then, for all wy € B(s),

Me="*=2||B(s)||x
Me PE=9) M, (t)e® = My(t)eP~7)s (5.3)

|Uc(t, s)ws|lx <
<
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for some v < . Thus, taking limits as s — —oo we have
Uc(t,s)ws — 0 as s - —oo

for all t € IR.
The attraction forwards in time follows immediately from the asymptotic stability
condition (5.2). =

Remark 5.2 To prove the previous theorem in the case of attraction of bounded sets
(i.e. with the basin of attraction consisting of families of bounded sets not depending on
time) it is not necessary to assume the exponential stability of U. It is enough to suppose
that the evolution semigroup decays to zero as s tends to —oo, i.e. that

U, s)||lccx)y =0 ass— —oo.

5.2 The inhomogeneous problem

We now consider the following linear inhomogeneous problem

vp—Av = C(t,x)v+ D(t,z), inQ, t>s,
v = 0 on 09, t> s, (5.4)
v(s) = s
posed in either X = C(Q2) or X = L9(Q) with 1 < ¢ < oo.
Assume that C € C*(IR, L*(2)) with0 < « < land p > N/2,and D € L| (IR, L"(9)),
for some qur\gq <r<ooif X = LIQ) or r > N/2 if X = C(Q) respectively. Then there
exists a unique solution of (5.4) given by the variation of constants formula, i.e.

ot 5,05) = Uo(t, s)v, + / Uo(t,7)D(7) dr (5.5)

(e.g. see Theorem 1.2.1, p. 43, in Amann (3] or Henry [12] or Lunardi [16]).

We will also assume the exponential stability of the evolution operator Ug associated
with A + C(t, ) as in Section 5.1.

The following result establishes the existence of a unique complete trajectory for (5.4)
under two different types of conditions on the behaviour of D as t — —oc.

Theorem 5.3 Let X = C(2) or X = LI(Q) with 1 < g < oo. Suppose that the evolution
operator Uc(t, s) is exponentially stable in X, i.e.

|Uc(t, 8)||coxy < Me™PU=9) with B> 0 and M > 1.

i) Assume that
D € Ds(IR, L"(Q2))

with N]i"Qq <r<ooif X =L%N),1<g<o0, or NJ2<r<ooif X =C(Q).
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Then there ezists a unique complete trajectory ¢ € Dg = Dg(IR, X) for (5.4).
i) Assume now that for some o with 1 < o < oo

D e L7((—00,T),L"(R2)) for each T < o0

or that
DeL’(R,L"(Q))
(which corresponds to T = oo above), for some r with Njtiq <r<ooif X =LUQ) or

with N/2 <r < oo if X = C(£).

Then there exists a complete trajectory for (5.4), ¢ € L°((—o0,T), X)NC(IR, X), for
eachT < 0o (or ¢ € L°(IR,X)NC(IR,X) if T = o0).

Assume in addition either that 1 < o < 0o and N]Z'(iqu <r<oo, if X =LY, or
No'/2 <1 <00, if X=C(Q); orthatc =1 and g <r < o0, if X = LY(Q), or r = oo,
if X = C(Q): then ¢ € Cy((—o0,T),X) CDs (or ¢ € Cy(IR,X) C D if T = o) and is
the unique complete trajectory within this class.

In either one of the cases above in which the complete trajectory ¢ € Dg, the family
A = {A(t)}: = {o(t)}+ is the pullback attractor for (5.4) with respect to Dg.

{6(t)}s also attracts bounded sets of X forwards in time. More precisely, for every
bounded set B C X we have

lv(t, s;v0) — ()| x < Ke P9, t>s (5.6)
for all vy € B, where K = K(B).

Proof. First, we prove the existence of a complete trajectory for (5.4). We set

6(t) = / Uo(t, 7)D(r)dr. (5.7)

If ¢(t) is well-defined then it is a complete trajectory for (5.4) since, given ¢t > s,

S

6(t) — Uo(t, 5)6(s) = / Uo(t,7)D(r)dr — Us(t, s) / Uo(s, ) D(r)dr

= / t Uc(t, 7)D(7)dr (5.8)

and moreover in such a case we will automatically have ¢ € C(IR,X). We will show
below that ¢(t) is well-defined and belongs to Dg = Dg(IR, X). For now we assume that
this has been proved.

Let B = {B(s)}s € D and fix {vs}s € B. Then, the solution of (5.4) is given by the
variation of constants formula (5.5). Let w(t, s;v5) = v(t, s;v5) — ¢(t). Then w solves the
homogeneous problem

wy—Aw = C(t,z)w, inQ, t>s

w(s) = vs—¢(s) (5.9)
w = 0 on 0f).
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So, since {B(s) — ¢(s)}s € Dg, from Theorem 5.1 we have
w(t,s;vs) >0 as s — —o0

uniformly for v, € B(s), where {B(s)}; € Dg. Thus, for all t € IR
v(t, s;v5) = P(t) as s — —oo.

So we have proved that A = {¢(t)} is the pullback attractor.
Notice that if we fix s € IR and a bounded set B C X we have

lv(t, s;00) — d(t)||x < Ke P9y — ¢(s)||x < Kie P =0 (5.10)

as t — +oo, for all vy € B, where K; depends on the bounded set B. Hence ¢(t) also
attracts bounded sets of X forwards in time.

We now prove that ¢(t) is well-defined.
i) Since N]tiq <r<ocif X =LN), 1 < q< oo, or N2 <7 < o0,if X =C(Q) and
D € Dg(IR, L7(R2)), then, in (5.7) we get, for each t < ¢, and for some v < §,

(1) = / " Iy (1, 1) D(r) dr.

—0o

Using (4.2) we get

CN(1_1Y (g (ir
e (1) || x §M51ipe77||D(T)||LT(Q)/ (t—71) 2 (7 q)e B=nC-7) qr
7<t —00
with 1 < ¢ < .

: N
Now, since r > =2

N+2q°

if 1 < g <oo,or N2 <r < ooifqg= oo, we have that

2 T q
Hence ¢ € Dy and, by Theorem 5.1, ¢ is the unique complete trajectory in Dg.

ii) We assume now D € L7((—o0,T),L"(2)) for each T < oo (or even T' = oo if D €
L°(IR, L"(2))) and distinguish below several cases.

Case a) Suppose that D € L7((—00,T),L"(2)), 1 < 0 < oo and ¢ < 7 < oo, if
X=L1N),1<g<oo,orl <o <ooandr=o0if X =C(), respectively.
We start with the case 0 = co. Then, from (5.7), for t < T,

N (1 — 1) < 1 and, therefore, the integral term above is bounded independently of ¢.

§——0Q

¢
le@)x < Tlim Sup/ |Ue(t, 7)D(7)]|x d7
, M —B(t—s)
< lim sup? (1—e ) sup || D(7)]|x (5.11)
7<t

§—>—00

M
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Thus ¢ € L®((—o0,T), X).
Now we prove the result in the case 0 = 1, i.e. D € L'((—00,T), X). From (5.7), we
get

T T t
ol wmin = [ lelxde< [ [ et npxdrar

T t
/ / Me B D(r)]|x dr dt
P
/ / MeE=) || D(7)][|x dt dr

T
< c / ID@)x dr = ClID |l (oo )

—0o0

IN

IA

where we have used Fubini’s Theorem and the boundedness of fTT Me A7) d¢t indepen-
dent of 7 and T < oo. Thus, ¢ € L'((—o0,T), X).

Now from the interpolation theorem for LP-spaces (see Theorem 5.2.3, p. 111, in
Bergh and Lofstrom [6]) we have that if D € L7((—00,T),X), 1 < 0 < o0, then ¢ €
L?((—o00,T),X) and

101 2 ((~00.1).x) < CIDl| o ((~00,1),5)-

Finally, we prove that if we take D € L°((—00,7),X), 1 < 0 < oo then ¢ €
L*®((—o00,T),X). Indeed, let 1 < 0 < oo then, from expression (5.7), using Holder’s
inequality, we get for ¢t < T,

§——0Q

1 , e s opt e
< Mlimsup (5 ,(1—e—ﬂa <t—s>)) (/ ||D(7')||‘3}d7') (5.12)
s——00 g —00

M
< W“D“L“((foﬂ)x)-

t
lo®)llx < limsup/ [Uc(t, 7)D(7)||x dr

Hence ¢ € L*°((—00,T), X). The case 0 =1 is proved in an analogous way.

