
Type Classes in Functional Logic Programming
Author’s version for E-Prints Complutense

Enrique Martin-Martin
Dpto. Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain

emartinm@fdi.ucm.es

Abstract
Type classes provide a clean, modular and elegant way of writ-
ing overloaded functions. Functional logic programming languages
(FLP in short) like Toy or Curry have adopted the Damas-Milner
type system, so it seems natural to adopt also type classes in FLP.
However, type classes has been barely introduced in FLP. A reason
for this lack of success is that the usual translation of type classes
using dictionaries presents some problems in FLP like the absence
of expected answers due to a bad interaction of dictionaries with
the call-time choice semantics for non-determinism adopted in FLP
systems.

In this paper we present a type-passing translation of type
classes based on type-indexed functions and type witnesses that
is well-typed with respect to a new liberal type system recently
proposed for FLP. We argue the suitability of this translation for
FLP because it improves the dictionary-based one in three aspects.
First, it obtains programs which run as fast or faster—with an
speedup from 1.05 to 2.30 in our experiments. Second, it solves
the mentioned problem of missing answers. Finally, the proposed
translation generates shorter and simpler programs.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Polymorphism; D.3.2 [Language Classifications]:
Multiparadigm languages

General Terms Languages, Design, Performance.

Keywords Type Classes, Functional Logic Programming, Type-
indexed functions.

1. Introduction
Type classes [10, 30] are one of the most successful features
in Haskell. They provide an easy syntax to define overloaded
functions—classes—and the implementation of those functions for
different types—instances. Type classes are usually implemented
by means of a source-to-source transformation that introduces extra
parameters—called dictionaries—to overloaded functions [10, 30],
generating Damas-Milner [7] correct programs. Dictionaries are
data structures containing the implementation of overloaded func-
tions for specific types and dictionaries for the superclasses. The
efficiency of translated programs—using several optimizations

c© ACM, (2011). This is the authors version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in PEPM ’11 Proceedings of the 20th ACM SIGPLAN workshop on
Partial evaluation and program manipulation (January 24–25, 2011, Austin, Texas,
USA).
http://doi.acm.org/10.1145/1929501.1929524.

[4, 11]—and the fact that the translation handles correctly mul-
tiple modules and separate compilation, have resulted in that nowa-
days it is the most used technique for implementing type classes
in functional programming (FP). Another scheme for translating
type classes is passing type information as extra arguments to over-
loaded functions [29]. In this scheme, overloaded functions use a
typecase construction in order to pattern-match types and decide
which concrete behavior—instance—to use. Although it is possi-
ble to encode it using generalized algebraic data types (GADTs)
[6, 14] or Guarded Recursive Datatype Constructors [31], this
translation scheme has not succeeded in the FP community.

Functional logic programming (FLP) [12] aims to combine the
best of declarative paradigms (functional, logic and constraint lan-
guages) in a single model. FLP languages like Toy [22] or Curry
[13] have a strong resemblance to lazy functional languages like
Haskell [15]. However, a remarkable difference is that functional
logic programs can be non-confluent, giving raise to so-called non-
deterministic functions, for which a call-time choice semantics [8]
is adopted. The following program is a simple example, using
Peano natural numbers given by the constructors z and s1: coin
→ z, coin→ s z, dup X→ pair X X—where pair is the constructor
symbol for pairs. Here, coin is a non-deterministic function (coin
evaluates to z and s z) and, according to call-time choice, dup coin
evaluates to pair z z and pair (s z) (s z) but not to pair z (s z) or
pair (s z) z. Operationally, call-time choice means that all copies
of a non-deterministic subexpression (coin in the example) created
during reduction share the same value.

Functional logic languages have adopted the Damas-Milner
type system, although it presents some problems when applied
directly [9, 21]. However, with the exception of some prelimi-
nary proposals as [26]—presenting some ideas about type classes
and FLP not further developed—and [23]—showing some prob-
lems that the dictionary approach produces when applied to FLP
systems—type classes have not been incorporated in FLP. From
the point of view of the systems, only an experimental branch
of [1] and the experimental systems [2, 3] have tried to adopt
type classes. One reason for this limited success is the problems
presented in [23]. In addition to them, another important issue
to address is the lack of expected answers when combining non-
determinism and nullary2 overloaded functions [24]. This problem
is shown in the program in Fig. 1, taken from [24]. We use a syn-
tax of type classes and instances similar to Haskell but following
the mentioned syntactic convention adopted in the Toy system.
The program contains an overloaded function arb which is a non-
deterministic generator, and its instance for booleans. It also con-
tains a function arbL2 which returns a list of two elements of the

1 We follow the syntactic conventions of Toy where identifiers are lower-
cased and variables are uppercased.
2 i.e. of arity 0.

class arb A where
arb :: A

instance arb bool where
arb → false
arb → true

arbL2 :: arb A => list A
arbL2 → [arb, arb]

a) Original program

data dictArb A = dictArb A

arb :: dictArb A -> A
arb (dictArb F) → F

arbBool :: bool
arbBool → false
arbBool → true

dictArbBool :: dictArb bool
dictArbBool → dictArb arbBool

arbL2 :: dictArb A -> list A
arbL2 DA → [arb DA, arb DA]

b) Translated program using dictionaries

Figure 1. Program containing a type class with a constant non-
deterministic overloaded function

same instance of arb. Fig. 1-b) contains the translated program
following the standard translation using dictionaries [10, 30]. The
arb type class generates a data declaration for arb dictionaries—
dictArb—and a projecting function arb to extract the concrete
implementation from the dictionary. The instance arb bool gen-
erates a concrete dictionary—dictArbBool—and the arbL2 func-
tion is transformed to accept an arb dictionary as first argument
and pass it to the arb functions in its right-hand side. Expected
results for the expression arbL2::(list bool) are [true,
true], [true, false], [false, true] and [false, false],
however its evaluation in the translated program only produces
[true, true] and [false, false]. The reason is the call-time
choice semantics. The translated expression arbL2 dictArbBool
reduces to [arb dictArbBool, arb dictArbBool], but both
copies of dictArbBool must share their value. Therefore they
cannot be reduced to dictArb true and dictArb false in the
different occurrences of the right-hand side, losing two expected
solutions.

In this paper we propose and evaluate a type-passing transla-
tion of type classes for FLP based on type-indexed functions—
functions with a different behavior for different types [14]—and
type witnesses—representations of types as data values—that is
well-typed in a new liberal type system recently proposed for FLP
[20]. The proposed translation is not integrated in the type check-
ing phase as in [10, 30], but it is a separated phase after type check-
ing. This previous type checking phase is assumed to use a standard
type system supporting type classes [5, 27], and decorates the func-
tion symbols with the inferred types.

We show that the proposed translation is a suitable option for
FLP compared to the classical dictionary-based translation because
of three reasons. First, it obtains programs which run as fast or
faster—with and speedup ranging from 1.05 to 2.30 in our ex-
periments. When we apply optimizations to both translated pro-
grams the speedup still remains favorable to the proposed transla-
tion. Second, it solves the mentioned problem of missing answers
when combining non-determinism and nullary overloaded func-
tions. Finally, the proposed translation has a similar complexity to
the dictionary-based one, but generates shorter and simpler pro-
grams.

The following list summarizes the main contributions of the
paper and at the same time presents the structure of the paper.

