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We study dynamical phase transitions (DPTs) in quantum many-body systems with infinite-range interaction,
and present a theory connecting the two kinds of known DPTs (sometimes referred to as DPTs-I and DPTs-II)
with the concept of excited-state quantum phase transition (ESQPT), traditionally found in collective models. We
show that DPTs-I appear as a manifestation of symmetry restoration after a quench from the broken-symmetry
phase, the limits between these two phases being demarcated precisely by an ESQPT. We describe the order
parameters of DPTs-I with a generalization of the standard microcanonical ensemble incorporating the infor-
mation of two additional conserved charges identifying the corresponding phase. We also show that DPTs-I are
linked to a mechanism of information erasure brought about by the ESQPT, and quantify this information loss
with the statistical ensemble that we propose. Finally, we show analytically the main mechanism for DPTs-II is
forbidden in these systems for quenches leading a broken-symmetry initial state to the same broken-symmetry
phase, on one side of the ESQPT, and we provide a formulation of DPTs-II depending on the side of the ESQPT
where the quench ends. We analyze the connections between various indicators of DPTs-II. Our results are
numerically illustrated in the infinite-range transverse-field Ising model and are applicable to a large class of
collective quantum systems satisfying a set of conditions.
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I. INTRODUCTION

Unveiling new exotic phases of quantum many-body sys-
tems is one of the primary goals of modern research in
quantum physics. This endeavor has been notably encour-
aged by state-of-the-art techniques involving cold atoms and
trapped ions [1–7], which are used both to precisely simulate
those systems in a laboratory and also in the search for new
physics.

During recent years the term dynamical quantum phase
transition (DPT) has been used to denote two different
phenomena. The first type, DPTs-I, is characterized by a
nonequilibrium order parameter, which changes nonanalyti-
cally at a critical point that separates two dynamical phases
[6,8–17]. It is usually triggered by a quantum quench—a sud-
den change in a control parameter—which takes the system
out of equilibrium. It is normally linked to prethermalization,
that is, to a long-lived steady state in which the system remains
during long times [1,18], and, in many cases, it gives rise to
persistent oscillations.

Similar dynamical phases appear in classical open systems,
which remain out of equilibrium due to the interaction with
their environments; typical examples are oscillating chemical
reactions, convection cells or cyclic patterns in population
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dynamics [19]. In the quantum domain, the same phenomenon
appears in closed quantum systems evolving under unitary
dynamics. A typical scenario occurs in quantum systems with
long-range or infinite-range interactions, which undergo a
quantum phase transition (QPT) separating two ground-state
phases [20]: one phase where a discrete Z2 symmetry is
broken, and another where the same symmetry is restored.
Under such circumstances, a quench from a broken-symmetry
ground state may lead to two different dynamical behaviors:
one in which oscillations around a broken-symmetry effective
state are observed, and another one in which the same kind
of oscillations occur around a symmetric state. In the first
case, the dynamical order parameter may be different from
zero; in the second, it is always equal to zero. Both phases
are separated by a critical quench leading the system to a
particular value of the control parameter, which, in general,
does not coincide with the critical coupling of the QPT [11].
At the critical quench, the dynamical order parameter changes
nonanalytically in the thermodynamic limit (TL).

The second phenomenon, DPTs-II [21], also happens in
closed quantum systems evolving under unitary dynamics.
However, it is not characterized by a dynamical order pa-
rameter, but by the appearance of critical times when the
return probability becomes nonanalytic [22–38]. It was orig-
inally identified in a one-dimensional transverse-field Ising
chain with nearest-neighbor interactions [22], taking advan-
tage of the mathematical equivalence between a boundary
partition function and the return probability of a time-evolving
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wavefunction. The resulting critical time is signaled by a
nonanalytical point in the return probability in the TL, much
in the same way that a critical temperature is identified by
a nonanalytical point in the partition function, also in the
TL. In general, DPTs-II are unrelated to equilibrium phase
transitions [35,39,40], and they seem to depend strongly on
the initial condition chosen [25,26,41]. This kind of DPT also
occurs in quantum systems with long-range or infinite-range
interactions exhibiting the same kinds of QPTs that are linked
to DPTs-I. Indeed, it is known that both DPTs-I and DPTs-II
can take place in the same models, like the fully connected
transverse-field Ising model [42,43], or the Rabi model [44].
Connections between both kinds of DPTs have been proposed
[41–43,45–49]; nevertheless, a common triggering mecha-
nism has not been found.

In this paper we discuss a theory that links these two
kinds of DPTs to excited-state quantum phase transitions
(ESQPT) [50] in collective quantum systems, and illus-
trate it by means of numerical results on a fully-connected
transverse-field Ising model. This theory is proposed in
Ref. [51], whose results we extend here. There, it is shown
that both kinds of DPTs are explained by the behavior
of an operator Ĉ that is a constant of motion only in
one of the two phases separated by the critical energy of the
ESQPT [52]. Below this critical energy, Ĉ commutes with the
energy projectors in the TL, the dynamical order parameter
characteristic of DPTs-I can be different from zero, and the
main mechanism leading to nonanalytical points in the return
probability is precluded. Contrarily, above the ESQPT critical
energy, the same dynamical order parameter is always equal
to zero, and the main mechanism for nonanalytic points in
the return probability is allowed. We discuss the semiclassical
basis of this theory, and study some of its consequences, like
the suppression of the semiclassical oscillations for critical
quenches, the information erasure due to the adiabatic cross-
ing of the critical energy of the ESQPT, and the differences
between the anomalous and the normal dynamical phases
linked to DPTs-II [25,53]. To make the paper self-contained,
we also review the main results presented in Ref. [51].

This paper is organized as follows. In Sec. II we set the
scene by detailing the general properties of the collective
systems to which our results apply. In Sec. III we review the
transverse-field Ising model with infinite-range interactions,
which we use to illustrate our results. Section III A is devoted
to a semiclassical analysis of this system, which proves very
fruitful to understand some of our results. In Sec. IV we focus
on DPTs-I. In particular, in Sec. IV A and Sec. IV B we study
the dynamics of order parameters of DPTs-I after a quench,
and we develop a statistical ensemble to describe the long-
time averages around which such time-evolved expectation
values oscillate in Sec. IV C. Then, in Sec. IV D we study
the adiabatic dynamics of these order parameters. We focus
on DPTs-II in Sec. V. We show analytically that the main
mechanism for DPTs-II is not allowed in one of the phases
demarcated by the ESQPT in Sec. V A, and that the sum of the
return probabilities to each of the parity-broken ground states
coincides with the survival probability in the same region of
the ESQPT. These DPTs-II are further explored numerically
in Sec. V B, and we discuss the results in Sec. V C, where we
propose a formulation of DPTs-II in terms of the energy of the

quenched state (above or below the ESQPT), commenting on
some open problems. Finally, we conclude in Sec. VI.

II. GENERIC SETUP

Although all numerical results in this paper concern
the fully-connected transverse-field Ising model, our the-
ory is applicable to a broad class of collective quantum
systems; as paradigmatic examples, we highlight the Lipkin-
Meshkov-Glick model (LMG) model (a version of which is
mathematically equivalent to the fully-connected transverse-
field Ising model) [54–62], the Rabi and Dicke models
[63–73], the coupled top [74], spinor Bose-Einstein conden-
sates [75], or the two-site Bose-Hubbard Hamiltonian [76], to
cite a few.

Let us consider a Hamiltonian Ĥ(λ), depending on some
control parameter λ with the following properties:

(i) There exists a discrete Z2 symmetry, represented
by a discrete operator �̂, which we call parity, fulfilling
[Ĥ(λ), �̂] = 0, ∀λ, allowing to classify the eigenstates of
Ĥ(λ), |En,k〉, according to �̂|En,k〉 = k|En,k〉 with k = ±1
and n = 0, 1, 2, .... Typical examples are the inversion of the
transverse magnetic field in the fully-connected Ising model,
Ĵx → −Ĵx, or the same mathematical transformation together
with a similar one for the bosonic part of the Hilbert space,
â → −â, in the Dicke and Rabi models.