Case b) Let X = L9(Q2), 1 < ¢ < 0o. Suppose that D € L7((—o0,T),L"(22)),1 < o < 00,
N9 <y < ¢. In this case, we need to use LP-L? smoothing estimates for the evolution

N+2q
operator, see (4.2).

We start with the case 0 = co. Suppose that D € L*®((—o0,T), L"(2)) with qur\;q <
r < q. Then, fort < T,

t
6Ol < [ 1Veltn) DO dr

—00
t

< Msup||D(T)||LT(Q)/ (t—71) 2 GDe =D dr  (5.13)
<t

—0oQ
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where we have used (4.2). Now, since r > XL

" fr\;q we have % ( %) < 1 and, therefore,

the integral term above is bounded independently of ¢. Thus, from (5.13),

19() [ zo0 ((—00,1),L9(2)) < CD||zoo((—00,),27(92))-

Now assume that o = 1, i.e. that D € L'((—o0,T),L"(2)). Then, using (4.2) as in
(5.13), we have

T t
_N(1_1 _Bl(t—T
||¢||L1((_007T),Lq(ﬂ)) S / (t—T) 2(7" q)Me 'B(t )||D(T)||LT(Q)d7—dt

_;’o _OOTfT N1
- / [ M3 (7)e P dt | |D(7) |11y dr
—00 0

T
< c / 1Dl dr = O lut(—ooryre)

Where we have used Fubini’s Theorem and the boundedness of fo s_%(%_i) ﬂsds since

r>

i

Agtnzl the result in the case D € L7((—o0,T), L"(f2)), 1 < 0 < oo, follows from the
interpolation theorem for L? spaces as in Case a) above.

Finally, we show that if D € L7((—o0,T), L"(2)), 1 < 0 < o0, ]VN%IL'IQ(I < r < g, then
¢ € L*®((—00,T),L2)). Indeed, let 1 < o < oo then, as in (5.13), using the Holder

inequality, we get for ¢t < T,

16Oz < limsup / |Ue(t, YD) oy dr

S—>—00

aN (1 1 ! 1/U’ ¢ 1/0—
(/0 ST(;a)e—BH> (/ ||D(T)||gm)d7> (5.14)

< C|D||zo((—oo1),L7(02))

IA

where we have used that &~ N (; - —) < lsincer > NJZ‘:}QQ Thus, ¢ € L*®((—o0,T), L1(2)).

Case c) Let X = C(Q). Assume D € L°((—o0,T), L"(R2)) with 1 < 0 < oo, 7 > N/2.
This case follows as in Case b) with ¢ = oo and, of course, r =00 if 6 =1 or r > No'/2
ifl<o<oo. m

Remark 5.4 In the first part of case ii) of the theorem we prove the existence of a
complete trajectory ¢ € L7 ((—oo,T), X)NC (IR, X). In particular, this complete trajectory
can be unbounded in time. Furthermore, ¢(t) can grow very fast as t - —oo and may be
even not belong to Dg. For this reason we cannot prove the uniqueness of such a ¢(t).
Nevertheless, the complete trajectory ¢(t) is unique in the class ¢ + Dg.
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Remark 5.5 Observe that with similar arguments as in the proof of the theorem above,

if we define E, = {f € C(IR,X) : e ®if € Cy(IR, X)}, with B > a > 0, one can show

that there exists a unique complete trajectory in E, provided that D € E,. In such a case

we have to restrict the basin of attraction D to families of bounded sets in Dg_,.
Considering only pullback attraction it is enough to work in

E; ={feCR,X): ef € Cy((—o0,7),X) for some T € IR},
and analogously if we consider forward attraction we can use

Ef ={feCUR,X): e ®f € Cy((1,00),X) for some T € IR}.

5.3 Asymptotic behaviour as t - oo

Given the above theorem it is natural to consider the asymptotic behaviour of the complete
trajectory as t — +oo. In fact with a closer look at the above proof we can show that, in
the cases that ¢(¢) remains bounded and integrable as ¢ — o0, it actually converges to
Zero:

Corollary 5.6 Let X = C () or LYU(Q) with 1 < g < oo. Suppose that the evolution
operator associated with A + C(t,x) is exponentially stable.

i) Assume that D € L°((—o00,T),L"(2)), for T < oo, with either 1 < o < o0, % <
Ng

RESY <r < oo. In the case 0 = o0

r<oo,orcg=1andqg<r <oo, orc =00 and
assume in addition that
lim || D(t)||zr@) = 0.
t——o00

Then ¢(t) — 0 in X ast — —oc.
ii) Assume that D satisfies the assumptions in Theorem 5.8 and also that D € L°((T, ), L™(2)),
for T > —oo, with o and r as in case i) above. Assume in addition that, if o = oo,

lim [[D(1) 1) = 0.
Then ¢(t) — 0 in X as t — oo. Hence, for every bounded set B C X, we have
v(t,s;v9) >0 in X as t— oo

uniformly for vy € B.

Proof. Case i) is a direct consequence of inequalities (5.11), (5.12), (5.13) and (5.14).

Therefore it remains to prove that ¢(¢) — 0 in X as ¢ — oo. In such a case, the rest
of the result is a consequence of (5.6). Hence, note that for any solution of (5.4) we have
(see (5.5))

v(t, s;vs) = Ucl(t, $)vs +/ Uc(t,7)D(7)dr
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and since the linear evolution operator is exponentially stable, the first term tends to zero
as t — oo. For the integral term, let t > T > s to be fixed later. Then

Case a) Suppose that either X = LI(Q), 1 < ¢ < 0o, and 1 < o < 00, 7 > ¢; or

X=0C0(f),1<o0<o0andr=oc.
Suppose o = co. Given € > 0, on the one hand we have

/Uc(t,T)D(T)dT Xg/ ||Uc(t,T)D(T)||XdT+/T Uo(t, ) D()|lx dr

t t
/ \Ue(t, )D(r)|lx dr < / MePeD|D(r)|[x dr
T T

M
< —(1- e’ﬂ(t’T)) ess sup || D(7)||x < ¢ (5.15)
/B >T 2

choosing T large enough. On the other hand,

T T
/ Ue(t, VD()llx dr < / Me 20| D(r)[x dr

D) (1 = ) Dl 00

< (5.16)

M

choosing t large enough. Thus, for all ¢ large enough we have

l6(®)]lx <

ie ¢(t) > 0in X as t — oo.
In the case D € L°((T,0),X), 1 < 0 < oo, arguing as in (5.12) in the proof of

Theorem 5.3, we have

1 — e_ﬂal(t_T)

o'

DO ™

¢ 1/q’
[ Wettnp@ixar < M( ) 1Dl <
T

and
1 p— e_ﬂal (T_S)

po’

€

1/c
) 1Dl <

T
/ Uc(t, 7)D(7)||x dT < Me_ﬂ(t_T)<

for 7" and t large enough.
The case 0 = 1 follows in an analogous way.

Case b) Suppose that X = LI(Q2), 1 < ¢ < 00, and 1 < ¢ < o0, % <r<gq.
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Suppose that o = oo. In such a case, r > N+2 . Arguing as in (5.13) in the proof of

Theorem 5.3, we have that for T large and t — oo

/ WUe(t, 7)D(7) ey dr

t e—,@(t—‘r) €
< M ess sup ||D(7')||L’“(Q)/ — 1 47 <5
ST r (¢ — 7)) 2

and
T
[ 106t D) lasgoy dr
’ T
¢=1) 300 [ e D) ey dr

efﬂ(th) (1 7ﬂ T—s )

<

[NNe)

Dl 2 ((5,00),7(2)) <

for some constant K > 0.
Suppose now that 1 < o < oo. Again, arguing as in (5.14) in the proof of Theorem
5.3, we have that for 7" and ¢ large enough

/||Uctr ()l dr

t e_ﬂa"(t—’r) 1/0-1
/ N(1 1)y dr | DIl Lo (0,070 <

DO ™

and

1/d’

T
<Mit-T1) >G2) (/ e~he' =) dT) 1D e (5,00, 7 )

(T-5)\ /'
T) || DI| oo ((s,00),L7(2)) <

NSRS

for some constant K > 0.