• We formalize a type-passing translation for type classes in FLP
in Sect. 3. Although the broad idea of using such kind of
translation is not a novelty [29], its concrete realization and the
application to FLP, relying in a new type system [20], are new.
In particular, the liberality of the type system avoids the need of
a typecase construction in the target language, resulting in that
translated programs do not need to enhance the syntax of FLP
systems with that construction.
• We have measured the execution time of a collection of differ-

ent programs involving overloaded functions that can be part of
bigger real FLP programs—see Sect 4.1. Some of these pro-
grams have been adapted from the nobench suite of bench-
mark programs for Haskell. The speedup results—from 1.05
to 2.30—show that when no optimizations are applied, pro-
grams translated using the proposed type-passing scheme per-
form faster than those translated using the dictionary-based
translation.
• There are several well-known optimizations than can be applied

to translated programs using the dictionary-based scheme [4,
11]. In Sect. 4.1 we present some optimizations to the proposed
type-passing translation. We have repeated the execution time
measurements to the optimized programs, and we have checked
that the proposed translation still obtains faster programs even
when optimizations are applied.
• We study how the proposed translation solves the problem of

missing answers that appears when combining non-determin-
ism and nullary overloaded functions—see Sect. 4.2.
• In Sect. 5 we discuss some additional aspects—including some

problems—that arise with the translations of type classes in
FLP.

2. Preliminaries
This section introduces the syntax of types, the source language and
the target language of the proposed translation. It also introduces
the liberal type system in which the translated programs are well-
typed.

2.1 Syntax
Fig. 2 gives the syntax of types, which are the usual ones when
using type classes [10]. The only difference is that class names
can have a mark •. We use this mark in the translation to distin-
guish between which class constraints generate a type information
to pass to overloaded functions, as we will explain in Sect. 3. Over-
loaded types are simple types enclosed with a saturated context.
Notice that in a saturated context class restrictions not only af-
fect type variables but they can affect simple types as list bool or
pair int (list nat). Contexts, which express class constraints over
type variables, will be used in class and instance declarations. Type
schemes are the same as in the Damas-Milner type system [7], and
play the usual role to handle parametric polymorphism.

The syntax of source programs of the translation is shown in
Fig. 3. It is the usual syntax for programs with type classes of
one argument [10] adapted to Toy’s syntax. We assume a denu-
merable set of data variables (X), and a set of function symbols
(f) and constructor symbols (c), all them with associated arity.
We say that a function is a member of a type class if it is de-
clared inside that type class declaration, and it is an overloaded
function if its inferred type has class constraints in the context. No-
tice that member function are overloaded functions, since they have
exactly one class constraint in the context of its type. Patterns—
our notion of values—are a subset of expressions. Notice that con-

Type variable α, β, γ . . .
Type constructor C

Class name κ , κ•

Simple type τ ::= α | τ → τ ′

| C τn with n = arity(C), n ≥ 0
Context θ ::= 〈κn αn〉 with n ≥ 0

Saturated context φ ::= 〈κn τn〉 with n ≥ 0
Overloaded type ρ ::= φ⇒ τ

Type scheme σ ::= ∀αn.τ with n ≥ 0

Figure 2. Syntax of types

function symbol f
constructor symbol c

data variable X

program ::= data class inst type rule
data ::= data C α = c1 τ | . . . | ck τ

class ::= class θ ⇒ κ α where f :: τ
inst ::= instance θ ⇒ κ (C α) where

f t→ e with t linear
type ::= f :: θ ⇒ τ

rule r ::= (f :: ρ) t→ e with t linear
pattern t ::= X | c tn with n ≤ arity(c)

| f tn with n < arity(f)
expression e ::= X | c | f :: ρ | e e | let X = e in e

Figure 3. Syntax of source programs

structor and function symbols partially applied to patterns—called
HO-patterns—are considered as patterns in our setting, the HO
Constructor-based conditional ReWriting Logic (HO-CRWL) ap-
proach to FLP [25] followed by the Toy system. This corresponds
to an intensional view of functions, i.e., different descriptions of
the same ‘extensional’ function can be distinguished by the se-
mantics. In program rules (r) the set of patterns t is linear (there
is not repetition of variables) and there are not extra variables
in the right-hand side. However we do not support HO-patterns
made with overloaded function symbols in the left-hand side of
rules, due to some complications that arise during translation—
see Sect 5.3. A particularity of the syntax is that function sym-
bols in rules and expressions are always decorated with an over-
loaded type. We assume that this decoration comes from a previous
type checking phase, and reflects to which types are functions ap-
plied. In the type checking stage the type checker decorates func-
tion symbols with a variant of its type, and instantiate it with the
proper type of the application. For example if eq has the usual type
〈eq A〉 ⇒ A→ A→ bool, a rule for a function g:

g X → eq X [true]
will have the decoration

g::〈〉 ⇒ (list bool)→ bool X →
eq::〈eq (list bool)〉 ⇒ (list bool)→ (list bool)→ bool
X [true]

In the right-hand side of g, the saturated context 〈eq (list bool)〉
indicates that the overloaded eq function is applied to elements of
type list bool , so it needs that type information. The function g in
the left hand side does not have any context because its context is
reduced during type checking—see Sect. 3.3—and became empty,
so it does not appear in the inferred type for g.

The syntax of target programs is similar to source programs, ex-
cept that there are not class or instance declarations, function sym-
bols in rules and expressions are not decorated with type informa-
tion and type declarations for functions are only simple types.

size :: A -> nat
size false → s z
size true → s z
size z → s z
size (s X) → s (size X)

eq :: A -> A -> bool
eq true true→ true
eq false false→ true
eq z z→ true
eq (s X) (s Y)→ eq X Y

Figure 4. Examples of type-indexed functions

2.2 Liberal type system for FLP
The type system considered for the target language is a new simple
extension of the Damas-Milner type system recently proposed for
FLP [20]. The typing rules for expressions correspond to the well-
known variation of Damas-Milner type system [7] with syntax-
directed rules. The type inference algorithm � follows the same
ideas that algorithm W [7], however we have given the type in-
ference a relational style A � e : τ |π. This algorithm accepts
a set of type scheme assumptions A over symbols si which can
be variables or constructor/function symbols—{sn : σn}—and an
expression e, returning a simple type τ and a type substitution π—
[αn/τn]. Intuitively, τ is the “most general” type which can be
given to e, and π the “most general” substitution we have to ap-
ply toA in order to be able to derive any type for e. The difference
is that, unlike FP, we cannot write programs as expressions—we do
not have λ-abstractions—so we need an explicit method for check-
ing whether a program is well-typed. We will say that a program is
well-typed wrt. a set of assumptions if all the rules are well-typed:

DEFINITION 1. A rule f t → e is well-typed wrt. to a set of
assumptions A iff:

• A⊕ {Xn : αn} � f t : τL|πL
• A⊕ {Xn : βn} � e : τR|πR
• ∃π.(τL, αnπL) = (τR, βnπR)π

whereXn are the variables in t,⊕ is the symbol for the usual union
of sets of assumptions and αn, βn are fresh type variables.

Intuitively, a rule is well-typed if the types (τR, βnπR) inferred for
the right-hand side and its variables are more general than the types
(τL, αnπL) inferred for its left-hand side and its variables. Notice
that programmers must provide an explicit type for every function
symbol, otherwise the first point of the definition fails to infer the
type for the expression f t. Therefore Def. 1 cannot be used to infer
the types of the functions, but to check that the types provided for
the functions are correct.