(ii) There exists a critical value for the control parameter
λc at which a QPT [77] occurs. This critical point separates
two ground-state phases. On one side, say λ > λc, the ground
state is twofold degenerate in the TL (pairs of eigenvalues
with different parity coincide, En,+ = En,−), and therefore it
becomes possible to find a broken-symmetry ground state. It
corresponds to the ferromagnetic ordered phase in the fully
connected transverse-field Ising model, or to the superradiant
phase of the Dicke and Rabi models. On the other side, say
λ < λc, the ground state is unique, and it has a well-defined
value of the parity symmetry. It corresponds to the disordered
paramagnetic phase in the fully-connected transverse-field
Ising model, or to the normal phase in the Dicke and Rabi
models. This is the typical scenario for DPTs-I, as we have
pointed out in the Introduction.

(iii) In the ordered phase, λ > λc, some properties of the
ground state are extended up to a certain excited critical
energy, e.g., Egs < E < Ec, at which a ESQPT takes place.
For example, all the energy levels become twofold degenerate
below this critical energy Ec in the TL [50,52], and therefore
broken-symmetry equilibrium or steady states are allowed in
this region [78–80]. Contrarily, for E > Ec all degeneracies
are broken and thus broken-symmetry equilibrium states are
no longer possible. These phases are separated by a singularity
in the density of states at E = Ec and in the energy level flow.
The character of this singularity ultimately depends on the
properties of the semiclassical limit of the quantum system. If
the system has a single semiclassical degree of freedom, then
the density of states �(E ) may commonly show a logarithmic
singularity at Ec. If it has two, the logarithmic singularity is
transferred onto the first derivative of the density of states, and
so on [50,81]. As the number of classical degrees of freedom
increases, the signatures of the ESQPT may be harder to find.
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FIG. 1. Schematic representation of the phase diagram of the
class of systems to which the results of this paper apply. Energy
of the model eigenstates is represented vs the control parameter λ.
The black-lower line represents the ground state of the model Egs. A
QPT occurs at λ = λc (yellow circle). When λ > λc, an ESQPT takes
place at energy Ec (thick-red line). The maximum energy, where the
phase diagram ends, is Emax (upper-blue line). Two phases emerge
(I and II) characterized by different symmetries (squared, see main
text). In (I) the nth states of different parity En,± have different
energy, En,+ �= En,−, while in (II) they are degenerate, En,+ = En,−
and the parity symmetry is broken. Regarding DPTs-I, the phase
(I) is characterized by a vanishing order parameter, m = 0, while in
(II) this order parameter can take a nonzero value, m �= 0. Regarding
DPTs-II, when starting from an initial, broken-symmetry state from
(II) a quench to (I) will give rise to a regular phase while a quench to
(II) will reveal an anomalous phase (see main text and discussions).

For the purposes of this paper, the trademark of the phase
where λ > λc and E < Ec is the existence of an operator
Ĉ that becomes a constant of motion in the TL, proposed
in [52]. We have that [Ĉ, P̂n] = 0, where P̂n is the projec-
tor onto the eigenspace with energy En, ∀En < Ec, whereas
[Ĉ, P̂n] �= 0, ∀En > Ec. Just like �̂, this operator has only two
different eigenvalues, Spec (Ĉ) = {±1}, and acts like a partial
Z2 symmetry. Furthermore, it does not commute with the
parity symmetry, [Ĉ, �̂] �= 0. As we will discuss in Sec. IV,
this immediately implies the existence of a third constant of
motion in this phase, K̂.

A schematic representation of these properties is in Fig. 1.
We represent a phase diagram for DPTs-I and DPTs-II in the
form of a level-flow diagram (i.e., the energy of the model
eigenstates E as a function of the control parameter λ). Two
distinct dynamical phases emerge, (I) and (II). Regarding
DPTs-I, starting from an initial broken-symmetry state in (II)
and quenching it to (I), there exists dynamical order parame-
ters, which always vanish, m = 0; this is a consequence of the
operators Ĉ and K̂ not being constant in this phase. However,
a quench leading the initial state from (II) to (II) also will
produce dynamical order parameters that may be nonzero,
m �= 0 as a consequence of the conservation of Ĉ and K̂ (for
specific initial states it may also be that m = 0, but this is
not the general case in this phase). Regarding DPTs-II, the
same quench protocol will reveal a regular phase in (I) and an
anomalous phase in (II) (for more details see below). These
two phases are separated by the ESQPT critical energy Ec,
which may or may not be a function of λ. The maximum
energy of the system Emax may be finite in models such as

the LMG, Emax < ∞, or it may be infinite in other systems
where there is a coupling to photonic degrees of freedom, like
the Rabi or Dicke models, Emax → ∞.

III. MODEL

As mentioned, to illustrate our results we use the infinite-
range transverse-field Ising model [77], which coincides with
a simple version of the well-known LMG Hamiltonian from
nuclear physics [54],

Ĥ(λ) = − λ

4N

N∑
i, j=1

σ̂ x
i σ̂ x

j + h

2

N∑
i=1

σ̂ z
i = − λ

N
Ĵ2

x + hĴz, (1)

where h̄ = 1. Here, σ̂x,y,z are the Pauli matrices, and Ĵ =
(Ĵx, Ĵy, Ĵz ) are the collective spin operators for the N 1/2-spins
that form the system, Ĵk = 1

2

∑N
i=1 σ̂ k

i (k ∈ {x, y, z}). The total
spin operator Ĵ2 is an exact conserved quantity, [Ĥ(λ), Ĵ2] =
0. Hence we can separate the Hamiltonian matrix in symme-
try sectors according to its eigenvalues, j( j + 1); we focus
on the maximally symmetric sector, j = N/2. The collec-
tive spin length j is the parameter leading to the TL (see
below). The parity �̂ ≡ eiπ ( j+Ĵz ) is also an exact discrete
conserved quantity with two eigenvalues, Spec (�̂) = {±1},
so the eigenstates of Eq. (1) can be classified according to
�̂|En,±〉 = ±|En,±〉. For our numerical calculations we will
fix h = 1 and consider λ as the single control parameter. In
recent experimental realizations [6,12,24] λ is kept fixed and
h is allowed to vary. Our choice is equivalent to this procedure,
and it allows a more clear identification of the critical points
of the system (see below). Also, in [6] the magnetic field is on
the scale h ∼ MHz; we adopt this scale, so in our numerical
results, t ∼ μs.

The structure of QPTs and ESQPTs of Eq. (1) is analyzed
for completeness in Sec. III A. The model has a QPT at λc = h
[59,60,82]. For λ > λc, it also exhibits an ESQPT exactly at
Ec = −h j, or εc ≡ Ec/ j = −h, commonly signaled by a log-
arithmic singularity in the level density [55–61]. For λ > λc

and E < Ec, the LMG model displays a broken-symmetry
phase where the eigenstates of different parity are degener-
ate, En,+ = En,−. However, if either λ < λc, or λ > λc and
E > Ec, this degeneracy is lifted, En,+ �= En,+ and the Z2

symmetry is restored. Thus it is clear that this model belongs
to the family of systems described in Sec. II.

A. Semiclassical analysis

The Hamiltonian equation (1) represents a collective sys-
tem, where each spin interacts with every other. The number
of degrees of freedom remains finite when the collective spin
length increases boundlessly, and thus the thermodynamic
limit j → ∞ coincides with a semiclassical limit, h̄ → 0
[50]. This mean-field solution can be obtained, e.g., by using
the Bloch coherent state associated with the SU(2) group,

|ω〉 =
(

1

1 + |ω|2
) j

eωĴ+| j,− j〉, (2)
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where | j,− j〉 is the state with spin j and 〈Ĵz〉 = − j, and

ω = Q + iP√
4 − P2 − Q2

∈ C (3)

with Q and P real variables. Then, we take the expectation
value of the quantum Hamiltonian Ĥ in Eq. (2). On the scale
of the collective spin length j, this gives the intensive energy
functional

H (Q, P; λ) ≡ 〈ω|Ĥ|ω〉
j

= −h + h

2
(Q2 + P2) − λ

8
Q2(4 − P2 − Q2). (4)

Here, (Q, P) are canonical variables constrained to a two-
dimensional ball of radius 2, i.e., the phase space is
M = {(Q, P) ∈ R2 : 0 � Q2 + P2 � 4}. Clearly, the clas-
sical model Eq. (4) has a single degree of freedom, f = 1.
To allow a convenient comparison with the quantum Hamilto-
nian, we define the intensive energy scale associated with the
classical Hamiltonian ε ≡ E/ j, where E denotes the actual
eigenvalues of the Hamiltonian Eq. (1) and ε refers to the scale
in Eq. (4). E and ε will be used depending on which of these
two energy scales we are referring to.