Case c) Let X = C(Q) and assume that D € L°((T,00), L"(R2)) with 1 < o < oo,
r > N/2. This case follows as in Case b) with ¢ = co and, of course, r = co. =

Now, by combining the arguments from the proofs of Theorem 5.3 and Corollary 5.6,
we obtain the following result.
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Corollary 5.7 Let X = C(Q) or X = L4(Q) with 1 < ¢ < cc. Suppose that the evolution
operator associated with A + C(t,x) is exponentially stable.

Assume Dy is such that Theorem 5.3 applies and denote by ¢y the corresponding
complete trajectory. Assume in addition that D — Dy is such that Corollary 5.6 also
applies.

Then (5.4) has a complete trajectory, ¢, and ¢ — ¢po — 0 as t tends either to +oo or
to —o0, according to the cases in Corollary 5.6.

Note that this corollary can be applied for example if Dy € Dg(IR, L"(£2)) while
D — Dy € L7((—00,T),L"(2)). In such a case D might not satisfy the assumptions in
Theorem 5.3.

5.4 The periodic problem

Finally we consider the T-periodic problem associated with (5.4), i.e. we suppose that
C(t,z) and D(t,z) are T-periodic functions. In this case the unique complete trajectory
given by Theorem 5.3 is T-periodic.

Corollary 5.8 Let X = L1(f2), 1 < ¢ < o0, or X = C(R2). Assume C € C*(IR, L*(Q2))
with 0 < a < 1 and some p > N/2, the evolution operator associated with A + C(t,x) is

exponentially stable and
D e L*(IR,L"(2))

for some Nﬁ%q <r<ocoif X =LN) or N/2<r <0 if X =C(Q).

If C(t,z) and D(t,z) are T-periodic functions then the unique complete trajectory
¢ € Dg for (5.4) is T-periodic.

Proof. Note that the hypotheses in Theorem 5.3 hold since D € Dg(IR, L"(2)). Let
¢ € Dg be the unique complete trajectory given by Theorem 5.3. Then,

¢i(t) = Ad(t) = C(t, 2)o(t) + D(1, z)

and, by the periodicity of C' and D we have
G1(t) — Ap(t) =C(t+T,z)p(t) + D(t + T, x)
which after a change of variables gives
ot —=T)—Ap(t —T)=C(t,x)p(t —T) + D(t,x)

So, w(t) = ¢(t—T) is a complete trajectory of the problem (5.4). But, from the Theorem
5.3 this complete trajectory is unique, and so we have ¢(t) = w(t) for all ¢ € IR, that is,
o(t) = ¢(t —T) for all t € IR. In other words, ¢ is T-periodic. m
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6 Asymptotically autonomous and asymptotically pe-
riodic linear problems

In this section we study the linear evolution problem

w—Av = C(t,x)v+ D(t,z), in Q, t>s
v(s) = v (6.1)
vpn = 0, on 0N

where C'(t,z) and D(t,z) converge in some sense as t — £00.

When C' and D converge to time-independent functions we will show below that under
suitable conditions the pullback and forwards asymptotic behaviour of the solutions of
(6.1) are described in terms of suitable functions ¢*(z) which can be characterised as
solutions of some elliptic problems.

An analogous result will be proved for the case where C' and D converge to periodic
functions.

Theorem 6.1 Let X = LI(2), 1 < ¢ < oo or X =C(R2). Suppose also that the evolution
operator associated with A + C(t,x) is exponentially stable.
i) Assume that there exists a C~ € LP(Q2) for some p > N/2, such that, for every T < oo,

C— O~ € L?((—0,T), LP(2))

with p > NT"', and
Jim [[C() = €l = 0
if o = oc.
Also, assume that there exists a D~ € L"(S2) such that, for every T < oo,
D—-D" e LU((—OO, T)7 LT(Q))

No'q
7 No'+2q

Ng
7 N+42q

with either 1 < o < oo
and

<r<oo,c=landg<r<ooorc=o0 < r < oo,

t——o00

Then there exists a unique solution ¢~ of

{ -A¢p~ = C (x)¢~ + D (x)
¢|_8Q =0

and (6.1) has a pullback attractor given by the unique complete trajectory for (6.1) A =

{A@)}s = {6(t) }+ which satisfies ¢p(t) — ¢~ in X ast — —oc.

ii) Assume that C and D satisfy the assumptions in Theorem 5.8. In addition assume
that there exists a C € LP(Q) for some p > N/2, such that for —oo < T,

(6.2)

C € Dy(R,LP(Q)) and C —C* € L°((T, o), LP(Q))
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with p > NT"I, and
lim [[C(t) — O Loy = 0

if 0 = o0.
Also, assume that there exists a DT € L"(Q) such that, for —oo < T,

D € Ds(IR,L7(Q)) and D — D* € L°((T, 00), L"(Q))

No'q
7 No'+2q

Ng
7 N+2q

with either 1 < g < oo <r<oo,c=landg<r<ooorc=o0 <r<oo,

and
; — D sy =
thm |D(t) — D™ ||r () = 0.

Then there exists a unique solution ¢+ of

{—A¢+ = CT(z)¢" + DT (z)

+ —
oo = 0

(6.3)

and for every bounded set B C X, we have v(t,s,ug) — ¢ in X as t — oo, uniformly
for ug € B. Moreover, there exists a pullback attractor A given by A(t) = ¢(t) for all
t € IR where ¢(t) is the unique complete trajectory for (6.1) which satisfies ¢(t) — ¢T as
t — oo.

Proof. From Corollary 4.8 we have that C* are such that the semigroups generated by
A + C*(z) have exponential decay. Thus, problems (6.2) and (6.3) have unique solutions
¢*. Take then any vy € X and let v(t,s,v5) be the unique solution of (6.1). Then
w =v(t,s,v) — ¢F satisfies

wy — (A+C(t,z))w = D(tz)+ (A+C(t )¢+ = D*(t,z)
w(s) = v ¢ (6.4
w‘ag =0

where

D*(t,z) = D(t,z)+[A+C(t,x))¢*
= (D(t,z) — D*(2)) + (C(t, ) — C*(x))¢™.

Note that, by elliptic regularity, D* € L7(Q) implies that ¢* € L(Q) for all s such
that + — 2 < 1 and then, for each t, (C(t) — C*)¢* € L™(Q) VV~ith m=str >R+
and since p > N/2 we can take m > r. Therefore, for each t, D*(t) € L"(Q).

Hence in case i), note that we have D~ (t,z) = (D(t,z)— D (x))+ (C(t,2)—C~ (x))p~

H— o T ; ; Na
and forall T € IR, D~ € L ((—oo],VT],L (€2)) with either 1 < o < 0o, 7% < r < oo,
q

» N+2q

c=land ¢ <r <oooroc=o < r < oo, and

t——o0

Then by part i) of Corollary 5.6 we get the result.
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_ For case ii) we have D*(t,z) = (D(t, z)—D*(z))+(C(t,r) —C*(x))¢" which satisfies
Dt € Dg(IR, L"(2)) and for all T € IR, D™ € L?([T, 00), L"(2)) with either 1 < ¢ < o0,

No'q Ngq
No'+2q 7 N+2q

<r<oo,o=landg<r<oooroc=0o00

<r < oo, and
Jim |5 (00 = 0.

Hence part ii) of Corollary 5.6 gives the result. m

Analogously, for the case of asymptotically periodic problems, we have the following
result.

Theorem 6.2 Let X = C(Q) or X = L4(Q) with 1 < ¢ < cc.

Suppose that the evolution operators associated with A+ C(t,z) and A+ C*(t,x) are
ezponentially stable, where C* € C*(IR, LP(Q2)), with 0 < o < 1 and some p > N/2, are
T-periodic functions.