The most remarkable feature of this new system is its liberality,
that allows the programmer to define type-indexed functions in a
very easy way, but still assuring essential safety properties like type
preservation and progress—see [20] for more details. Consider
the type-indexed functions size and eq defined over natural and
booleans that appear in Fig. 4. The first three rules for size are
well-typed because the type inferred for the right-hand side (nat)
is more general than the inferred in the left-hand side (nat again).
In the fourth rule the types inferred for the left-hand side and the
variable X are both nat, and in the right-hand side the inferred types
are nat and β resp., so the rule is well typed since (nat, β) is more
general than (nat, nat). The same happens in the fourth rule of eq,
where (bool, β, β) inferred for the right-hand side is more general
than (bool, nat, nat) inferred for the left-hand side. The rest of
rules for eq are well-typed for similar reasons.

3. Translation
As we have said in Sect. 1, the translation follows a type-passing
scheme [29] and uses type-indexed functions and type witnesses.
Instead of passing dictionaries containing the concrete implemen-
tation of the overloaded functions to use, in this scheme we pass
data values—type witnesses—representing the types to which over-
loaded functions are applied. In the source program, saturated con-
texts that decorate function symbols show what types are they ap-
plied to, so we use that information to generate the concrete type
witnesses. Member functions are translated into type-indexed func-
tions that pattern-match on the type witness and decide which in-
stance of the overloaded function to use. Due to the liberality of the
type system, these type-indexed functions are encoded with type
witnesses without the need of a special typecase constructions as in
[29], so translated programs are usual FL programs.

3.1 Type witnesses
Type witnesses are data values that represent types. In [6, 14] these
type representations are encoded using a GADT containing all the
type representations. We follow a slightly different approach: we
extend every data declaration with a new constructor in order to
represent the type of the declared data. For example, a data dec-
laration for Peano naturals data nat = z | s nat is extended
with the constructor #nat, resulting in data nat = z | s nat
| #nat; and a data declaration for lists data list A = nil |
cons A is extended to data list A = nil | cons A | #list
A. This extension of data declarations can be easily performed by
the system. An interesting point of type witnesses defined this way
is that they have exactly the same type they represent. In the previ-
ous example, #nat has type nat, and #list (#list #nat) has
type list (list A). This link between types and type witnesses allows
us to generate automatically the type witness of a given simple type,
fact that is used during translation.

DEFINITION 2 (Generation of type witnesses).
• testify(α) = Xα
• testify(C τ1 . . . τn) = #C testify(τ1) . . . testify(τn)

The function testify returns the same data variable Xα for the
same type variable α. Notice that the testify function is not defined
for functional types τ → τ ′. This is because we consider a source
language where instances over functional types are not possible,
so in the translation we will not need to generate type witnesses
for that types. However, in our liberal type system it would be
simple to create type witnesses for those types using a special data
constructor #arrow of type α→ β → (α→ β).

3.2 Translation
In the classical dictionary-based scheme [10, 30], the translation is
integrated in the type checking phase so that it uses the inferred type
information. In this paper we follow a different approach, suppos-
ing that the translation from type classes to type-indexed functions
comes after a type checking phase that has inferred the types to
the whole program [5, 27]. Since the inferred type information is
needed for the translation, we assume that the type checking phase
has decorated the function symbols with their corresponding types.
The idea of the translation is simple: we inspect the context of the
types that decorate function symbols and extract from them the con-
crete type witnesses that we need to pass to the functions. We define
a set of translation functions for the different constructions (whole
programs, data declarations, classes, instances, type declarations,
rules and expressions):

DEFINITION 3 (Translation functions).
transprog(data class inst type rule) =

transdata(data) transclass(class) trans inst(inst)

trans type(type) transrule(rule)

transdata(data C α = c1 τ | . . . | ck τ) =
data C α = c1 τ | . . . | ck τ |#C α

transclass(class θ ⇒ κ α where f :: τ) = f :: α→ τ

trans inst(instance θ ⇒ κ (C α) where f t→ e) =
f testify(C α) transexpr (t)→ transexpr (e)

trans type(f :: θ ⇒ τ) = f :: α1 → . . .→ αn → τ
where α1 . . . αn appear in θ constrained by a class
marked with •

transrule((f :: ρ) t→ e) =

transexpr (f :: ρ) transexpr (t)→ transexpr (e)

transexpr (X) = X
transexpr (c) = c
transexpr (f :: ρ) = f testify(τ1) . . . testify(τn)

where ρ ≡ φ⇒ τ and τ1 . . . τn appear in φ constrained
by a class marked with •

transexpr (e e
′) = transexpr (e) transexpr (e

′)
transexpr (let X = e in e′) =

letX = transexpr (e) in transexpr (e
′)

The translation of a program is simply the translation of its com-
ponents. Data declarations are extended with the constructor of its
type witness as explained in Sect. 3.1. Class declarations gener-
ate type declarations for the type-indexed functions. The generated
type is the same as the one declared in the class but it has an extra
first argument for the type witness. Consider the class declaration
for the class foo:

class foo A where
foo :: A→ bool

This declaration generates a type declaration for the type-indexed
function foo adding an extra first argument A to the type of the
member function. This argument A is the type variable of the type
class:

foo :: A→ A→ bool
Type declarations are treated in a similar way, with the difference
that we only add new arguments to the translated type if they are
constrained by a class with a • mark, i.e., if the corresponding type
witnesses are needed. Consider the type declaration for f:

f :: 〈eq• A, ord A, eq• B〉 ⇒ A→ B → bool
This declaration generates a type declaration with the extra argu-
ments A and B—and in that order—which are the type variables
constrained by marked class names in the context:

f :: A→ B → A→ B → bool
Rules in an instance declaration are translated one by one. These
rules generate the rules of type-indexed functions, so we add a
type witness of the concrete instance as the first argument so they
dispatch on it. Notice that a rule generated from an instance do not
need any extra type-witness, since the type declared in the class
declaration is a simple type and does not have a context. Consider
the instance declaration foo for list A:

instance foo (list A) where
foo X → false

This declaration generates a rule for the type-indexed function foo
whose first argument is the type witness (#list XA), the result of
the testify function for the type list A of the instance declaration:

foo (#list XA) X → false
To translate a rule, we translate all its components. Notice that
according to our source syntax, patterns t do not contain overloaded

function symbols, so they are decorated with types with empty
contexts 〈〉. Therefore type witnesses will not be added to patterns,
and the translation function transexpr will only erase the type
decorations. The most important case of transexpr is the translation
of a function symbol. When we have an overloaded function, we
have to provide the type witnesses it needs. In this case we inspect
the saturated context φ, collecting those types constrained by a
marked class name and adding their associated type witnesses. The
order in which these type witnesses are supplied is important, and
must be the same for all the occurrences of the same overloaded
function. Consider a possible occurrence of the previous function f
applied to concrete types:

f :: 〈eq• bool , ord bool , eq• (list int)〉 ⇒ bool →
(list int)→ bool

The translation of this decorated function symbol adds type wit-
nesses for booleans and lists of integers, which are the types con-
strained by marked class names in the context:

f #bool (#list #int)
Notice that in expressions not containing overloaded functions,

the result of the translation is the original expression without type
decorations in functions symbols. The same happens with programs
no containing overloaded functions. Therefore in these cases the
translation does not introduce any overhead in the program.