The Bloch coherent states make it possible to obtain a
classical representation of common dynamical functions too.
For example, the classical variable for the collective magneti-
zation jz = 〈ω|Ĵz|ω〉/ j is

jz = Q2 + P2

2
− 1, (5)

while the parity-breaking spin operator jx = 〈ω|Ĵx|ω〉/ j reads

jx = Q

2

√
4 − P2 − Q2. (6)

Knowledge about the structure and phase transitions present
in the classical model can be gained by analyzing the fixed

points of Eq. (4) [50], ∇H |(Q∗,P∗) = 0, which in turn coincide
with stationary points of the dynamics,

∂H

∂P
= P

(
h + λ

4
Q2

)
= dQ

dt
, (7)

∂H

∂Q
= −Q

[
(λ − h) + λ

4
(−P2 − 2Q2)

]
= −dP

dt
. (8)

Nullification of Eqs. (7) and (8) provides different real solu-
tions depending on the value of λ � 0, and all solutions are
of the form (Q, P) = (Q, 0). If λ < h, the only critical point
has Q = 0, corresponding to ε = −h. This is the ground-state
energy when λ < h. However, if λ � h, there exist two ad-
ditional critical points, Q = ±√

2(λ − h)/λ. A second-order
QPT occurs at the critical value of the control parameter
λc = h. Since the classical Hamiltonian Eq. (4) exhibits the
symmetry H (Q, 0) = H (−Q, 0), these two critical points cor-
respond to the exact same energy, ε = −(h2 + λ2)/2λ, which
is the ground-state energy if λ � h. The previous critical point
with Q = 0 corresponds to an unstable fixed point if λ � h,
defining an ESQPT at εc = −h, ∀λ > λc. After this general
discussion, we will fix h = 1 in our numerical results and
consider λ as the single control parameter.
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FIG. 2. Classical phase space of the Hamiltonian Eq. (4). In [(a)–
(d)] the control parameter λ is varied, and h = 1. Lines represent
different classical orbits at different energies; each color is linked to a
given energy. Magenta-red lines show higher energies, while purple-
blue lines show lower energies.

Figure 2 illustrates the structure of the classical phase space
by means of classical orbits. Each line represents the set of
points (Q, P) such that H (Q, P) = ε. For λ = 0 the LMG
model reduces the trivial Hamiltonian Ĥ = −hĴz and thus
the phase space is essentially that of a harmonic oscillator,
H = −h + h(Q2 + P2)/2, composed of concentric circumfer-
ences. We note that the ground state is unique and no relevant
feature can be observed. A value λ �= 0 introduces distortions
with respect to the perfect harmonic behavior, but the ground
state is still unique as shown in Figs. 2(b) and 2(c). A rep-
resentative picture of the phase space when λ > λc is shown
in Fig. 2(d) for λ = 3. There are three relevant features: (i)
the ground state is pairwise degenerate, occurring at a given
Q and also at its mirrored image, −Q; (ii) there appears an
unstable fixed point at (0,0) (where the orbit appears to “cross
itself”) at energy εc = −1 (for h = 1); and (iii) for ε < εc

trajectories are trapped within either the right or left classical
wells, depending on the initial condition, but if ε > εc there
is no such constraint and trajectories can explore all available
phase space.

The energy εc = −1 at which trajectories display this “sin-
gular” behavior is associated to an ESQPT, evidenced by
the classical level density [81,83]. This can be approximated
by the first term of Gutzwiller’s trace formula [84], namely
(h̄ = 1)

�(ε) = 1

2π

∫
M

dQdP δ[ε − H (Q, P)], (9)

which is displayed in Fig. 3 for the same values of λ as in
Fig. 2. When λ = 0 the spectrum is equiespaced and, thus,
�(ε) is uniform. A nonzero λ distorts this shape and brings
about a ramp-shaped distribution with a small peak at the bor-
der, ε = −1. This is transformed into a logarithmic singularity
when λ � λc, as shown for λ = 1 and λ = 3.

It is clear from Fig. 2 that for control parameter λ > λc

and for energies ε � εc, the classical dynamics conserves
the sign of the canonical variable Q(t ), as trajectories are
trapped within one of the two accessible energy wells [cf.
Fig. 2(d)]. This stems from the disconnectedness of the phase
space topology in this case. However, this conservation is
no longer present when either λ < λc or λ > λc and ε > εc,
because then the phase space is topologically connected and a

024311-4



DYNAMICAL AND EXCITED-STATE QUANTUM PHASE … PHYSICAL REVIEW B 106, 024311 (2022)

0
0.5

1
1.5 (a)

(c)

(b)

(d)

λ = 0 λ = 1/2

λ = 1 λ = 3

(a)

(c)

(b)

(d)

λ = 0 λ = 1/2

λ = 1 λ = 3

0
0.5

1
1.5

−1.5−1−0.5 0 0.5 1

(a)

(c)

(b)

(d)

λ = 0 λ = 1/2

λ = 1 λ = 3

−1.5−1−0.5 0 0.5 1

(a)

(c)

(b)

(d)

λ = 0 λ = 1/2

λ = 1 λ = 3

(
)

0
0.5

1
1.5

(
)

0
0.5

1
1.5

−1.5−1−0.5 0 0.5 1 −1.5−1−0.5 0 0.5 1

FIG. 3. Density of states �(ε) for different values of the control
parameter λ, and h = 1. Color-filled histograms represent the numer-
ical level density obtained from the quantum model, Eq. (1), with
system size j = 10 000, while black lines show the semiclassical
approximation to the level density, Eq. (9).

given trajectory has access to all available phase space [cf.
Figs. 2(a)–2(c)]. It has been recently proposed [52,85,86]
that the classical constant of motion sign [Q(t )] can be trans-
lated to the quantum domain by establishing a connection
between quantum and classical dynamical functions. In this
case, (Q, P) are bounded to the circumference of radius 2,√

4 − P2 − Q2 � 0, and therefore Eq. (6) implies that below
the ESQPT critical energy, jx can only be positive or negative
depending on whether the initial conditions lie in the right
or left classical wells, respectively, i.e., sign (Q) = sign( jx ).
Thus, the quantum operator providing conserved quantum
numbers when λ > λc and ε < εc is simply

Ĉ = sign (Ĵx ). (10)

Equation (10) defines a discrete Z2 symmetry with only two
eigenvalues, Spec (Ĉ) = {±1} [52], and it is an instance of
a so-called partial symmetry because it is only commuting
with the projectors onto the Hamiltonian eigenspaces cor-
responding to energy below the ESQPT criticality, ε < εc.
As shown in [52], for eigenstates |En,±〉 with energy be-
low the ESQPT critical energy, the eigenvectors of Ĉ are
(|En,+〉 ± |En,−〉)/

√
2, and its diagonal expectation values are

〈En,±|Ĉ|En,∓〉 = ±1, where the overall sign in the right-hand
side is not related to parity but to the arbitrary global phases
of each of the eigenstates |En,±〉, and therefore it may be fixed
to +1 for definiteness [52]. This operator establishes a con-
nection between quantum states and the region of phase space
where they should be classically attached to; specifically, the
expectation value of Ĉ in an arbitrary state |ϕ(t )〉, 〈Ĉ(t )〉 =
〈ϕ(t )|Ĉ|ϕ(t )〉 ∈ [−1, 1], indicates whether the quantum state
is attached to the left (–1) or right (+1) classical energy wells,
or if a superposition of these two limits occurs (between –1
and +1). If the state |ϕ(t )〉 does not populate Hamiltonian
eigenstates with energy E > Ec, then such a expectation value
remains constant in time. We will use these ideas in the fol-
lowing sections.

IV. DPT-I: DYNAMICAL ORDER PARAMETER

As advanced in the Introduction, DPTs-I are nonanalytici-
ties characterized by a nonequilibrium order parameter after
a quantum quench [6,8–16]. In this section we will reveal
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FIG. 4. [(a)–(c)] Probability of populated states after a quench
λi → λ f = 1.75 from the initial state Eq. (11) with α = 1/2 and φ =
0. The values of the initial control parameter and the quenched state
energy are (a) λi = 2.5, ε(λ f ) = −1.135 (b) λi = 7, ε(λ f ) = −1,
and (c) λi = 27.5, ε(λ f ) = −0.89567. The system size j ranges from
200 to 6400 as indicated in (a). The black-dashed lines represent the
average energy of the quench in the TL.

how DPTs-I are closely connected with ESQPTs in a large
class of collective many-body quantum systems: we will show
how DPTs-I stem from a symmetry restoration brought about
by the ESQPT and will quantify the long-time average of
order parameters with a generalization of the standard mi-
crocanonical ensemble [87]. As we will see, this statistical
ensemble contains the information of three noncommuting
charges directly related to the ESQPT nonanalyticity.