In addition assume that D* € L*(IR, L"(2)), for some N]:’qu <r<ooif X =L1YQ)

or N/2 <r < oo if X =C(Q), are T-periodic functions.
Define ¢=(t) as the unique complete trajectories of the periodic problems

2zF — Azt = C*(t,z)zt + D*(t,1)
S (6.5)
o =
which are T —periodic by Corollary 5.8.
i) Assume that for every Ty < oo,
C—-C €L ((—o0,Ty), LP(Q2))
with p > NT"I, and
Jim [|C() = € (0| = 0
if 0 = o0.
Also, assume that, for every Ty < oo,
D — D™ € L°((—00,Ty), L"(2))
L No' N
with either 1 < o < oo, NU,+‘12q <r<oo,o=landqg<r <oooroc=o0, N+’éq <r<oo,

and
lim_|D(t) = D~ (8)] 1) = 0.
t——o0

Then, (6.1) has a pullback attractor given by a complete trajectory for (6.1) A =
{A(t)}s = {6(t) }+ which satisfies ¢(t) — ¢~ (t) = 0 in X, as t — —o0.

i) Assume that for —oo < T,

C € Dy(R,LP(Q)) and C —C*+ e L7((Ty, 00), LP())
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with p > NT"I, and
lim [C(t) — O (1) | ey = 0

if 0 = o0.
Also, assume that, for —oo < Ty,

D eDs(IR,L"(Q)) and D - D' € L7((Ty,0),L"(Q))

No'q

Nog Ng
7 No'+2q <r< o0,

7 N+2q —

with either 1 < o < o0 <r<oo,c=landg<r<ooorc=o0

and
Jim [D(9) ~ D* (o) = 0.

Then, for every bounded set B C X, we have v(t, s,uq) — ¢ (t) = 0 in X, ast — oo,
uniformly for ug € B. Moreover, there exists a pullback attractor A given by A(t) =
{6(t)} for all t € IR where ¢(t) is the unique complete trajectory for (6.1) which satisfies
o(t) —dT(t) = 0 as t — oc.

Proof. Since the evolution operators associated with A+C*(t, z) are exponentially stable
we know, from Corollary 5.8, that problems (6.5%) have unique complete trajectories ¢~
which are T—periodic. Take any vy € X and let v(¢, s,vy) be the unique solution of (6.1).
Then w = v(t, s,vy) — ¢~ (t) satisfies

w,— (A+C(t,z))w = D*(t,z)
w(s) = vo—¢*(s) (6.6)
Wipn = 0

where .

Note that, by parabolic regularity, for each ¢, D*(t) € L™(Q2) implies that ¢*(t) €
L*(Q) for all s such that 2 — 2 < 1 and then, for each t, (C(t) — C*(t))¢*(t) € L™(Q)
with % = % + % > % — % + % and since p > N/2 we can take m > r. Therefore, for each
t, DX(t) € L"(Q).

Hence in case i), note that we have

D_(ta CC) = (D(t, .I) - D_(t: :1:)) + (C(ta .’L’) - C_(ta $))¢_(t)
and for all Ty € IR, D~ € L°((—o0, Ty), L™ (Q)) with either 1 < o < oo, N]Z,";’éq <r < oo,
Nq

» N+2q

c=1land ¢<r<oooroc=o0 < r < oo, and

Tim (|5 (0)]z+(n) = 0.

Then from part i) of Corollary 5.6 we get the result.
For the case ii) we have

D*(t,z) = (D(t, z) = D¥(t, z)) + (C(t, ) = CF(t, 2))$" (t)
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which satisfies DT € Dg(IR, L"(Q)) and for Ty € R, Dt € L7([Ty, 00), L' (Q)) with either

No'q Ng
1 <0< o0, NoT12g » Ni2g

<r<oo,o=landg<r<oooroc=00 < r < oo, and

lim ||D+(t)||Lr(Q) =0.

t—o0

Hence part ii) of Corollary 5.6 gives the result. =

7 The nonlinear problem

We will now consider the nonlinear non-autonomous problem

u—Au = f(t,z,u), in Q, t>s
u(s) = weX (7.1)
upa = 0, on 02
where X = C(Q) and f(t,z,u) is continuous, locally Holder in ¢ and locally Lipschitz in
u. Hence, from the results quoted in Section 2, (7.1) has a unique locally defined smooth
solution for every ug € X.
Suppose that f satisfies the dissipativity condition

uf(t,z,u) < C(t,x)u* + D(t, z)|ul (7.2)

with C € C*(IR, L?(12)), for some « with 0 < o < 1 and some p > N/2, and that D > 0
with values in L"(£2). Our key assumption is that the evolution operator associated with
A + C(t, ), which we continue to denote by Uc(t, s), is exponentially stable.

To ensure that the solutions of (7.1) are globally defined forward in time we only need
to prove that the solutions of (7.1) are bounded for all ¢ > s, which will follow from the
dissipativity property of f (7.2) (see (7.6) in the proof of Lemma 7.2 below).

Then the solutions of the problem (7.1) define evolution operator given by

Ul(t,s)ug = u(t, s,z;up) t>s

and this operator is order-preserving by Theorem 2.13 (see also [5]).

The next result guarantees the existence of two extremal complete trajectories for
(7.1) which are ‘attracting’ in a certain sense. A related result can be found in Langa and
Sudrez [15] for abstract evolution operators given the assumption either of the existence
of a pair of sub- and super-trajectories, or the existence of a pullback attractor for the
system embedded in an order interval. In the first case, the authors prove the existence
of extremal complete trajectories between the sub and the super-trajectory (see Remark
7.5 below for more details).

Theorem 7.1 Suppose that X = C(2) and that f is continuous, locally Hélder in t,
locally Lipschitz in u, and satisfies (7.2) with C € C*(IR, LP(Q2)) for some a with 0 <
a <1 and some p > N/2.

38



Assume in addition that the evolution operator associated with A + C(t,x) is expo-
nentially stable with exponent B and that D(t,x) is such that the linear problem (5.1)
has a pullback attractor in the class Dg, given by a complete trajectory {$(t)}+, e.g. as in
Theorems 5.3, 6.1 or 6.2.

Then the solutions of (7.1) are global and we can define U(t, s), the evolution operator
defined by the solutions of (7.1), for all t > s.

Moreover, there exist two extremal complete trajectories that are elements of Dg, o
and @, mazrimal and minimal respectively, in the sense that any other complete trajectory
for U in Dg, 1, satisfies ©n,(t) < P(t) < oum(t) for allt € IR.

The order interval I(t) = [pm(t), o (t)] is forward invariant and attracts the dynamics
of the system uniformly in the pullback sense, i.e. for all t € IR we have

om(t,z) <liminfu(t, s, z;vs) < limsupu(t, s, z;vs) < oup(t, x) (7.3)
§—=+—00 §——00
uniformly in x € Q for all vy with vy € B(s), where {B(s)}s € Dg. Moreover, o (t) is
globally asymptotically stable from above in the pullback sense, i.e. for all v € Dg(IR, X),
v > @up we have
lim u(t, s;vs) = oun(t).

§—>—00
Similarly, o, (t) is globally asymptotically stable from below in the pullback sense.
As a consequence, there exists a pullback attractor for U with respect to Dg, denoted
by A= {A(t)}:, and
A(t) C lpm(t), onr(t)] for allt € IR.

Moreover, ¢n(t), om(t) € A(t) for allt € IR.

We prove the theorem in two steps. First, we prove that the solutions of (7.1) are
asymptotically bounded by the unique complete trajectory of the linear problem (5.4)
(with C and D from (7.2)) and then we prove Theorem 7.1 proper.

Lemma 7.2 Under the assumptions of Theorem 7.1, the solutions of (7.1) are global and
satisfy
limsup |u(t, s, z;vs)| < ¢(t,x) forallt € IR (7.4)

§——00
uniformly in x € Q for every v, with v, € B(s) where {B(s)}s € Dg, where ¢(t) is the
pullback attractor in the class D, given by a complete trajectory {¢(t)}+ for the problem

vp—Av = C(t,x)v+ D(t,z), in Q, t>s (7.5)
vgo = 0, on OS2 ’
Moreover, the order interval [—¢(t), ¢(t)] is forward invariant for (7.1).