As the reader can notice, the translation does not need the
complete decoration of function symbols but only the types marked
with a • in the context. We have decided to use the complete
inferred decorations to make more notable the close link between
the translation and the type checking phase.

3.3 Important issues for the translation
The type checking phase is very important for this translation, since
the information it provides in the contexts of the types that deco-
rates function symbols directs the translation. There are two impor-
tant issues that the type checker must address: context reduction
and the marking of class names in contexts.

Context reduction
When performing the type checking of functions, the type checker
infers a type τ and a context of class constraints. Consider the non-
deterministic function f, where gt is the greater function with type
〈ord A〉 ⇒ A → A → bool and eq the equality function with
type 〈eq A〉 ⇒ A→ A→ bool:

f (X:Xs) Z → gt X Z
f (X:Xs) Z → and (eq X Z) (eq Xs [Z])

For these rules, the inferred type is (list A) → A → bool and
the context is 〈ord A, eq A, eq (list A)〉. The constraint ord A
comes from the order comparison in the first rule gt X Z, the
constraint eq A from the equality comparison between Z and
the head of the list X , and the constraint eq (list A) from the
equality comparison eq Xs [Z]. However, this context contains
some redundant information and could be reduced. There are three
rules for context reduction:

• Eliminating duplicate constraints. We can reduce the context
〈eq A, eq A〉 to 〈eq A〉 and no information is lost.
• Using instance declarations. The usual instance declaration for

equality on lists is instance eq A ⇒ eq (list A) where
(...), specifying how to use the equality on valuesA to define
an equality on list A. Therefore, we can reduce the context
〈eq A, eq (list A)〉 to 〈eq A〉. This reduction is not a problem
from the point of view of type witnesses, because given a type
witness for A we can generate a type witness for list A.
• Using class declarations. The class declaration for ord is
class eq A ⇒ ord A where (...), specifying that any
instance of ord is also an instance of eq. Therefore we can re-

duce the context 〈ord A, eq A〉 to 〈ord A〉. From the point of
view of type witnesses this is not a problem, because we still
know that we need a type witness of A.

Therefore, the previous context for function f would be re-
duced to 〈ord A〉 using all the previous rules. In [17] they ex-
plore different choices about how much context reduction to apply.
Haskell’s choice is to reduce the context completely before gen-
eralization, and this choice is necessary in our translation. Other-
wise, the translation could generate rules that violate the restric-
tion of linear left-hand sides. Consider the instance declaration for
equality on pairs instance 〈eq A, eq B〉 ⇒ eq (pair A B)
where (...), and the rule g P1 P2 → ([fst P1, snd P2],
eq P1 P2)—where fst and snd project the first and second com-
ponent of a pair respectively. If we do not use the instance dec-
laration to reduce the context, the type decoration obtained for
g is 〈eq• (pair A A)〉 ⇒ (pair A A) → (pair A A) →
(pair (list A) bool). Then the left-hand side of the translated
rule would be g (#pair XA XA) P1 P2. This is not syntacti-
cally valid in our target language as the data variable XA appears
twice. Applying two steps of context reduction using the instance
and eliminating duplicates we obtain 〈eq A〉. With this new context
the left-hand side of the translated rule is g XA P1 P2, which now
is valid in the target language.

Marking of class names
We have used marked class names in contexts to know which type
witness to pass to functions. The task of marking class names is an
easy task that must be done after type checking, when the types of
all the functions are inferred. At this point, contexts will have only
constraints on type variables due to context reduction. There can be
more than one class constraint over the same type variable, however
we do not want to pass duplicate type witnesses for the same type.
That is the reason why we mark with a • only one constraint per
type variable, defining the order in which type witnesses must be
passed. Consider a Fibonacci function that accepts any numeric
argument and returns an integer:

fib N = if N<2 then 1 else fib (N-1) + fib (N-2)
Its inferred type is 〈num A, ord A〉 ⇒ A → int. However,
we do not need to pass two identical type witnesses to the rule.
Therefore we mark one of the constraints over A, obtaining the
type 〈num• A, ord A〉 ⇒ A → int. Then in every call of the
fib function we will only pass one type witness. Moreover, if we
do not use the • marks the left-hand side of the fib rule would
be translated into fib XA XA N, with two occurrences of the data
variable XA, violating the syntactic constraint that patterns in a left-
hand side of a rule are linear.

3.4 Case study: equality and order
Fig. 5 contains the translation of a complete program using equal-
ity and order. Fig. 5-a) shows the source program with type decla-
rations in the function symbols. These decorations are introduced
by the type checker so the user does not need to write them in the
source program. We suppose that usual booleans functions and,
or::〈〉 ⇒ bool → bool → bool and the conditional function
ifthen::〈〉 ⇒ bool → A → A → bool are defined. We also
assume that functions for equality and ordering are defined for
booleans and integers: eqBool, eqInt, gtBool and gtInt. Notice
that the type checker has marked with a • the classes eq and ord
in the types of eq and gt respectively, as can be seen in the dec-
orations of the different occurrences of these functions. We have
defined the eq and gt functions for booleans and integers using
two variables X and Y as arguments so that the rules have arity 2,
instead of defining them as eq = eqBool, eq = eqInt, etc. The
reason for this is that because of HO-patterns, we need that all the
rules for overloaded functions have the same arity, as we will dis-

class eq A where
eq :: A→ A→ bool

instance eq bool where
eq X Y = eqBool::〈〉 ⇒ bool→ bool→ bool X Y

instance eq int where
eq X Y = eqInt::〈〉 ⇒ int→ int→ bool X Y

instance 〈eq A, eq B〉 ⇒ eq (pair A B) where
eq (U,V) (X,Y) = and::〈〉 ⇒ bool→ bool→ bool
(eq::〈eq• A〉 ⇒ A→ A→ bool U X)
(eq::〈eq• B〉 ⇒ B → B → bool V Y)

instance 〈eq A〉 ⇒ eq (list A) where
eq [] [] = true
eq [] (Y:Ys) = false
eq (X:Xs) [] = false
eq (X:Xs) (Y:Ys) = and::〈〉 ⇒ bool→ bool→ bool

(eq::〈eq• A〉 ⇒ A→ A→ bool X Y)
(eq::〈eq• (list A)〉 ⇒ (list A)→ (list A)→ bool Xs Ys)

member :: 〈eq• A〉 ⇒ (list A)→ A→ bool
member::〈eq• A〉 ⇒ (list A)→ A→ bool [] Y = false
member::〈eq• A〉 ⇒ (list A)→ A→ bool (X:Xs) Y =

or::〈〉 ⇒ bool→ bool→ bool
(eq::〈eq•A〉 ⇒ A→ A→ bool X Y)
(member::〈eq• A〉 ⇒ (list A)→ A→ bool Xs Y)

class 〈eq A〉 ⇒ ord A where
gt :: A→ A→ bool

instance ord bool where
gt X Y = gtBool::〈〉 ⇒ bool→ bool→ bool X Y

instance ord int where
gt X Y = gtInt::〈〉 ⇒ int→ int→ bool X Y

memberOrd :: 〈ord• A〉 ⇒ (list A)→ A→ bool
memberOrd::〈ord• A〉 ⇒ (list A)→ A→ bool [] Y = false
memberOrd::〈ord• A〉 ⇒ (list A)→ A→ bool (X:Xs) Y = ifthen

(gt::〈ord• A〉 ⇒ A→ A→ bool X Y) false
memberOrd::〈ord• A〉 ⇒ (list A)→ A→ bool (X:Xs) Y = ifthen