A. Quantum quenches

As an initial state, we start from a superposition of the
broken-symmetry ground state at an initial value of the control
parameter, λi > λc,

|�0(λi)〉 = √
α|E0,+(λi)〉 + eiφ

√
1 − α|E0,−(λi)〉, (11)

where α ∈ [0, 1], φ ∈ [0, 2π ), and |E0,±(λi)〉 denotes the
ground-state eigenstate of the initial Hamiltonian Ĥ(λi) with
parity ±1. Recent experimental realizations [6,12,24] follow
the same protocol with α = 1/2 and φ = 0. Then, we quench
the system to λ f , and allow a unitary time evolution in the
final Hamiltonian (h̄ = 1),

|�t (λ f )〉 = e−iĤ(λ f )t |�0(λi)〉
=

∑
n

∑
k=±

〈En,k (λ f )|�0(λi)〉e−iEn,k (λ f )t |En,k (λ f )〉.

(12)

The distribution of populated states after the quench is

P(E ) =
∑

n

∑
k=±

|cn,k|2δ(E − En,k ), (13)

where the coefficients cn,k ≡ 〈En,k (λ f )|�0(λi)〉. This distri-
bution is represented in Fig. 4 for several values of the
collective spin length j, approaching the TL, starting from
different values of λi > λc, α = 1/2 and φ = 0, and all finish-
ing at λ f = 1.75. Depending on λi, the average energy of the
quenched state,

∑
n

∑
k=± |cn,k|2εn,k (λ f ), may be driven from
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FIG. 5. Dynamics of the parity-breaking spin operator Ĵx after a quench λi → λ f = 1.75. The initial state is of the form Eq. (11) with α =
1/2 and φ = 0, so the wavefunction is initially localized in the right energy well, 〈Ĉ〉 = 1. The initial values of the control parameter and the
average energy of the quench are [(a),(d)] λi = 2.5, ε(λ f ) = −1.135; [(b),(e)] λi = 7, ε(λ f ) = −1; and [(c),(f)] λi = 27.5, ε(λ f ) = −0.89567.
The color code is indicated in (b) is followed in all panels. Semiclassical results are showed in [(a),(b),(c)] with black lines.

one side of the ESQPT, E < Ec, to the other, E > Ec. The
distribution is scaled by the mean level spacing, 〈s〉 where the
level spacing, sn = εn+1 − εn, shows a typical decrease as j
increases (the rescaled energy spectrum {εn} becomes denser
as j increases). The width of the distribution shrinks with j
and the distribution becomes more peaked precisely around
the infinite- j average given by the semiclassical model, indi-
cated in all panels with a vertical-dashed line. Importantly,
the distributions in (a) and (c) are well located within a
definite side of the ESQPT: in (a) P(ε) shows significant
population only below εc = −1, while in (c) the opposite
happens. However, in (b) the average energy of the quenched
state coincides with εc = −1. One can see that both sides of
the ESQPT are significantly populated, with a clear dip of the
distribution exactly at the critical energy [88,89]. This feature
has important dynamical consequences.

B. Time-evolution after a quench

Now we move on to study the dynamics of physical observ-
ables for each of the quenches in Fig. 4. The abrupt change
of the control parameter λi → λ f forces the initial state out
of equilibrium and the dynamics begin. In Fig. 5 we focus
on the quantum dynamics of the parity-breaking operator Ĵx,

whose expectation value at a given time t in the time-evolving
wavefunction |�t (λ f )〉 is

〈Ĵx(t )〉 = 〈�t (λ f )|Ĵx|�t (λ f )〉. (14)

This operator plays an important role in DPTs-I as it can be
used to define an order parameter [20] [i.e., m(t ) = 〈Ĵx(t )〉 in
Fig. 1]. We also consider its classical counterpart: it is given
by the dynamical function (6), and its evolution is completely
determined by the Hamilton equations (7) and (8). As the
system size is increased, the quantum dynamics approaches
the classical dynamics, which provides the exact evolution
of the collective quantum system in the large- j limit. In
Figs. 5(a)–5(c) an oscillatory pattern is observed in all cases.
For smaller j, the quantum dynamics follows the classical ex-
pectation only for relatively short times, and for longer times
we observe damping combined with dephasing with respect
to the perfect j → ∞ oscillation. The time when the different
quantum results deviate from the classical evolution increases
as j increases, but it shows some peculiarities depending on
the region of the spectrum where the initial state ends after
the quench. For example, in Fig. 5(a) the quenched state only
significantly populates states below the ESQPT, 〈Ĉ〉 = +1 is
conserved and this means that the quenched state remains
within the right classical well. This can be observed in 〈Ĵx(t )〉,

024311-6



DYNAMICAL AND EXCITED-STATE QUANTUM PHASE … PHYSICAL REVIEW B 106, 024311 (2022)

which is a positive quantity for all t . Likewise, classically,
jx(t ) ∝ Q(t ), which is positive in the right energy well [cf.
Fig. 2(d)]. Figure 5(c) represents an opposite scenario: the
quench population is only significant above Ec, where 〈Ĉ〉
is not conserved and the dynamics can explore both regions
of the phase space. For this reason, 〈Ĵx(t )〉 oscillates between
positive and negative values, as can be understood again from
the semiclassical picture, jx(t ) ∝ Q(t ). An intermediate situ-
ation is considered in Fig. 5(b), where the average energy of
the quench coincides with the ESQPT critical energy but both
sides of the spectrum are nonetheless significantly populated.
Classically, this trajectory corresponds to the curve “crossing
itself” in Fig. 2(d). Starting from the initial state, the classical
evolution jx(t ) shows first a decay and then plateaus at zero,
where the unstable fixed point trademark of the ESQPT takes
place. Although a trajectory lying exactly on the critical line
of the phase space has in principle access to the other side,
the time that it takes to leave the fixed point diverges. The
quantum dynamics, 〈Ĵx(t )〉, shows drastic deviations from the
classical expectation in this case.

In Figs. 5(d)–5(f) we display the evolution of the same
states as in Figs. 5(a)–5(c) but for a longer time scale. Gener-
ally, after completely deviating from the classical prediction,
the quantum dynamics oscillates around a steady-state value,
and then it undergoes a dynamical revival that echoes its
behavior at short times [90]. The evolution goes through a
number of consecutive revivals until at very long times it
eventually becomes very noisy with no clear pattern. This is
clearly seen in Figs. 5(d)–5(f). Both the time when the first
revival occurs and the time interval between two consecutive
revivals increase with system size. In Fig. 5(e) the situation
is completely different: no such clear revivals are observed,
and the dynamics simply fluctuates around the corresponding
equilibrium value.

Now we analyze two different time scales: the time when
the quantum dynamics deviates from its large- j semiclassical
result tSC, and the time when the first revival occurs tR. To
estimate tSC, we consider the difference between quantum and
classical results and compute the first value of t for which this
difference exceeds a given bound. For the calculation of tSC

this bound is 0.1. Likewise, to estimate tR, we compute the
first time when the absolute value of the time evolution ex-
ceeds an arbitrary bound, only after the classical expectation
has been completely lost. This bound is 0.85 for Fig. 5(d) and
0.15 for Fig. 5(e). The results for the scaling with system
size of these characteristic times are shown in Fig. 6. On
the one hand, for quenches with average energy below and
above the ESQPT of Figs. 4(a) and 4(c), that is E < Ec or
E > Ec, respectively, the time when the quantum dynamics
deviates from the classical expectation follows a power-law
behavior of the form tSC ∼ √

j, as expected [20,49]; how-
ever, this time is much smaller for the quench ending at the
ESQPT critical energy, revealing a logarithmic law instead,
tSC ∼ log10 j. Such a logarithmic scaling essentially precludes
a realistic description of the quantum dynamics by means of
the classical limit; for a macroscopic system with N = 1024

atoms, the quantum evolution would follow the semiclassical
curve only up to t ≈ log10 1024 = 24 μs, which is negligible
compared to t ≈

√
1024 = 1012 μs = 106 s as obtained for

quenches ending below or above Ec. For such macroscopic
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FIG. 6. Scaling of the semiclassical time tsc and the revival time
tR as a function of the collective spin length j for the time evolution of
Ĵx from Fig. 5. [(a)–(c)] Correspond to Figs. 5(a)–5(c), respectively,
while [(d),(e)] correspond to Fig. 5(d) and Fig. 5(f), respectively.

sizes, a dynamical phase transition takes place at the ESQPT:
below or above the ESQPT, the dynamics shows persistent
oscillations (possibly around a nonzero value in the first case,
and around a zero value in the second case), while at the
ESQPT no such scaling is possible and the dynamics simply
fluctuates around a certain stationary value as in Figs. 5(b)
and 5(e) after a extremely short time has elapsed. On the other
hand, the first revival time is consistent with a simple linear
behavior, tR ∼ j, with no revival taking place for quenches
ending at the ESQPT.