Remark 7.3 In particular, since the limit in (7.4) is uniform in x € €0, the order interval
[—o(t) — 0, 6(t) + 6] is pullback absorbing at time t for the solutions of (7.1). In fact, for
any fired t € IR and 6 > 0, there exists a time sy such that

—o(t) — 6 < ult,s;v,) < @(t) + 0
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for all s < sq.

Proof of Lemma 7.2. We know that there exists a unique bounded complete trajectory
for (7.5) which we denote by ¢(t). Furthermore, A = {A(t)}; = {¢(t)}; is the pullback
attractor for this problem. Given ug € X, let v(t, s, x; up) be the solution at time ¢ of the
problem (7.5) starting from ug and u(t, s, ; ug) the solution at time ¢ of (7.1) with initial
data ug. We fix {B(s)}s € D and vs € B(s). By (7.2) and the comparison principle, see
Theorem 2.13,

u(t, s, 2;05)| < v(t, 8,23 |vs)) (7.6)

while both solutions exist. In particular, from here we get bounds on the solution of (7.1)
on finite time intervals and hence the solution is defined for all £ > s.
Now, we have
lim wv(t, s, x; |vs|) = P(t, x)

§—>—00

in C'(Q). Thus
limsupu(t, s, z:v,) < §(t, 2)

§——00

uniformly in = € Q and v, € B(s). Arguing with —v(¢, s, z; —|v,|) instead of v(¢, s, x; |vs|),
we have
limsup |u(t, s, z;v5)| < ¢(t, )

S—>—00

for all {vs} in {B(s)}s € D.
Finally, notice that if {us} is such that us < ¢(s) then, by the comparison principle,

u(t, s;us) < u(t,s;o(t)) <w(t,s;o(t) = ¢o(t) forall ¢>s.
Taking now {u,} such that u; > —¢(s) we have
u(t, s;us) > u(t,s;—¢(s)) > —v(t,s; —d(s)) = —o(t) forall t>s.

Thus,
U(t, s)[=(s), ¢(s)] C [=¢(), o(2)];
ie, {[—o(t), o(t)]}; is forward invariant for U. m

Using this lemma we can now prove Theorem 7.1.

Proof of Theorem 7.1. Let U(¢,s) be the nonlinear evolution operator associated
with (7.1). We know that this operator is order-preserving by Theorem 2.13. Moreover,
¢(t) is a super-trajectory since the solution of (7.1) starting from ¢(s) satisfies, by (7.6),

u(t, s; ¢(s)) < v(t, 5;6(s)) = 6(1)

where v is the solution of the linear problem (7.5). For the last equality we have used the
fact that ¢(¢) is a complete trajectory for the linear problem.
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Next we prove that, since ¢(t) is a super-trajectory of the nonlinear problem, U (t, s)$(s)
is monotonic as s — —oo and U(t, s)¢(s) — ¢um(t) as s — —oo uniformly in z for all
t € IR. Indeed, for a fixed ¢ € IR we have, from the definition of a super-trajectory

U(t,s)p(s) < ¢(t) forall s <t

in particular,

U(s+e€5)p(s) < p(s+e) foralle>D0.

Thus, by monotonicity,
U(t,s)p(s) =Ul(t,s +€)U(s + €,5)p(s) < U(t, s + €)p(s + €).

Therefore, {U(t, s)¢(s)}s is non-increasing as s — —oo. Moreover, it is bounded from
below (by —¢(t) — d for some ¢ > 0, see Remark 7.3). Thus, it converges pointwise to a
certain bounded function that we denote by @a(t) € L>(2).

Notice that we can write U(t, s)¢(s) = U(t,t — 1)U(t — 1, s)¢(s), where

{U(t - 1; 5)¢(s)}s§so

is bounded (for some s¢). Thus, by the smoothing property of the evolution operator
(see Theorem 2.12 and subsequent remarks) we know that {U(t, s)¢(s)}s<so = U(t,t —

D{U(t — 1,5)¢(s) }s<so is pre-compact. So, U(t, s)¢(s) = ¢u(t) € Co(£2) uniformly in
as s = —00.
The continuity of U(¢, s) implies that ¢ (¢) is a complete trajectory for (7.1). Indeed,

Ut s)u(s) = Ult,s) lim Uls,r)o(r)
= lim Ut 5)U(s,)o(r) = lim U(t,r)o(r)

= ou(t). (7.7)

We now prove that, asymptotically in the pullback sense, all trajectories of equation
(7.1) lie below @y, uniformly in z. Fix {B(s)}s € D and vs; € B(s). From (7.6) we have

u(t, s;vs) < w(t, s;|vs|) forallt > s.
Letting the evolution operator act on both sides, we have by monotonicity
U(r, t)u(t, s;vs) = ulr, s;vs) < U(r,t)v(t, s;|vg|) forallr >t > s.
Taking limits as s goes to —oo we have, for each x € €2,

limsup u(r, s, z;vs) < U(r, t)o(t, x) (7.8)

S§—»—00
for all t < r, where we have used the continuity of U(¢, s). Letting ¢ tend to —oo we have

lim sup u(r, 5, 73 v,) < @ar(r, 2),
S—>—00
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as claimed. The maximality of ¢(t) follows from this inequality.

From inequality (7.8) we obtain the global asymptotic stability from above in the
pullback sense for the maximal complete trajectory. Indeed, let r € IR be fixed and
assume vs > @(s) for all s. Then, by monotonicity, for z € Q,

(pM(ra $) = u(rﬂ 53 QOM(S)) < U(T, 8, Z; US)
for all s <r. Now, taking limits as s - —oo and using (7.8) we have

om(r,x) <liminfu(r, s, z;vs) < limsupu(r, s, z;vs) < U(r, t)é(t, x)

§—+—00 §——00
for all t < r. Taking now limits as £ — —oo we obtain

om(r,x) <liminfu(r, s, z;vs) < limsupu(r, s, x;vs) < @ (r, x)
§—+—00 §——00

Therefore, u(r, s;vs) — @ (r) as s — —oo which proves the asymptotic stability from
above.

The result for the minimal complete trajectory is proved in an analogous way.

To prove the forward invariance of I(t), take {us}s such that

Pm(s) < us < ou(s)

for all s € IR. Then, letting the evolution operator act, we have, by the comparison
principle,
em(t) = U(t, s)pm(s) < u(t, s;us) <UL, s)pm(s) = pum(t)

So, U(t,s)I(s) C I(t), i.e., I(t) is forward invariant.

We now show the existence of the pullback attractor A. As we pointed out in Remark
7.3 the time-dependent order interval [—¢(t) — §, ¢(¢) + ] in C(Q) is an absorbing set at
time ¢ for U(t, s) in the pullback sense. Let

Jt) =Tt - 1) -0 —1) 0,60 —1)+ 4.

From the smoothing effect of U(t,s) we know that J(t) is compact in C'(Q). Moreover,
J(t) is a pullback absorbing set. Thus, from Theorem 2.7 there exists a pullback attractor
A for U(t, s).

Finally, it is clear that A(t) C I(t) and ¢,,(t), o (t) € A(t) forallt € IR. m

Remark 7.4 Observe that if C and D satisfy the assumptions in Corollary 5.6 then ¢(t)
converges to 0 in X = C(Q) ast — oo or t — —oo. In particular the same holds true for
the solutions of the nonlinear problem (7.1).

On the other hand, if C' and D satisfy the assumptions in Theorem 6.1 or Corollary

5.8 or Theorem or 6.2 then ¢(t) is asymptotically constant or periodic.
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Remark 7.5 Notice that we obtain global information about the dynamics of problem
(7.1) as well as uniform properties for the asymptotic behaviour of their solutions. Namely,
we obtain information about the dynamics of the problem in the whole phase space (in fact,
in the basin of attraction Dg) and the uniform convergence of solutions to the order in-
terval defined by the two extremal complete trajectories.