(eq::〈eq• A〉 ⇒ A→ A→ bool X Y) true
memberOrd::〈ord• A〉 ⇒ (list A)→ A→ bool (X:Xs) Y = ifthen

(gt::〈ord• A〉 ⇒ A→ A→ bool Y X)
(memberOrd::〈ord• A〉 ⇒ (list A)→ A→ bool Xs Y)

eq :: A→ A→ A→ bool
eq #bool X Y = eqBool X Y
eq #int X Y = eqInt X Y
eq (#pair XA XB) (U,V) (X,Y) = and

(eq XA U X)
(eq XB V Y)

eq (#list XA) [] [] = true
eq (#list XA) [] (Y:Ys) = false
eq (#list XA) (X:Xs) [] = false
eq (#list XA) (X:Xs) (Y:Ys) = and

(eq XA X Y)
(eq (#list XA) Xs Ys)

member :: A→ (list A)→ A→ bool
member XA [] Y = false
member XA (X:Xs) Y = or

(eq XA X Y)
(member XA Xs Y)

gt :: A→ A→ A→ bool
gt #bool X Y = gtBool X Y
gt #int X Y = gtInt X Y

memberOrd :: A→ (list A)→ A→ bool
memberOrd XA [] Y = false
memberOrd XA (X:Xs) Y = ifthen

(gt XA X Y) false
memberOrd XA (X:Xs) Y = ifthen

(eq XA X Y) true
memberOrd XA (X:Xs) Y = ifthen

(gt XA Y X)
(memberOrd XA Xs Y)

a) Source program with type decorations b) Translated program

Figure 5. Translation of a program using equality and order

cuss in Sect. 5.3. Notice how the type checker decorates function
symbols with the corresponding type instantiated to the concrete
type used in the application. This is the case of the second occur-
rence of eq in the last rule of the instance eq (list A), which has the
decoration 〈eq• (list A)〉 ⇒ (list A) → (list A) → bool since
eq is applied to lists. Fig. 5-b) shows the result of applying the
translation of Def. 3 to the source program. Notice how the same
type variable A in the decorations generates the same data variable
XA in the translated program—see for example the second rule for
member. This is important since all these occurrences represent the
same type witness that is passed as an argument.

4. Advantages of the Translation
In this section we show some of the benefits of the proposed
translation compared to the classical dictionary-based one in FLP.

4.1 Efficiency
To test the efficiency of the proposed translation against the clas-
sical translation using dictionaries [10, 30], we have elaborated 7
different programs using type classes. We have chosen programs

that can be part of real functional-logic programs and use the stan-
dard type classes eq, ord and num:

• eqlist: equality comparison between lists of integers.
• fib: Fibonacci function that accepts numeric arguments.
• galeprimes: sieve of prime numbers using a function of differ-

ence of sorted lists.
• memberord: member function in sorted lists.
• mergesort: John von Neumann’s sorting algorithm.
• permutsort: sorting by selecting a sorted permutation of the

original list.
• quicksort: C.A.R. Hoare’s sorting algorithm.

The programs fib, galeprimes, mergesort and quicksort have
been adapted from the suite of benchmark programs for Haskell im-
plementations nobench [28]. Although permutsort is an inefficient
sorting algorithm, we have included it in the set of tests because
it is an example of the generate-and-test scheme, a kind of pro-
grams combining non-determinism and lazy evaluation, for which
FLP obtains better results than functional or logic programs [8].

Program Speedup Speedup (Optimized)
eqlist 1.6414 1.3627
fib 2.3063 2.3777
galeprimes 1.4885 1.0016
memberord 2.2802 2.2386
mergesort 1.0476 1.0453
permutsort 1.7186 1.7259
quicksort 1.0743 1.0005

Figure 6. Speedup of the proposed translation over the classical
translation using dictionaries

For each program we have measured in Toy the elapsed time
in the evaluation of 100 random expressions in both translations.
Translated programs using dictionaries are valid programs in Toy
since it has a Damas-Milner type system. However, Toy has not in-
tegrated the liberal type system for FLP presented in [20]. In order
to compile and execute the translated programs with type-indexed
functions and type witnesses—which are not correct with respect
to a Damas-Milner type system—we have used a especial version
of Toy without the type checking phase. This does not distort the
measures since once compiled Toy programs do not carry any type
information at run time, so compiled programs are the same re-
gardless the type system. For each expression we have calculated
the speedup: the elapsed time in the translated program with dictio-
naries divided by the elapsed time in the translated program using
type-indexed functions and type witnesses, and we have computed
the mean speedup of the 100 tests. The results appear in the sec-
ond column of Fig. 6. The biggest speedups are obtained in fib and
memberord. The reason for the speed gain in fib is that the func-
tion fib needs two dictionaries—ord and num—but only one type
witness, which means one extra matching each time fib is called.
In memberord the reason is that it uses the overloaded function eq
with every element. This function is contained in the eq dictionary
which is inside the ord dictionary, so before apply it we have to ex-
tract the eq dictionary. This projection is not needed with type wit-
nesses. The programs permutsort, eqlist and galeprimes also obtain
a good speedup. In the case of eqlist, the reason of the speedup is
that the eq function builds the dictionary of equality on lists in each
recursive call. However, the same type witness argument for lists is
passed to the recursive call. The rest of programs—mergesort and
quicksort—do not obtain any improvement and run as fast as with
dictionaries.

There are some well-known optimizations that can be applied
to the translation using dictionaries [4, 11]. However, in the trans-
lation using type-indexed functions and type witnesses there is also
room for optimizations. Therefore we have measured the speedup
of the same programs when optimizations are applied to both trans-
lations. For the dictionary-based translation we have considered
those optimizations from [4] applicable to our set of tests. For each
test program, the following optimizations have been applied in se-
quence:

• Flattening of dictionaries: expand class dictionaries to contain
both the methods of the class and all its superclasses. The
dictionary of the superclasses is kept as well as flatting it,
because it is sometimes needed.
• Constant folding: eliminate the method projection from a dic-

tionary when the concrete dictionary is known. For example,
arb dictArbBool is replaced by arbBool—see Fig. 1-b).
• Automatic function specialization: generate an specialized ver-

sion of a function when it is applied to a concrete dictionary.
This optimization has been only applied to galeprimes, since

it is the only tested program whose code contains a function that
is applied to a concrete dictionary.

The rest of optimizations presented in [4] have not been con-
sidered because they are dependent on the underlying architecture,
which is different between Haskell and Toy, or because they address
specific problems which do not appear in our test programs—as
programming with complex numbers.

For the proposed translation using type-indexed functions and
type witnesses the considered optimizations are:

• Specialized version from instances: Apart from the generated
rules for the type-indexed functions, instances also generate
specialized versions of the overloaded functions. For example,
the instance instance 〈eq A〉 ⇒ eq (list A) from Fig. 5-a)
generates the function eq list:
eq list :: A→ (list A)→ (list A)→ bool
eq list XA [] [] = true
eq list XA [] (Y:Ys) = false
eq list XA (X:Xs) [] = false
eq list XA (X:Xs) (Y:Ys) =

and (eq XA X Y) (eq list XA Xs Ys)

Any occurrence of an overloaded symbol applied to a concrete
type witness is replaced by the specialized version: eq (#list
bool) is replaced by eq list #bool, ord #nat by ord nat,
etc.
• Automatic function specialization: The same optimization ex-

plained before, but used when a function is applied to a con-
crete type witness. This optimization has been only applied to
galeprimes for the same reasons as before.