C. Generalized microcanonical ensemble

If a closed quantum system reaches an equilibrium state,
this state is necessarily equal to the infinite-time average of the
real time-evolved wavefunction [91]. This means that long-
time averages giving rise to dynamical order parameters for
DPTs-I, regardless of whether they are real equilibrium states
or just effective states around which the system oscillates,
can be described with equilibrium ensembles. Hence, our first
goal is to build an equilibrium ensemble, depending on all the
relevant constants of motion, for an arbitrary system with the
properties detailed in Sec. II.

Consider a time-evolving wavefunction |�t 〉 =∑
n

∑
k=± cn,ke−iEn,kt |En,k〉. Above Ec, the long-time averaged

density matrix,

ρ = lim
τ→∞

1

τ

∫ τ

0
dt |�t 〉〈�t |, (15)

only implies diagonal elements because all nondiagonal ele-
ments are removed by the time average,

ρ(E > Ec) =
∑
n,k

|cn,k|2|En,k〉〈En,k|, (16)

with k = ± labeling eigenstates of different parity. This result
coincides with the diagonal ensemble [87,92]. However, if
E < Ec, degeneracies in the spectrum imply that nondiagonal
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elements within the same eigenspace also survive,

ρ(E < Ec) =
∑
n,k

|cn,k|2|En,k〉〈En,k|

+
∑

n

c∗
n,+cn,−|En,−〉〈En,+|

+
∑

n

cn,+c∗
n,−|En,+〉〈En,−|, (17)

with k = ±. Therefore, any statistical ensemble devised to
describe equilibrium states below Ec must include these non-
diagonal elements. It is worth noting that these elements are
complex-valued, and thus they cannot be described by a real
nondiagonal operator like Ĉ. For this reason, we need to define
a second operator, which is also constant below Ec, serving the
purposes described above,

K̂ ≡ i

2
[Ĉ, �̂]. (18)

It is straightforward to show that K̂ commutes with the energy
projectors below the critical energy if Ĉ does too. Indeed, from
Eq. (18) and using that �̂|En±〉 = ±|En,±〉 and Ĉ|En,±〉 =
|En,∓〉 (where the overall sign has been fixed to +1), one
finds that K̂|En,±〉 = ±i|En,∓〉, evidencing the fact that �̂

and K̂ cannot be diagonalized in the same eigenbasis as K̂
flips the parity of any eigenstate |En,±〉 with En < Ec. Also,
[Ĉ, K̂] |En,±〉 = ±2i|En,±〉 �= 0, meaning that Ĉ and K̂ are not
commuting either. Therefore, our generic system is charac-
terized by a set of three noncommuting charges, {�̂, Ĉ, K̂} for
E < Ec. In an initial state of the form Eq. (11), the expectation
value of these three noncommuting charges can be evaluated
exactly; the result is 〈�̂〉 = 2α − 1, 〈Ĉ〉 = 2

√
α(1 − α) cos φ,

and 〈K̂〉 = 2
√

α(1 − α) sin φ. However, only �̂ is a constant
of motion for E > Ec. At first sight, this seems to imply that
we need two different equilibrium ensembles to describe our
generic system, and that the transient region between E < Ec

and E > Ec is somehow ill defined. However, we can fix this
problem by defining two new operators to be used instead of
Ĉ and K̂,

C̃ = IE<Ec Ĉ IE<Ec , (19)

K̃ = IE<EcK̂ IE<Ec , (20)

where IE<Ec ≡ ∑
n θnP̂n, P̂n is the projector to the eigenspace

with energy En, and θn = 1 if En < Ec and θn = 0 if En > Ec.
〈C̃〉 and 〈K̃〉 are equal to 〈Ĉ〉 and 〈K̂〉 below the critical en-
ergy of the ESQPT, but identically zero above it. This means
that C̃ and K̃ commute with the Hamiltonian in the TL, and
therefore we can build an unique equilibrium ensemble from
them. Furthermore, these two operators, together with �̂ and
with the identity, close a SU(2) algebra in every subspace of
degenerate energy levels. Indeed, within an energy subspace
{|En,+〉, |En,−〉} these three operators can be written as fol-
lows:

�̂ =
(

1 0
0 −1

)
, C̃ =

(
0 1
1 0

)
, K̃ =

(
0 −i
i 0

)
. (21)

Next, we use these operators to build a statistical ensem-
ble for our setup. The basic idea is to rely on the set of

noncommuting [93–95] charges {�̂, C̃, K̃} to reproduce any
2 × 2 Hermitian matrix accounting for all quantum coher-
ences between parity sectors in a single energy eigenspace.
The simplest choice for an such ensemble is

ρGME(E , p, c, k) = ρME(E )(I + p �̂ + c C̃ + k K̃ ), (22)

where

ρME(E ) = 1

2(N+ + N−)

∑
n

(|En,+〉〈En,+| + |En,−〉〈En,−|)
(23)

denotes the standard microcanonical ensemble [87], in which
all parity doublets, |En,+〉 and |En,−〉, within a small energy
window around the average energy value, 〈E〉 = Tr[ρ̂Ĥ], are
equally populated (irrespective of whether these parity dou-
blets are degenerate), and TrρGME(E ) = 1. Here, N± denotes
the number of parity doublets above (N+)/below (N−) Ec pop-
ulated by the quench (see next subsection). This distinction
is always possible because �̂ is an exact Z2 symmetry and
thus the full Hamiltonian matrix can be directly split into
a positive parity and negative parity Hamiltonian matrices.
We call ρGME(E , p, c, k) generalized microcanonical ensem-
ble (GME). Besides the average energy, it depends on three
free parameters, p, c, k ∈ R, which are fixed by requiring
that Tr[ρGME�̂] = 〈�̂〉, Tr[ρGMEC̃] = 〈C̃〉, and Tr[ρGMEK̃] =
〈K̃〉. Explicitly, in the large- j limit these values can be worked
out exactly,

〈�̂〉 = p, (24)

〈C̃〉 = c
N−

N+ + N−
, (25)

and

〈K̃〉 = k
N−

N+ + N−
, (26)

whence one may calculate the parameters p, c, k.
This ensemble has the following properties:
(i) It successfully accounts for the quantum coherences

between parity sectors if and only if E < Ec. ρGME(E , p, c, k)
has off-diagonal elements in the parity eigenbasis if c �=
0 and/or k �= 0. As a consequence, the long-time aver-
aged expectation value of parity-breaking observables, like
Tr[ρGME(E , p, c, k)Ĵx], may be different from zero only if
E < Ec. Also, not every initial condition leads to a broken-
symmetry equilibrium state if E < Ec; this only happens if
c �= 0 and/or k �= 0. Thus, it is possible for find nonzero order
parameters of DPTs-I, i.e., there exists m �= 0 [cf. Fig. 1].

(ii) It becomes diagonal when all populated states are above
Ec. Hence, if E > Ec, Tr[ρGME(E , p, c, k)Ĵx] = 0 for any ini-
tial condition, i.e., order parameters of DPTs-I are always
m = 0 [cf. Fig. 1].

These two points imply that a DPT-I happens when a
quench crosses the critical energy of the ESQPT. If the initial
state fulfills E < Ec and the quench leads it to a spectrum
region where all populated states are above Ec, then all in-
formation about quantum coherence between parity sectors is
lost.

Before moving on to the numerical results, a comment
regarding the physical interpretation of the GME is in order.