Moreover, from the proof above it is easy to extend the results obtained for the particular
case of problem (1.1) to the general framework of order-preserving evolution operators as
considered in Langa and Sudrez [15]. Their paper gives a related result (their Theorem
3.4) that guarantees the existence of extremal complete trajectories between an ordered
couple of sub- and super-trajectories.

We now consider the T-periodic problem associated with (1.1), i.e., we suppose that
f(t,z,u) is a T-periodic function. This kind of problem has been widely studied (see e. g.
Danners and Koch—Medina [9] or Hess [13]). Moreover, we suppose that f satisfies (7.2)
with T-periodic functions C(t, z) and D(¢, x).

A simple application of our main result, Theorem 7.1, gives the existence of extremal
T-periodic solutions for the nonlinear problem.

Corollary 7.6 In the T-periodic equation case, the extremal solutions of (1.1) given in
Theorem 7.1 are T-periodic. In particular, there exist two T-periodic extremal solutions

of (1.1).

Proof. From Corollary 5.8 we know that the unique complete trajectory of (7.5) in Dy is
T-periodic. We only have to check that the maximal complete trajectory from Theorem
7.1 is T-periodic. But, we know that

U(t,s)p(s) = ou(t) as s— —oo.
We can use now that ¢(s) and f(¢,z,u) are T-periodic functions and then
UT+t,T+s)p(T+s)=U(t,s)p(s)

where the left-hand side of the equality tends to ¢ (T +t) as s — —oo and the right-hand
side tends to ¢p(t) as s = —oo. So, ¢u(t) = opm(T +t) and ¢y is T-periodic as we
wanted to prove. The same argument applies for ¢,,(¢). =

Remark 7.7 To study this type of equation it is usual to consider the Poincaré map
associated with (1.1): S = U(T,0), where U(t, s) is the evolution operator given by the
solutions of (1.1) (see e.g. Hess [13]).

In this case the evolution operator generated by A + C(t,x) is exponentially stable if
and only if the Poincaré map Sc associated with this operator has spectral radius less than
one (see Hess [13]).

In such a case, this implies that 1 € p(S¢) (the resolvent of S¢) and by Proposition 6.9
in Danners and Koch-Medina [9] we obtain the ezxistence of a unique periodic solution for
the linear problem as stated in Corollary 5.8. However, we have given another proof that
follows straightforwardly from the fact that we are dealing with equations with periodic
coefficients.
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8 Asymptotic behaviour forwards in time

In order to study the asymptotic behaviour forwards in time of non-autonomous equation,
natural concepts are those of asymptotically compact evolution operators and uniform
attractors as defined by Haraux [11] and by Chepyzhov and Vishik [7]:

Definition 8.1
i) We say that U(t,s) is asymptotically compact at o € IR if there exists a compact set
K, C X, which may depend on o, that attracts bounded sets of X forwards in time for
the one parameter family U,(t,0) = U(t + o0,0), t > 0.

We say that U(t,s) is asymptotically compact if it is asymptotically compact for all
s e lR.
ii) We say that U(t, s) is uniformly asymptotically compact if there exist a compact subset
K C X such that for any bounded set B C X

lim sup dist(U(t + s, s)B, K) = 0.

t—00 sER

iii) We say that a compact set Fy is the uniform attractor for U(t, s) if it is the minimal
compact set satisfying ii) above.

As we will show below, in some cases, this notion of attractor could be too strong
when studying the asymptotic behaviour forwards in time of a non-autonomous equation.
For this reason we now construct another kind of attractor giving information about the
forward dynamics.

Consider an asymptotically compact evolution operator U(t,s). Then for a fixed
s € IR by definition there exists a compact set K, that attracts bounded sets of initial
data forwards in time from the initial time s.

Then, in a standard way, given a bounded set B C X we define the w-limit set from
time s as

ws(B)={uve X : It, T oo, v, € B, s.t. Ulty, s)v, = uasn— o0o}.

With this, it is clear that F; = ws(K;) C K, is the minimal compact set that attracts
bounded sets of X forwards in time for the one parameter family U(¢,0) = U(t + s, s),
t>0.

It is not difficult to show, see Haraux [11], that there exists a monotone relationship
between this family of compact sets. Namely,

F,CF, forall s<t.

An interesting situation occurs therefore when the compact set K, in Definition 8.1 is
independent of o, that is, there exists a compact set K C X such that for all s € IR and
any bounded set B C X,

lim distx (U(¢,s)B, K) = 0.
t—00
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In such a case we get the existence of a forward attractor in the sense of Definition
2.6 for the problem (1.1) that can be characterised as

F=|JF CcK
sE€ER
where Fy = wy(K) C K. B
To see how these ideas apply to (7.1) we take X = C(Q2). Suppose that f is continuous,
locally Holder in ¢, locally Lipschitz in u, and satisfies (7.2) with C € C*(IR, L?(2)) with

0 < a < 1andsomep > N/2, and D is such that there exists a unique complete trajectory
¢ € L*(IR, X) for the linear problem (5.4) satisfying

o2, 5;u) — $(t)[|x < Me=Pt=)

for all us € L*®(IR,X) and M = M({us}s) (see Theorems 5.3, 6.1 and 6.2 for such
conditions on C and D). Then, given a bounded set B in X and € > 0 there exists a time
T = T(e) such that for every uy € B,

llv(t, s;up) — d(t)||x <€ forall ¢t—s>T. (8.1)
In particular, for R = ||||p(x) + 1,
lv(t,z;up)||x <R forall t—s>T.
Moreover, we know that |u(t, s;ug)| < v(t, s; |ug|) for all ¢ > s. Hence, for allt —s > T,
[[u(t, 5;u0)l[x < ot 25 u0)llx < R, (8.2)

i.e, for all s € IR, Bx(0, R) is an absorbing set forward in time for U(¢, s). Furthermore, by
the smoothing property of the evolution operator, the solutions of the nonlinear problem
enter some ball in a space Y compactly embedded in X, By (0, Ry) C Bx(0,R). Thus,
K = By(0,Ry) C Bx(0,R) (where the closure is taken in X) is a forward absorbing
compact set not depending on s.

It is now clear that in this case the sets F, and F as defined above can also be described
as

Fs = U UJS(B)

BCB(X)
where B(X) denotes the set of all bounded sets of X and

F = | ws(Bx(0, R)).

sER

Remark 8.2 Notice that the construction above can be carried out for (7.1) without the
boundedness assumption on ¢(t). Namely, everything above remains true if we allow
¢ € D, for some 0 < v < 3 since, in that case,

[v(t, s3us) — d@)||x < Me P |lug — ¢(s)|| < MyePl=)e™
< Mlefwtef(ﬂfv)(tﬂ) — Mle’Vte*(5*7)(t*5),
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And for t > 0 we have
[0(t, 85us) — ¢(t)||x < Mye=B=0=9),

Thus, since f—~ > 0, given € > 0, there exists T = T(€) > 0 such a that for allt—s > T,
t>0,

”v(t,s;us) - (b(t)“X <e€

and now the argument follows as above.

We now state a result about the structure of the forward attractor F for (7.1). For
this, let {B(t)}; be a family that is invariant under U(t, s), i.e. U(t, s)B(s) = B(t) for all
t > s. We denote by w(B) the set

wB)={ueX : 3t, 100, v, € B(tn), s.t. v, = uasn— oo}.
Proposition 8.3 If {B(t)}: is an invariant set for U(t, s) then
w(B) C F,

where F is the forwards attractor of U(t,s) as defined above.
In particular, if A is a pullback attractor for U(t,s) then w(A) C F. Moreover, if
¥(t) is a complete trajectory for U(t, s) then w(y) C F.