The speedup results of the optimized versions appear in the third
column of Fig. 6. For the programs fib, memberord, mergesort, per-
mutsort and quicksort, the speedup does not change substantially.
The reason is that dictionary optimizations do not affect the target
program—with the exception of a constant folding in the definition
of the ord dictionaries that is used once per test—and the special-
ized version of the type-indexed functions are not used. For the
program eqlist the optimizations avoid the creation of the equal-
ity dictionary for lists—in the dictionary-based translation—and
make use of the specialized version of equality for list—in the type-
passing translation. The speedup decreases but the program with
type-indexed functions and type witnesses still runs faster. For the
galeprimes program there is no speedup since after applying the op-
timization to both translations the resulting code is similar because
of the automatic function specialization.

The code of the tested programs and detailed results of the tests
can be found in http://gpd.sip.ucm.es/enrique/publica
tions/pepm11/testPrograms.zip.

4.2 Adequacy to call-time choice
Apart from the improvement in efficiency, the proposed transla-
tion also solves the problem of missing answers when combining
non-determinism and overloading presented in Sect. 1. The prob-
lem is that dictionaries are shared, and non-deterministic nullary
member functions inside them are evaluated to the same value in
all the copies. With the proposed translation this problem does not
arise because member function are not projecting functions that ex-
tracts from dictionaries but type-indexed functions that accepts a
type witness as an argument. This type witness is shared as dictio-
naries, but each occurrence of the member function is a different
application so they can generate different values.

The translation using type-indexed functions and type witnesses
of the program containing the arb class appeared in Fig. 1-a) is:

arb :: A→ A
arb #bool → false

http://gpd.sip.ucm.es/enrique/publications/pepm11/testPrograms.zip
http://gpd.sip.ucm.es/enrique/publications/pepm11/testPrograms.zip

arb #bool → true

arbL2 :: A→ (list A)
arbL2 XA → [arb XA, arb XA]

The class and instance declaration have generated the type-indexed
arb function with two rules for booleans, and arbL2 is trans-
lated to accept a type witness and pass it to the arb functions in
its right-hand side. In this case the translation of the expression
arbL2::(list bool) is arbL2 #bool, which can be reduced
to [arb #bool, arb #bool] using the rule for arbL2. Here the
first occurrence of arb #bool in the list can be reduced to false
and the second to true using the different rules for arb, so it pro-
duces the answer [false, true] that was missing. In a similar
way arbL2 #bool can be reduced to [true, false].

The problem with non-deterministic nullary member functions
and the dictionary-based translation could be solved if they are au-
tomatically replaced by functions of arity 1. This way, dictionaries
do not contain functions that can be evaluated but HO-patterns—
functions partially applied—that are values and can be shared with-
out problem. However this solution presents some problems that
are further discussed in Sect. 5.2.

4.3 Simplicity
From the point of view of difficulty, both translations—the diction-
ary-based and the proposed one—have a similar complexity: a type
checking phase and a translation that uses the obtained type in-
formation. However, translated programs using the proposed trans-
lation are simpler than those obtained using the dictionary-based
one. They are shorter, since they declare less data types and func-
tions. Besides, type witnesses are first-order data, unlike dictionar-
ies which are higher-order data containing functions. Finally, type
witnesses have in most cases a simpler structure and are smaller
than dictionaries.

With the two translations, obtained programs are the result of an
automatic procedure integrated in the compiler, so the simplicity of
obtained programs is not so important from the point of view of the
user. However, it might be useful for later analyses or manipula-
tions of translated programs. Furthermore, as we have seen in Sect.
4.1 and Sect. 4.2, this simplicity comes with an improvement of the
efficiency and a better adequacy to call-time choice.

5. Discussion
In this section we discuss some additional aspects, including some
problems, that arise with the translations of type classes in FLP.

5.1 Multiple modules and separate compilation
The dictionary-based translation combines well with multiple
modules and separate compilation. A class declaration defines a
datatype and some projecting functions, and instances define con-
crete values of the dictionary type. Therefore different instances
can be compiled separately and joined later. With the proposed
translation using type-indexed functions and type witnesses this
seems more difficult. The problem is that generated type-indexed
functions are open functions [18]: there is one type-indexed func-
tion per member function, but the rules can be spread in several
modules. However, this is not a problem in Toy due to its code
generation method and the demand of the type-indexed functions
generated from member functions of classes. Toy programs use a
demand driven strategy [19] for evaluating function applications.
Consider a leq function on Peano natural numbers defined as:

leq z Y = true
leq (s X) z = false
leq (s X) (s Y) = leq X Y
In this case, the first argument is demanded in all the rules, and

the second argument is demanded only in the second and third

rules. Then the strategy is to evaluate the first argument to head-
normal form. If it is the constructor z, then we apply the first rule. If
it is the constructor s we evaluate the second argument of the rule.
If the evaluation of that argument is the constructor z we apply the
second rule. Otherwise if it is the constructor s we apply the third
rule. The Prolog code generated for this function is3:

leq(A,B,H) :- hnf(A,HA), leq 1(HA,B,H).

leq 1(z,B,true).
leq 1(s(X),B,H) :- hnf(B,HB), leq 1 2(s(X),HB,H).

leq 1 2(s(X),z,false).
leq 1 2(s(X),s(Y),H) :- leq(X,Y,H).
The predicate hnf is a built-in predicate that computes head

normal forms. The predicate leq is the main predicate to evaluate
the leq function. It uses the predicates leq 1 and leq 1 2, where
the numbers represent in which positions a head normal form has
been previously obtained. Notice that the last argument of the
predicates represents the result. It is easy to see that these predicates
follow the demand driven strategy explained before.

The peculiarity of translated member functions is that they al-
ways have a constructor in their first argument: the type-witness.
Therefore their first argument is always demanded in all the rules
translated from the instances, so the strategy is to evaluate it to head
normal form. Consider the eq function in Fig. 5-b). Since the first
argument is demanded in all the rules, we generate the predicate to
evaluate the type witness to head normal form:

eq(W,A,B,H) :- hnf(W,HW), eq 1(HW,A,B,H).
We also generate the predicate eq 1 with clauses for the differ-

ent instances:
eq 1(#bool,A,B,H) :- eqBool(A,B,H).
eq 1(#int,A,B,H) :- eqInt(A,B,H).
eq 1(#pair(WA,WB),A,B,H) :- (...)
eq 1(#list(WA),A,B,H) :- (...)
If each instance of eq is in a different module, we compile them

separately. However, in each translated module the first argument
of eq is uniformly demanded, so we generate the predicate eq/4
as before and the corresponding clauses for eq 1/4 and the rest
of predicates. Notice that in the translated rules for equality on
pairs and list, the three arguments are uniformly demanded. In these
cases we chose from left to right, so we always generate the same
clause for eq/4 that computes the head-normal form of the first
argument and calls to eq 1/4. In the compilation of a program that
imports the different modules with the instances, the code for the eq
function is obtained by simply joining the predicates eq/4, eq 1/4
. . . from the compiled modules. Each compiled module contains a
clause for eq/4, so it is important to remove those duplicates in the
final compiled program.

Notice that this solution is not valid for arbitrary open functions,
since the demand of the arguments is unknown and the code gener-
ation would require an analysis with the rules from all the modules.