024311-8



DYNAMICAL AND EXCITED-STATE QUANTUM PHASE … PHYSICAL REVIEW B 106, 024311 (2022)

The operator Ĉ has a clear physical meaning. For an ensemble
of classical particles described by Eq. (11), it simply counts
the number of particles within each disjoint part of the phase
space, if E < Ec. However, neither K̂ nor �̂ are admit such a
classical interpretation. Quite contrarily, both these operators
account for quantum correlations between the two disjoint
classical regions: �̂ accounts for the real part of such correla-
tions, and K̂ for the imaginary part. Hence, the GME defined
in Eq. (22) supposes that equilibrium states and long-time
averages keep information about those quantum correlations,
even in the TL.

As a side note, it is interesting to compare the statistical
ensemble thus defined with the corresponding result that can
be obtained using the ideas of the generalized Gibbs ensemble
(GGE) [96–98]. Since the operators �̂, C̃ and K̃ all commute
with Ĥ but are mutually noncommuting, the density ma-
trix can be written ρGGE(βp, βc, βk ; β ) = e−βĤ−βp�̂−βcC̃−βk K̃ ,
where β = 1/kBT is the inverse temperature, kB is the Boltz-
mann constant, and βp, βc, and βk are the multipliers associ-
ated to each charge. These parameters are fixed through the
expectation values of the noncommuting charges in the GGE,
i.e., 〈Ô〉 = βO tanh(β2

p + β2
c + β2

k )/
√

β2
p + β2

c + β2
k where Ô

can be �̂, C̃, and K̃ and βO = βp, βc, βk accordingly. Thus,
there is a direct correspondence between the results provided
by the GME and by the GGE. However, there is a major prac-
tical drawback in the GGE in this case: When all expectation
values vanish but one, e.g., when 〈�̂〉 = 〈K̃〉 = 0 and 〈C̃〉 =
1, there is an infinite-valued temperature associated to the
nonvanishing charge, βc → ∞ (βp = βk = 0). This choice of
parameters describes some of the states used in the literature,
e.g., Ref. [6]. Since these parameters are usually obtained by
fitting, working with the GME instead of the GGE is much
more advantageous in this case.

Numerical results

In computing the GME for a quench process we proceed
as follows. We consider the eigenstates of the final Hamilto-
nian at λ f that the initial state at λi populates, Eq. (13), and
calculate its average energy, 〈E〉 = ∑

n

∑
k=± |cn,k|2En,k (λ f ).

As in a standard microcanonical ensemble [87], in the GME
it is assumed that all states within a certain energy window
�E centered at the average energy, [〈E〉 − �E , 〈E〉 + �E ],
are equally populated. The microcanonical energy window
�E is composed of the 2N + 1 levels of positive parity
around the target energy 〈E〉 and the 2N + 1 levels of neg-
ative parity. In our case, we have considered an energy
window �E = 2σ where σ is the standard deviation of the
distribution of populated states after the quench, i.e., σ 2 =∑

n

∑
k=± |cn,k|2(En,k (λ f ) − 〈E〉)2. We count the number of

parity doublets (regardless of whether or not the correspond-
ing energies En,± are degenerate) below and above Ec, N− and
N+. Then making use of Eqs. (24)–(26), we obtain p, c, k.

On the one hand, for a state En,k � Ec within the micro-
canonical window, the matrix form of the GME in the single
energy subspace {|En,+〉, |En,−〉} is

ρn(En,k � Ec) = 1

2

(
1 + p c − ik
c + ik 1 − p

)
. (27)
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FIG. 7. [(a)–(d)] Long-time average, Eq. (29), of physical ob-
servables after a quench λi → λ f = 1.75 as a function of the final
energy, ε(λ f ). System size is j = 6400, and the initial state Eq. (11)
has α = 1/2, φ = 0. Black points represent the exact averages while
blue lines show the GME prediction, Eq. (30).

Clearly, Tr [ρ2
n (En,k � Ec)] = (1 + p2 + c2 + k2)/2, so any

physical state must satisfy p2 + c2 + k2 � 1.
On the other hand, for a state En,k > Ec within the energy

window, the GME takes the following form:

ρn(En,k > Ec) = 1

2

(
1 + p 0

0 1 − p

)
. (28)

Note that Eq. (28) is diagonal in the basis {|En,+〉, |En,−〉}.
For any other state En,k �∈ [〈E〉 − �E , 〈E〉 + �E ], the corre-
sponding matrix block is simply the null matrix, ρn = 0 × I2.
In the full parity basis {|E1,+〉, |E1,+〉, . . . , |EN,+〉, |EN,−〉},
the complete density matrix of the GME is a block-diagonal
matrix containing each of the previous blocks, ρGME =
diag ({ρn}n)/Z , where Z = N+ + N− is a normalization con-
stant. Note that Eqs. (27) and (28) are always applicable, even
when the average energy of the quench coincides with that
of the ESQPT, 〈E〉 = Ec; in such a case, the GME neces-
sarily has contributions coming from states at both sides of
the ESQPT. Therefore, the GME is built as explained above
also in this case, with a density matrix containing these two
contributions.

Once the GME has been built, one may compare the long-
time average of a given physical observable Ô,

〈Ô〉 = lim
τ→∞

1

τ

∫ τ

0
dt 〈�t (λ f )|Ô|�t (λ f )〉, (29)

with the predictions of the GME,

〈Ô〉GME = Tr [ρGMEÔ]. (30)

We have calculated the long-time average of relevant ob-
servables after a number of different quenches, letting the
wavefunction relax in the final Hamiltonian during 103 μs.
We always start in an initial state of the form Eq. (11) with
α = 1/2, φ = 0 at different values of the control parameter
λi, and these states are all quenched to λ f = 1.75. A case with
φ �= 0 is studied in [51]. Depending on λi, the distribution
of populated states in the final Hamiltonian is different, and
thus so is the final mean energy ε(λ f ) of the quench. These
long-time averages are shown with points in Fig. 7 for Ĵz,
Ĵx, Ĉ, and K̂ as a function of the final energy within the
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FIG. 8. Long-time average of Ĵx after a quench λi → λ f = 1.75
as a function of the final energy ε(λ f ). System sizes are indicated,
and the initial state Eq. (11) has α = 1/2 and φ = 0. Black points
represent the exact averages, while color lines show the GME pre-
diction. Inset shows the scaling of �ε = εc( j) − εc(∞) with system
size (bound γ = 1/20), |�ε| ∼ 1/

√
j.

range −1.1 � ε(λ f ) � −0.9, which goes through the ESQPT
at εc = −1. Irrespective of the observable considered, we can
observe some precursors of nonanalytic behavior around εc.
This nonanalyticity is transferred directly from the level den-
sity to the expectation values of observables in systems with a
single classical degree of freedom [50]. Indeed, in Fig. 7(a) we
can see that the ESQPT critical point is signaled by an abrupt
minimum in the long-time average of Ĵz. As observed in
Fig. 7(b), Ĵx takes a nonzero value before the ESQPT has been
crossed, and it vanishes once it has been completely crossed.
In finite- j systems, we observe a smooth transition between
these scenarios, only becoming abrupt in the TL [cf. Fig. 8].
In this sense, the long-time average of Ĵx can be considered as

an order parameter of this DPT-I, m = 〈Ĵx〉, occurring at the
ESQPT, ε = εc, in the TL. This transition occurs because the
phase delimited by ε < εc is a broken-parity phase where the
�̂ symmetry is broken, while it is restored right after crossing
the ESQPT, ε > εc. In Figs. 7(c) and 7(d) we focus on Ĉ
and K̂. Since the initial, broken-symmetry state Eq. (11) has
α = 1/2 and φ = 0, its initial values for these operators are
〈Ĉ〉 = 1 and 〈K̂〉 = 0. The expectation value of Ĉ remains con-
stant as long as ε � εc [51], where this operator acts a constant
of motion. For ε � εc, it is no longer constant but oscillates, its
average value vanishing completely. In the neighborhood of εc

a smooth transition is again observed, which is a consequence
of the finiteness of j < ∞. Finally, the long-time average of
K̂ is zero for ε < εc due to the initial condition chosen, and

it is also zero for ε > εc, when it is no longer constant. A

case where 〈K̂〉 �= 0 for ε < εc is discussed in [51]. For all
observables, the GME prediction has been depicted with a
solid line. As can be seen, the agreement between the exact
long-time averages and the GME is excellent in all cases.