Proof. From (8.2) and the smoothing effect, if we take » — s > T as above, we have

B(r)=U(r,s)B(s) C K

where K = By (0, Ry) C Bx(0, R). Thus, for all ¢t > r,
B(t)=U(t,r)B(r) cU(t,r)K.
Taking limits as ¢ goes to 400 we have that
w(B) Cw.(K)CF, CF
where w, (K) is the w-limit set from time r defined above. =
Remark 8.4 As a consequence, the attractor F can be defined in cases where the uni-

form attractor cannot, since boundedness of ¢ is needed in the definition of the uniform
attractor. Indeed, it can be shown (see Chepyzhov and Vishik [7]) that

Fo=JA®)

teER

where A is the pullback attractor attracting bounded sets.
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Figure 1: Behaviour of a nonlinear non-autonomous evolution operator bounded by asymptot-
ically autonomous linear ones.

Let us consider a linear problem whose unique complete trajectory is unbounded back-
ward in time. Then, the only set that satisfies Definition 8.1 is

Fo=J o)

teR

which is an unbounded set. Therefore Fy is not compact. However, the (non-uniform)
forward attractor

F=w(@)={uveX : 3,1 oo, u, = d(t,) s.t. up, = u asn — oo}
still exists.

As a particular case we consider now the case of asymptotically autonomous problems.
In fact, suppose that f satisfies the dissipativity condition (7.2) with C(¢,2) — C*(z),
D(t,x) — D*(z) as t — oo as in Theorem 6.1. From the previous results we have, for
every t € IR,
A(t) C [pm(t), ou(8)] C [=9(t), 6(1)] C Bx (0, R)
and all these sets are forwards invariant. Hence denoting I = {I(¢)}; = [om (1), pa ()],
we have from Theorem 6.1 and Proposition 8.3,

w(A) Cw(I)C FCl-¢t,¢"]

Now observe that since {¢,, () }+, {©m(t)}: are relatively compact complete trajectories
we can consider w(yy) and w(¢y,), which are compact connected sets of X. Thus,

w(A) Cw(I) C [Ym, ¥u| N F C [—¢", ¢"]
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where
Ym(x) = inf w(z) and ¢Yu(x)= sup v(x).
vEW(Pm) vew(pour)
Note that a completely analogous analysis can be carried out backwards in time when
C(t,x) - C~(z) and D(t,z) — D~ (z) as t — —oo by considering the a-limit set of an
invariant set,

aB)={ue X : It, T —o0, v, € B(t,), st. v, > uasn— oo}

Continuing with the forward behaviour, assume in addition that f(¢,z,u) — g(z,u)
as t goes to oo, uniformly in z € €, for u in bounded sets of X. Then, it is shown
in Mischaikow et al. [17] that the evolution operator associated with equation (7.1) is
asymptotically autonomous in the sense of Thieme (see Thieme [22]). Thus, the w-limit
set of any point ws(ug) is invariant under the semiflow S(t) defined by the solutions of
the limit equation

vn—Av = g(z,v), t>0
v(0) = v (8.3)
1)|3Q =0

(see Theorem 2.5, p. 760 in Thieme [22]). Moreover, if the equilibria of the limit problem
are isolated, the existence of a Lyapunov function for the limit problem (8.3) (see Hale [10]
or Henry [12]) implies that they are not chained in a cyclic way in the sense of Definition
1.3 in Mischaikow et al. [17].

Then, from Theorem 4.2 and Corollary 4.3, p. 762, in Thieme [22] the w-limit set
of each solution of the non-autonomous problem is an equilibrium point for S(¢). So, it
follows that

wW(em) = {om}, wlom) ={eh} C F,

for some equilibria ¢ < @37 of the limit autonomous problem. Moreover, we have

w(A) C w(I) C [, ¥57] C [=msom] C [=07, 67

where ¢}, o}, are the extremal equilibria of the limit problem, see Rodriguez-Bernal and

Vidal-Lépez [19] and Vidal-Lépez [23].

Even more, w(.A) is contained in the attractor of the limit problem (see Theorem 3.7.2,
p. 45, in Hale [10] or Theorem 4.3.6, p. 96, in Henry [12]).

On the other hand, from the arguments above it is then clear that we also have

F Cleth el

since F can be obtained as a union of w-limit sets of fixed bounded sets and, from Theorem
3.7.2, p. 45, in Hale [10] or Theorem 4.3.6, p. 96, in [12], it must be an invariant set for
the limit problem.
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9 An example: the non-autonomous logistic equation

We now consider the non-autonomous logistic equation

u—Au = f(t,z,u), inQ, t>s

u = 0 on 02 (9.1)
u(s) = ws
with the model nonlinearity
ft, 2,u) = m(t, z)u — n(t, z)u? (9.2)

where m and n > 0 are continuous and locally Holder in t.

We will show how our techniques can be applied to this problem, although it will
be clear from the analysis that much more general classes of nonlinear terms could be
considered.

We start with the case in which the asymptotic dynamics of (9.1) is trivial.

Theorem 9.1 Suppose that n(t,x) > 0 and that m(t,x) is such that the evolution oper-
ator associated with A + m(t,x) is exponentially stable. Then |lu(t, s;uo)|| L) — 0 as
t — +o0 or s & —oo uniformly for ug in bounded sets of X = C(£2).

In particular, the pullback attractor of (9.1) is A(t) = {0} for all t € IR and the

forward attractor is {0}.
Proof. Notice that using n(t,z) > 0 we have that f(¢,z,u) satisfies
flt, 2, u)u = m(t,z)u® — n(t, z)u* < m(t, z)u? (9.3)

for all t € IR.

Now, since m(t, z) is such that the evolution operator associated with A + m(t, z) is
exponentially stable, it follows from Theorem 7.1, with C(¢,2) = m(t,z) and D(t,z) =0
and (9.3) that there exist two extremal bounded complete trajectories for (9.1). But,
in this case, both are the same and equal to the trivial one (see Theorem 5.1). So the
pullback and forward attractors are 0. In fact, ¢(t) =0 forallt € IR. m

Suppose now that m(t¢,x) is such that the evolution operator associated with A +
m(t, z) is not exponentially stable. In the following result we give conditions to have the
existence of a pullback attractor.

Theorem 9.2 Let X = C(Q2). Suppose that the evolution operator generated by A +
m(t,x) is not exponentially stable but there exists a decomposition m(t,x) = my(t,x) +
mo(t, x) with my(t,x) > 0 and

my € C*(R,LP()) with 0<a<1 andsome p> N/2.

such that the evolution operator associated with A + my(t,x) is exponentially stable with

exponent 5. Let
m3 1/2
D=2
()
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and suppose that either

i) D € Dg(IR, L"(52)) with N/2 < r < oo; or
ii) for T < oo, D € L?((—00,T),L"(Q)) with 1 < ¢ < o0 and No'/2 < r < oo if
l<o<oo,or N2<r<ooifo=oc.

Then Theorem 7.1 applies and

1. There exists a pullback attractor with respect to Dg, A(t) C [pm(t), pam(t)] where
©m(t) and @ (t) are the extremal complete trajectories from Theorem 7.1. In par-
ticular, the set [pm(t), on(t)] is a forward invariant set that is pullback attracting
at ttme t.

2. For non-negative solutions there also exists a pullback attractor A, (t) C [0, o (2)].
In particular the set [0, par(t)] is a pullback attracting invariant set for non-negative
solutions.

Remark 9.3 Assumption i) implies that ¢ € Dg(IR, C (), while assumption i) implies

that, for each T < oo, ¢ € L®((—00,T),C(R2)) C Dg.

Proof. From Young’s inequality applied to f we have

8mi(t, z) ) 12

ft, z,u) <m(t,z)u+ (27n(t, )

for all w > 0. A similar expression holds for v < 0. Thus,

1/2
Smg(t,aj)) / )

flt, z,u)u < my(t, z)u® + (27n(t, 2)

Hence, if either i) or ii) hold, we can apply Theorem 7.1 with C(t,z) = m,(t,z) and

m T 1/2 . . .
D(t,x) = (273&;; ) to deduce the existence of two extremal complete trajectories (¢,

and ¢,s) and a pullback attractor A(t) such that

'A(t) - [@m(t)a @M(t)]'

Moreover, since 0 is a solution of (9.1) and the comparison principle holds, the maximal
complete trajectory is non-negative and the minimal one non-positive. So, provided we
consider only non-negative solutions, the pullback attractor A, (t) satisfies

A, (t) C[0,oum(t)] forall t¢e IR,

where /() is the maximal complete trajectory. m

Remark 9.4 Notice that Theorem 5.3, part ii), gives sufficient conditions on D to con-

clude that ¢, and therefore @, oy are in Cy(IR, C(R2)). In such a case the arguments in
Section 8, regarding the asymptotic behaviour forward in time, apply.
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Also, note that Corollary 5.6 gives conditions on D to conclude that

Om(t), om(t) =0

as t goes to —oo or 0o, in cases not covered by Theorem 9.1.