5.2 Possible solution for non-deterministic nullary member
functions in the dictionary-based translation

The loss of expected answers that arises in the dictionary-based
translation when non-deterministic nullary member functions are
used could be solved if they are automatically replaced by unary
functions. Fig. 7 shows the program translated with dictionaries
from Fig. 1-a) where arb has been extended to an unary func-
tion accepting unit as argument. The translation of arbL2::(list
bool) is arbL2 dictArbBool as in the original case, but now
it reduces to [arb dictArbBool (), arb dictArbBool ()].
Although both copies of the dictionary are shared, now they can

3 This is not the exact code generated by the Toy compiler. We have simpli-
fied it for the sake of conciseness.

data dictArb A = dictArb (unit → A)

arb :: dictArb A -> (unit → A)
arb (dictArb F) → F

arbBool :: unit → bool
arbBool () → false
arbBool () → true

dictArbBool :: dictArb bool
dictArbBool → dictArb arbBool

arbL2 :: dictArb A -> list A
arbL2 DA → [arb DA (), arb DA ()]

Figure 7. Translation of the program in Fig. 1-a) extending arb to
have one argument

only be reduced to dictArb arbBool. It is now a value—notice
that arbBool is a HO-pattern—so it cannot be reduced further.
After the extraction of the arbBool function from the dictionary
the expression is [arbBool (), arbBool ()], which can be re-
duced to [false, true] or [true, false] applying the rule for
arbBool for twice.

Since being non-deterministic is a typically undecidable prop-
erty, the technique of adding the unit argument should be applied
to every nullary member function, even if it is indeed determinis-
tic. This will introduce an unnecessary overhead—apart from the
inevitable overhead caused by dictionaries—to nullary determin-
istic member functions. We could consider an analysis to detect
(in some cases) if the definition of a nullary member function in a
concrete instance is deterministic. In those cases the extra unit ar-
gument could in principle be avoided. However this solution makes
difficult separate compilation. The reason is that a later inclusion of
a new module with an instance where the considered nullary mem-
ber function is non-deterministic will force the recompilation of all
the related modules: it will be necessary to change the dictionary
declaration—now it contains a member function whose first argu-
ment is of type unit—and add the unit argument to the rules in the
previous instances.

The translation using type-indexed functions and type witnesses
proposed in this paper treats non-deterministic nullary member
functions and the rest of member functions in a homogeneous way.
Furthermore, it does not require recompilation and it does not add
any extra overhead to deterministic nullary member functions—
apart from the type-witness. Therefore, we believe that the pro-
posed translation is a better option than the dictionary-based trans-
lation when dealing with the combination of non-determinism and
nullary member functions.

5.3 Problems with arities and HO-patterns
In our FLP setting the arity of function symbols plays an important
role to identify whether a function application forms a HO-pattern
or it is totally applied and can be reduced. Therefore all the rules of
the same function must have the same arity, and this property must
be ensured in the target program. In FP the compiler checks that
all the rules of a function have the same number of arguments, but
this is not checked for the rules of member functions in different
instances. However, this property must be checked if the proposed
translation is used. The reason is that the rules of the same member
function in different instances are translated to be the rules of the
same type-indexed function. If the original rules from the instances
have different arities, then the rules for the type-indexed functions
will have different arities and the translated program will not be a
valid FL program. To solve this problem we propose to annotate

the arity of member functions in the class declaration. For example
the class declaration for eq in Fig. 5-a) is changed to:

class eq A where
eq/2 :: A→ A→ bool

Using this arity declaration the compiler will be able to check if all
the rules for eq have the same arity even if they belong to instances
in different modules. Notice that this problem with arities does not
appear in the dictionary-based translation since the rules of a mem-
ber function in an instance generates a specialized function—see
arbBool in Fig. 1-b)—and the member function itself is trans-
formed into a function which projects from the dictionary.

Another problem to address is the occurrence of HO-patterns
containing overloaded functions in the patterns of the left-hand side
of rules. If this kind of functions appear in the patterns, the type
checking stage will decorate them with an overloaded type. Be-
sides, class constraints coming from the overloaded function could
remain after context reduction, so the defined function symbol will
have an overloaded type containing them. In this situation the pro-
posed translation will generate non-linear functions. Consider the
program from Fig. 5-a) and the rule that uses the HO-pattern eq:

f eq → true
After the type checking stage the rule is decorated as:

f::〈eq• A〉 ⇒ (A→ A→ bool)→ bool
eq::〈eq• A〉 ⇒ A→ A→ bool → true

so the translated rule would be:
f XA (eq XA) → true

This rule is invalid in our setting, since the variable XA appears
twice in the left-hand side so the patterns are non-linear. Notice that
this problem also appears in the dictionary-based translation since
the same variable representing the dictionary would be passed as
the extra argument of f and eq.

A possible solution to this problem might be not to translate the
patterns in the left-hand sides of the rules, so no type witnesses
would be added to the overloaded functions in patterns. Since the
class constraints from these functions remain in the context of the
defined function, they will generate the type witnesses as the first
arguments of the defined function. However, this solution leads to
a loss of expected answers. Consider the same function rule for f.
If we do not translate the patterns, the translated rule would be:

f XA eq → true
which now is linear. The value true is an expected answer of the
evaluation of f eq::bool → bool → bool—we have added the
type decoration to eq to avoid ambiguity. The type checker would
extend this expression with complete type decorations:

f::〈eq• bool〉 ⇒ (bool → bool → bool)→ bool
eq::〈eq• bool〉 ⇒ bool → bool → bool

and the translation of this expression would be:
f #bool (eq #bool)

However this translated expression does not match with the head of
the rule f XA eq, so it cannot be reduced to true. Notice that it
also happens with the dictionary-based translation. The translation
of the rule would be the same, as f needs an extra argument con-
taining the dictionary of equality. The translation of the expression
would add two dictionaries for the equality on booleans:

f dictEqBool (eq dicEqBool)
This translated expression cannot be reduced to the value true
either. It does not match with the head of the rule for f, but
the subexpression eq dicEqBool can be reduced to eqBool—
assuming that eqBool is the function inside the dictionary of equal-
ity for booleans. However the resulting expression f dictEqBool
eqBool cannot be reduced to true using the rule f XA eq →
true because it does not match with its head.

Considering the problems that HO-patterns containing over-
loaded functions in the left-hand side of rules cause in both trans-
lations, it seems a good design choice to prohibit the occurrence of

overloaded functions in the patterns in the left-hand side of rules.
However HO-patterns are a very expressive feature of FLP, so this
problem must be further studied in order to find a solution.

6. Concluding Remarks and Future Work
In this paper we have proposed a translation for type classes in FLP
following a type-passing scheme [29]. The translation uses type-
indexed functions and type witnesses, and translated programs are
well-typed wrt. a new liberal type system for FLP [20]. We argue
that the proposed translation is a good design choice to implement
type classes in FLP because it improves on the standard dictionary-
based translation in some points:

• Our tests show that translated programs using type-indexed
functions and type witnesses perform faster—in general—than
those using the dictionary-based translation [10, 30]. The tests
also show that if we apply optimizations to both translated
programs, those using type-indexed functions and type wit-
nesses still perform faster, although the difference in this case
is smaller.
• It does not present the problem of missing answers which ap-

pears with the dictionary-based translation in programs that use
non-deterministic nullary member functions [24].
• The proposed translation consists in simple steps that make use

of type decorations for function symbols obtained by usual type
checking algorithms supporting type classes [5, 27], so it does
not add extra complications over the standard dictionary-based
translation. Besides, translated programs using the proposed
translation are shorter and simpler than those generated using
the dictionary-based translation.
• Although it needs some special treatment, the proposed transla-

tion supports multiple modules and separate compilation in an
easy way.