To end this section, we pay particular attention to the dy-

namical order parameter 〈Ĵx〉. The long-time averages have
been represented for different values of j approaching the
TL in Fig. 8. It is clearly observed that as j increases,

the transition from 〈Ĵx〉 �= 0 to 〈Ĵx〉 = 0 becomes sharper.
The agreement with the GME, represented with color lines,
improves as j increases since the GME relies on constants of
motion, which become exact only in the TL. Importantly, all
curves cross at some point around ε ≈ εc = −1, suggesting a
DPT-I in the TL, and this behavior is perfectly captured by the
GME. To provide a definite answer, we estimate the precursor
of the critical energy of the DPT-I, εc( j), by computing the

last value of ε(λ f ) for which 〈Ĵx〉 > γ , where γ is an arbitrary,
small bound. Here, we choose γ = 1/20. In the inset of Fig. 8
the difference between this precursor and the ESQPT critical
energy in the TL, εc(∞) = −1, |�ε| = |εc( j) − εc(∞)|, is
represented as a function of the system size. This reveals a
clear power-law behavior of the form |�ε| ∼ 1/

√
j; to be pre-

cise, |�ε| ∼ 10a jb with a = −0.195664 and b = −0.500194.
This is completely consistent with the DPT-I being caused by
the ESQPT in the TL.

D. Time-dependent protocol

In the previous section a quench was performed from an
initial value of the coupling parameter, λi, to final value, λ f ,
and the state was left to evolve at λ f , which was held fixed.
In this section we study the dynamics of the state subjected
to an time-dependent slow process after a quench [80]. The
protocol has the following steps.

(i) We prepare an initial state of the form Eq. (11) at
λi > λc.

(ii) We quench the state, λi → λ f .
(iii) Immediately after performing the quench, we

solve the time-dependent Schrödinger equation, i d|�(λ(t ))〉
dt =

Ĥ(λ(t ))|�(λ(t ))〉, with λ(t = 0) = λ f , in order to implement
a process where λ(t ) is a slowly-varying function [99].

At time t , the wavefunction can be formally expanded in
the Ĵz eigenbasis {|m〉} j

m=− j as |�t (λ(t ))〉 = ∑ j
m=− j ϕm(t )|m〉.

Thus, for the slow process we numerically solve the system of
2 j + 1 coupled differential equations

i
d

dt
ϕm(t ) = ϕm(t )

[
hm − λ(t )

2N
( j( j + 1) − m2)

]
− λ(t )

4N

[
ϕm+2(t )

√
j( j + 1) − m(m + 1)

√
j( j + 1) − (m + 2)(m + 1)

+ϕm−2(t )
√

j( j + 1) − m(m − 1)
√

j( j + 1) − (m − 2)(m − 1)
]
, (31)

for all m = − j, . . . , j, and where N = 2 j is the number of
spin-1/2 particles. This affords the solutions {ϕm(t )} j

m=− j

at different times according to the control parameter λ(t ).
Here, we implement a forward-backward process between
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FIG. 9. Energy across the slow process. The dashed-vertical line
separates the forward and backward steps. The blue line represents
the GME result, and the horizontal-red dotted-dashed line marks the
ESQPT critical energy. The system size is j = 1000, and the driving
parameter λ(t ) is taken as in Eq. (32), with τ = 500.

λ(t = 0) = λ0 and λ(t = τ ) = λ1, with τ the time duration
of each step of the protocol (forward or backward). In our
choice, the control parameter λ(t ) is taken as the following

linear function of time:

λ(t ) =
{
λ0 + �λ t

τ
, 0 � t � τ

2λ1 − λ0 − �λ t
τ
, τ � t � 2τ

(32)

where �λ = λ1 − λ0. The value of τ determines the rapidity
of each process (forward or backward), i.e., how slowly or fast
λ(t ) changes. For a perfectly adiabatic process, τ → ∞; how-
ever, relatively large values of τ afford results close enough
to adiabaticity. Here we choose τ = 500 μs, which we find
suitable for our purposes.

In our simulations, we prepare different initial states of
the form Eq. (11) with λi = 3 and α = 3/4, characterized by
different values of φ. These initial states are parity broken,
and depending on φ they can be fully localized within one of
the two classical energy wells or in a superposition of both.
Then, we perform a quench to λ0 ≡ λ f = 1.75, and solve the
time-dependent Schrödinger equation from λ0 to λ1 = 0.5,
and then from λ1 back to λ0.

The energy of the state across the process is represented
in Fig. 9. This figure clearly shows that the forward protocol
drives the time-evolving wavefunction through the ESQPT
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FIG. 10. [(a)–(h)] Time evolution after a quench λi = 3 → λ f = 1.75 from a initial state of the form Eq. (11) with α = 3/4 and several φ

values. System size is j = 1000. The time values correspond to the expectation values of the corresponding observables in the time-evolving
wavefunction as obtained from the time-dependent Schrödinger equation Eq. (31) with time-dependent λ(t ) Eq. (32). The duration of the
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correspond to α = 3/4 and φ = π/5, and the GME prediction is represented with a black-dashed line.
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TABLE I. Values of p, c, k, and the von Neumann entropy S at
the beginning (t = 0) and end (t = 2τ ) of the adiabatic process in
Figs. 10(e)–10(h).

Time p c k S

t = 0 0.5 0.7006 0.5090 2.3 × 10−4

t = 2τ 0.5 −0.0576 −0.0458 0.5594

at ε = −1, and then crosses it back in the backward proto-
col. The curves are symmetric around t = τ , which separates
the forward and backward steps of the protocol. Note that
no energy is “dissipated” during the entire process, i.e.,
the average energy of the initial and final states coincide,
〈�(0)|Ĥ(λ(0))|�(0)〉 = 〈�(2τ )|Ĥ(λ(2τ ))|�(2τ )〉. We also
plot the GME expectation for the process with a blue line.

As the wavefunction evolves in time, we monitor the evo-
lution of representative observables. In Figs. 10(a)–10(d) we
display such time expectation values from the initial states
considered. A single curve for 〈Ĵz(t )〉 is shown, corresponding
to an initial state with φ = 0, because this observable does
not depend on Ĉ or K̂, and thus once α is fixed in Eq. (11) the
time evolution is the same regardless of φ. This time evolution
is compatible with a reversible process because, oscillations
aside, the expectation values at the beginning and at the end of
the process are the same. This is in stark contrast with panels
(b)–(d), where we focus on Ĵx, Ĉ, and K̂. These observables
are dependent on the population of classical energy wells
and on the quantum correlations between them, given by φ.
Therefore, initial states with different φ yield different trajec-
tories. Once α is fixed, the initial values of Ĵx, Ĉ, and K̂ are
related; in particular, 〈Ĉ〉 ∝ cos φ while 〈K̂〉 ∝ sin φ. Despite
these differences in the initial value of the observables, it is
remarkable that all of them either become zero (Ĵx) or oscillate
around zero (Ĉ, K̂) after a certain time. This occurs around the
same time when the average energy of the state is crossing the
ESQPT, as shown in Fig. 9, which is indicative of a DPT-I.
After the forward protocol ends at t = τ , the backward pro-
tocol begins and drives the system until t = 2τ . Even though
the energy of the state at t = 0 and t = 2τ are the same [cf.
Fig. 9], the initial and final values of Ĵx, Ĉ, and K̂ do not agree
at all. This is a signature of the irreversibility of the process:
information about the initial state has been lost as a conse-
quence of crossing the ESQPT. Indeed, when the ESQPT is
crossed during the adiabatic process, the equilibrium density
matrix ρ̂eq = limt→∞ 1

t

∫ t
0 dt ′ ρ̂(t ′), with ρ̂(t ) = |�(t )〉〈�(t )|,

becomes diagonal. Since the driving time τ in the protocol
is larger than the semiclassical time tSC related to diffusion
of the wavepacket, ρ̂(t ) is always close to ρ̂eq. Once the
information contained in the off-diagonal elements of ρ̂eq has
been erased at the ESQPT during the forward process, there
is no way to recover this information when crossing back the
ESQPT during the backward process. Since [�̂, Ĥ(λ)] = 0,
∀λ, this information erasing mechanism does not affect the
expectation values of �̂; however, it does affect 〈Ĉ〉, 〈K̂〉 and,
in general, all physical magnitudes whose equilibrium values
depend on Ĉ and K̂, such as Ĵx [52]. This is clearly reflected in
Table I, where we have collected the values of p, c, k entering
the GME at the beginning (t = 0) and at the end (t = 2τ )

of the adiabatic process. While p ∝ 〈�̂〉 remains constant,
the values of c ∝ 〈Ĉ〉 and k ∝ 〈K̂〉 are completely different,
these values at t = 0 coinciding with the exact expectations
for α = 3/4 and φ = π/5. This confirms that the information
of the initial state is not recovered in the backward step of the
protocol. Such loss of information can be quantified further
through the von Neumann entropy S = −Tr[ρn log ρn] of each
2 × 2 block of the GME. The initial, S(t = 0), and final,
S(t = 2τ ), values of the von Neumann entropy are calculated
in Table I. The growth of the entropy is a consequence of
information erasing, which is quantified by the GME. The
DPT-I is therefore linked to a mechanism for information
erasing, where the details of the initial condition are lost. For
a detailed discussion of this mechanism, see Ref. [80].