However, in general solutions of (9.1) may not be bounded as t — +o00. For example
if n = n(t) tends to zero as t — +oo and m(t,x) = A, a positive constant larger than
the first eigenvalue of the Laplace operator in Q with Dirichlet boundary conditions (see
Langa and Sudrez [15], Lemma 4.5). Indeed, assume that on a suitable smooth subdomain
Qo C Q we have 0 < N(t) = maxgeq, n(t,z) = 0 as t = 0o and m = m(x). Then clearly
solutions of

wy— Aw = m(z)w — Nt)w® in Qp t>s
w = 0 on 08
w(0) = wy>0

give lower bounds for the non-negative solutions of (9.1) restricted to y. Therefore, if
the first eigenvalue of —A — m(x)I with Dirichlet boundary conditions in Qq is negative,
using the arguments from the proof of Lemma 4.5 in Langa and Sudrez [15], we can show
that w(t,z) becomes unbounded in Qo and so do the solutions of (9.1).

We now give four examples which show that sometimes the linear bounds appearing in
Lemma 7.2 may have desirable properties even though no special behaviour is prescribed
for the nonlinear term. For example, ¢(¢) can be independent of ¢ or T-periodic, while
the reaction term f is not. We will assume in (9.2) that n > 0 and that m(¢, z) admits a
decomposition of the form

m(t,z) = my(t,x) + ma(t, x)

such that the evolution operator generated by A + m (¢, x) is exponentially stable.

Example 1. Suppose that m; (t,z) is T-periodic and that my(t, z) = a(t)g?(t, z), where
g(t,xz) > 0 is also T-periodic and a(t) > 0 is arbitrary. Set

n(t,z) = a®(t)h3(t, x)
for some T-periodic function A(t,z) > 0. Then f satisfies (7.2) with

8¢°(t,x
27h(t, x)

~—

C(t,x) =my(t,z) and D(t,z)=

which are T-periodic functions. Hence, ¢(t) is a T-periodic solution of the linear problem,
that is, we obtain a T-periodic bound for the pullback attractor of the nonlinear problem.

Example 2. Assume now that

mi(t, ) = mo(z), ma(t,z) = al(t,z)gi(z), and n(t,z) = a®(t, z)ho(2)
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where hg > 0, myg, go > 0 do not depend on t and a(¢,xz) > 0 is arbitrary. Then, f satisfies
(7.2) with
85 ()
C(t,x) = d D(t,x) = .
(t2) =mo(x) and D(t,x) = b T

and the linear problem given by (7.5) is an autonomous parabolic equation. So, its
(unique) equilibrium gives bounds for the nonlinear problem, that is, we have a time-
independent bound for the pullback attractor of the nonlinear problem.

Example 3. Suppose now that m;(t,z) is T-periodic,
malt, ) = alt, 2)b(t, 2)g(x), and  n(t,z) = (t, 2)b(t, 2R (t, ) .

whereg(t,z) > 0 and h(t,z) > 0 are both T-periodic and a(t,z) > 0 is arbitrary. Suppose
that 0 < b(t,z) — bp(x) uniformly in z as t — oo. In this case
8b(t, 2)g°(t, )

27h(t, x)

C(ta x) = m1(t, .Z) and D(t, x) =

Notice that if we denote D (¢,x) = 4by(z)g>(¢, ) /27h(t, z) then D(t,z) — D*(t,z) — 0
uniformly in €, as ¢ goes to infinity. Thus ¢(¢) is the unique complete trajectory of the
asymptotically T-periodic problem (7.5) and therefore ¢(t) is asymptotically 7T-periodic.

Example 4. In the previous example, suppose that m; > 0, g > 0 and A > 0 do not
depend on ¢, i.e. my(t,x) = mo(x),

my(t,z) = a(t,2)b(t,z)g*(x), and n(t,z) = a’(t,z)b(t,z)h(x),
with a(t,z) > 0 arbitrary and 0 < b(¢, ) — bo(z) uniformly in z as ¢ — oo. Therefore
C(t,z) = my(z)
and

2 3 20\ o3
D(t,z) = M)gg(:v) — DY (z) = 8hu(*)n(z) uniformly as ¢ — oo.

27h(x 27h(x)

Thus ¢(t) satisfies an asymptotically autonomous linear problem. In particular, from the
result in Section 8 we have bounds for the asymptotic behaviour of the solutions of the
nonlinear problem forward in time.

Note that in all these examples Theorem 9.2 gives conditions for the existence of the
pullback attractor.

10 Some other problems

With minor modifications the results of previous sections can be translated to problems
other than our model example (1.1).
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For example, the results about linear equations in Section 4 remain true for more gen-
eral equations than (4.1) involving time—-dependent operators and boundary conditions.
As a first example, using the results in [9], we can consider operators of the form

N

N
Z ai;j(z t88u+2a,xt8u+a(m tu

=1

with suitable smooth coefficients and either Dirichlet boundary conditions or time-independent
boundary conditions of Robin type

ou
Bu = 77 + b(z)u
with no sign conditions on the smooth coefficient b(z). All these operators satisfy the
maximum principle [9, page 120] and the estimates in (4.2).

Existence results for the corresponding nonlinear problems, along the lines of those
given in Theorem 2.12, can be obtained from the results in [9] and [16].

The analysis of complete trajectories in Section 5 can therefore be carried out without
major changes. Of course, the asymptotically autonomous or periodic cases in Section 6
would require a specific although similar treatment.

All the results for the nonlinear equations in Section 7 then follow for this example.

We could also consider the following problem, with non-autonomous nonlinear bound-
ary conditions:

—Au = f(t,z,u) in Q, t>s
%+ b(t,x)u = g(t,z,u) on 90 (10.1)
u(s) = ug
where Q is a bounded domain in IRY, b(¢, ) is smooth and f(t,z,u) : IR x Q x IR — IR

and g(t,z,u) : IR x 02 x IR — IR are continuous, locally Holder in ¢, locally Lipschitz in
u and satisfy

ft,z,u)u < C(t,z)|u)* + D(t,x)|u| for allu € IR (10.2)
g(t,z,u)u < B(t,z)|u> + E(t,z)|u| for all u € IR (10.3)
for some suitable smooth functions C'; D, B and E. Note that we make no sign assump-
tions on b(¢, x).
In this case the main assumption would be that the evolution operator defined by

-Av = Ct,z)v in Q, t>s
® 4+ b(t,z)v = B(t,z)v on 09 (10.4)
v(s) = ws

is exponentially stable.
The technical details will be presented elsewhere.
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11 Conclusions

We have provided suitable general conditions that imply that certain non-autonomous
reaction-diffusion equations have two extremal complete trajectories bounding the pull-
back attractor. Namely, we need the nonlinear problem to be bounded by two linear
problems for which there exists a unique complete trajectory which is globally asymptot-
ically stable. In our analysis no prescribed time dependence is assumed (e.g. periodic,
quasiperiodic or almost periodic).

We have also given a result on periodic problems: the existence of two extremal
periodic orbits bounding the attractor. In addition we have obtained information about
the asymptotic behaviour both forwards and backwards in time of some asymptotically
autonomous problems.

In the course of this analysis we have proved some sharp results on the exponential
stability of the evolution operator associated with linear evolution equations in Lebesgue
spaces.

Finally, we have applied our techniques in the case of a non-autonomous logistic equa-
tion.

We hope that with the techniques developed in this paper we will be able to analyse
in more detail the dynamical behaviour of important non-autonomous nonlinear models
appearing in applications.
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