We consider some lines of future work. The first is the imple-
mentation of the complete translation into the Toy system. Since
the translation rules are pretty simple, the hard step is implement-
ing the standard type checker supporting type classes and place the
type decorations in the function symbols. Once the translation is
implemented, we will be able to test the efficiency results with a
larger set of programs. We also want to study if the proposed trans-
lation supports easily well-known extensions of type classes like
multi-parameter type classes [17] or constructor classes [16] for
FLP. According to [29], these extensions fit easily in a type-passing
translation scheme. Finally, we intend to study in further detail the
problematic of HO-patterns using overloaded functions in the left-
hand sides of rules, so that we can find better solutions than prohibit
them.

Acknowledgments
This work has been partially supported by the Spanish projects
TIN2008-06622-C03-01, S2009TIC-1465, UCM-BSCH-GR58/
08-910502. We also want to acknowledge to Francisco López-
Fraguas and Juan Rodrı́guez-Hortalá for their useful comments
and ideas.

References
[1] Münster Curry compiler. http://danae.uni-muenster.de/

~lux/curry/.

[2] Sloth Curry compiler. http://babel.ls.fi.upm.es/research/
Sloth/.

[3] Zinc compiler. http://zinc-project.sourceforge.net/.

[4] L. Augustsson. Implementing Haskell overloading. In Proc. FPCA
’93, pages 65–73, 1993.

[5] S. Blott. Type inference and type classes. In Proc. of the 1989 Glasgow
FP Workshop, pages 254–265, 1990.

[6] J. Cheney and R. Hinze. First-class phantom types. Technical Report
TR2003-1901, Cornell University, July 2003.

[7] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proc. POPL ’82, pages 207–212, 1982.

[8] J. C. González-Moreno, M. T. Hortalá-González, F. J. López-Fraguas,
and M. Rodrı́guez-Artalejo. An approach to declarative programming
based on a rewriting logic. Journal of Logic Programming, 40(1):47–
87, 1999.

[9] J. C. González-Moreno, M. T. Hortalá-González, and M. Rodrı́guez-
Artalejo. Polymorphic types in functional logic programming. Journal
of Functional and Logic Programming, 2001(1), July 2001.

[10] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138,
1996.

[11] K. Hammond and S. Blott. Implementing Haskell type classes. In
Proc. of the 1989 Glasgow FP Workshop, pages 266–286, 1990.

[12] M. Hanus. Multi-paradigm declarative languages. In Proc. ICLP 2007,
volume 4670 of LNCS, pages 45–75. Springer, 2007.

[13] M. Hanus (ed.). Curry: An integrated functional logic language (ver-
sion 0.8.2). Available at http://www.informatik.uni-kiel.de/
~curry/report.html, March 2006.

[14] R. Hinze and A. Löh. Generic programming, now! In Datatype-
Generic Programming 2006, volume 4719 of LNCS, pages 150–208.
Springer, 2007.

[15] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell:
being lazy with class. In Proc. HOPL III, pages 12–1–12–55, 2007.

[16] M. P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. In Proc. FPCA ’93, pages 52–61, 1993.

[17] S. P. Jones, M. Jones, and E. Meijer. Type classes: An exploration of
the design space. In Haskell Workshop, 1997.

[18] A. Löh and R. Hinze. Open data types and open functions. In Proc.
PPDP ’06, pages 133–144, 2006.

[19] R. Loogen, F. J. López-Fraguas, and M. Rodrı́guez-Artalejo. A de-
mand driven computation strategy for lazy narrowing. In Proc. PLILP
’93, pages 184–200, 1993.

[20] F. J. López-Fraguas, E. Martin-Martin, and J. Rodrı́guez-Hortalá. Lib-
eral Typing for Functional Logic Programs. To appear APLAS 2010.
Available at http://gpd.sip.ucm.es/enrique/publications/
liberalTypingFLP/aplas2010.pdf.

[21] F. J. López-Fraguas, E. Martin-Martin, and J. Rodrı́guez-Hortalá. New
results on type systems for functional logic programming. Volume
5979 of LNCS, pages 128–144. Springer, 2010.

[22] F. J. López-Fraguas and J. Sánchez-Hernández. T OY: A multi-
paradigm declarative system. In Proc. RTA’99, volume 1631 of LNCS,
pages 244–247. Springer, 1999.

[23] W. Lux. Adding Haskell-style overloading to Curry. In Workshop of
Working Group 2.1.4 of the German Computing Science Association
GI, pages 67–76, 2008.

[24] W. Lux. Type-classes and call-time choice vs. run-time choice - Post to
the Curry mailing list. http://www.informatik.uni-kiel.de/
~curry/listarchive/0790.html, 2009.

[25] J. C. González-Moreno, M. T. Hortalá-González, and M. Rodrı́guez-
Artalejo. A higher order rewriting logic for functional logic program-
ming. In Proc. ICLP’97, pages 153–167, 1997.

[26] J. J. Moreno-Navarro, J. Mariño, A. del Pozo-Pietro, Á. Herranz-
Nieva, and J. Garcı́a-Martı́n. Adding type classes to functional-logic
languages. In 1996 Joint Conf. on Declarative Programming, APPIA-
GULP-PRODE’96, pages 427–438, 1996.

[27] T. Nipkow and C. Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

http://danae.uni-muenster.de/~lux/curry/
http://danae.uni-muenster.de/~lux/curry/
http://babel.ls.fi.upm.es/research/Sloth/
http://babel.ls.fi.upm.es/research/Sloth/
http://zinc-project.sourceforge.net/
http://www.informatik.uni-kiel.de/~curry/report.html
http://www.informatik.uni-kiel.de/~curry/report.html
http://gpd.sip.ucm.es/enrique/publications/liberalTypingFLP/aplas2010.pdf
http://gpd.sip.ucm.es/enrique/publications/liberalTypingFLP/aplas2010.pdf
http://www.informatik.uni-kiel.de/~curry/listarchive/0790.html
http://www.informatik.uni-kiel.de/~curry/listarchive/0790.html

[28] D. Stewart. nobench: Benchmarking Haskell implementations. http:
//www.cse.unsw.edu.au/~dons/nobench.html.

[29] S. R. Thatté. Semantics of type classes revisited. In Proc. LFP ’94,
pages 208–219, 1994.

[30] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proc. POPL ’89, pages 60–76, 1989.

[31] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
SIGPLAN Not., 38(1):224–235, 2003. ISSN 0362-1340.

http://www.cse.unsw.edu.au/~dons/nobench.html
http://www.cse.unsw.edu.au/~dons/nobench.html

	Introduction
	Preliminaries
	Syntax
	Liberal type system for FLP

	Translation
	Type witnesses
	Translation
	Important issues for the translation
	Case study: equality and order

	Advantages of the Translation
	Efficiency
	Adequacy to call-time choice
	Simplicity

	Discussion
	Multiple modules and separate compilation
	Possible solution for non-deterministic nullary member functions in the dictionary-based translation
	Problems with arities and HO-patterns

	Concluding Remarks and Future Work