To end this section, we address the suitability of the GME
to describe the time expectation values in this scenario. In
our protocol the state is never allowed to relax before taking
the expectation values of observables; this is to say that os-
cillations inherent of short-time dynamics are present in our
results. Even though an equilibrium state may not be reached
for short times, the GME is still appropriate to describe the av-
erage value around which the wavefunction fluctuates, but not
the exact form of the fluctuations themselves. In Figs. 10(e)–
10(h) we focus on a single initial state with α = 3/4 and φ =
π/5, and represent the same time evolution as in Figs. 10(a)–
10(d). On top of the numerical results, the GME expectation
is represented with a black line. The agreement is excellent.

V. DPT-II: RETURN PROBABILITY

In general, DPTs-II have a completely different origin than
DPTs-I. Connections between both kinds of DPTs seem to
exist in several systems of different nature [41–43,45–49],
e.g., the nonanalytical points of DPTs-II have been linked with
zeros of the order parameters of DPTs-I. However, a common
triggering mechanism for DPTs-II remains elusive. To study
DPTs-II in the collective systems of our interest, we start by
reviewing some common concepts.

In the seminal paper [22], a new kind of phase transition
was identified, occurring at some so-called critical times when
the overlap amplitude

G(t ) = 〈�0(λi )|e−iĤ(λ f )t |�0(λi)〉 (33)

of a given initial state, |�t=0(λi)〉, with itself after unitary
evolution following a quench, |�t (λ f )〉 = e−iĤ(λ f )t |�0(λi )〉,
becomes nonanalytic. Such critical times were analytically
obtained in the paradigmatic one-dimensional transverse-field
Ising model [77] [i.e., with nearest-neighbor couplings, rather
than the fully connected model Eq. (1)]. Viewed as a function
on the complex plane [z = it , G(t ) = 〈�0(λi)|e−zĤ|�0(λi)〉],
Eq. (33) bears a formal resemblance to partition func-
tions in standard statistical mechanics, Zβ = Tr e−βĤ. Since
the free energy per particle F = −(1/βN ) lnZβ becomes
nonanalytic in equilibrium phase transitions, an analogy can
be drawn whereby the intensive, time-dependent quantity
g(t ) = −(1/N ) ln G(t ), known as rate function, may signal a
dynamical phase transition at certain critical times. Here, N
is the number of degrees of freedom of the system. We note
that the square of the overlap Eq. (33) is simply the survival
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probability, SP(t ) ≡ |G(t )|2, which we will consider later.
For systems with broken-symmetry phases, nonanalytic times
may be studied with a somewhat different quantity as done in
Ref. [23] in the XXZ chain (see below). This is the subject
of interest for this paper as the fully connected Ising model
Eq. (1) is a perfect example of broken-symmetry models. In
particular, it is worth emphasizing that in Refs. [22,23] the
DPT-II appears in a quench protocol that crosses the QPT.
In other, more recent papers, especially in models with long-
range interactions or in collective (infinite-range interaction)
systems, two scenarios can be distinguished: (i) a DPT-II
may appear after a quench to a critical value of the control
parameter that does not coincide with the QPT value [11];
this has been called a regular dynamical phase; also, (ii) a
DPT-II may also appear even if the QPT is not crossed, as
observed in [25,26]; this has been associated with an anoma-
lous dynamical phase. This anomalous dynamical phase has
been characterized by cusps appearing only after the first
minimum of the return rate (see below), while in the regular
dynamical phase the first cusp appears always before the first
minimum [26].

In Ref. [51] we show that the regular dynamical phase is
triggered by the ESQPT common of collective systems, and
that the critical times only show a scaling typical of a phase
transition in this phase (and not in the anomalous phase). As
in the previous sections, here we focus on the impact of the
ESQPT on the appearance or absence of DPTs-II, delving
deeper into these questions. We provide analytical results,
valid in the TL, showing that the main mechanism [23] for
DPTs-II is only allowed when the energy of the quenched state
is above the critical energy of the ESQPT, E > Ec, while it is
forbidden if E < Ec. We show that for E > Ec one finds a
regular dynamical phase of DPTs-II, while for E < Ec this
becomes an anomalous dynamical phase; thus, the change
from regular to anomalous phase is triggered precisely by the
ESQPT.

A. Analytical results

To study DPTs-II, one considers as an initial state |�0(λi )〉
a general superposition of the degenerate ground state in the
degenerate phase (where the Z2 symmetry may be broken), in
our case E < Ec. Then, a quench λi > λc → λ f is performed,
and the state is allowed to evolve in time under the new
Hamiltonian, |�t (λ f )〉. As mentioned before, in the case of
broken-symmetry models DPTs-II are defined through the
nonanalytic times in the parity-projected return probability
(PPRP) [23],

L(t ) = |〈E0,+(λi)|e−iĤ(λ f )t |�0(λi)〉|2

+ |〈E0,−(λi )|e−iĤ(λ f )t |�0(λi )〉|2. (34)

For convenience, we may define

L±(t ) = |〈E0,±(λi )|e−iĤ(λ f )t |�0(λi)〉|2 (35)

so that L(t ) = L+(t ) + L−(t ). Here, L±(t ) are the return
probabilities to the positive-parity and negative-parity projec-
tions of the initial state [23] [note the difference with G(t )
in Eq. (33), where no projections to parity subspaces are
considered]. Specifically, a DPT-II occurs at t = t∗ if L(t )

is a nonanalytic function at t = t∗. Instead of Eq. (34), it is
common to analyze the rate function

rN (t ) = − 1

N
lnL(t ), (36)

where N is a TL parameter; in our case, N = 2 j. According
to [23,100], each of the terms in the PPRP, L±(t ), follows a
law

L±(t ) = e−N�±(t ), (37)

where �±(t ) is an intensive quantity. Therefore,

rN (t ) = �+(t ) − 1

N
ln

[
1 + e−N (�−(t )−�+(t ))] (38)

Regarding the second term on the right-hand
side, in the TL (i) if �−(t ) > �+(t ), then
limN→∞ − 1

N ln[1 + e−N (�−(t )−�+(t ))] = 0, while (ii) if
�+(t ) > �−(t ), then limN→∞ − 1

N ln[1 + e−N (�−(t )−�+(t ))] =
limN→∞ − 1

N ln eN (�+(t )−�−(t )) = �−(t ) − �+(t ). Therefore,
in the TL one has

r(t ) ≡ lim
N→∞

rN (t ) =
{
�+(t ), �−(t ) > �+(t )
�−(t ), �−(t ) < �+(t ). (39)

Hence, there exists a singular point at t = t∗ when the
functions �±(t ) intersect, �+(t∗) = �−(t∗). As in any other
phase transition, it is therefore expected that rN (t ) remains
analytic at t = t∗ in finite-N systems, and only becomes
singular in the TL. From Eq. (39) it is obvious that the
nth derivative of r(t ) is dnr(t )/dtn = dn�min(t )/dtn where
�min(t ) ≡ min{�+(t ),�−(t )}. Thus, one may assign an order
to a DPT-II by considering the value of n for which dnr(t )/dtn

becomes discontinuous. Note, however, that this result does
not preclude the existence of other nonanalytical points where
�+(t ) and/or �−(t ) become nonanalytic. We will come back
this point later on.

To derive a theory for this kind of DPTs, we start by
considering an initial state given by Eq. (11) at λi quenched
to λ f . Since �̂ is an exact conserved quantity, we can expand
the initial eigenvectors of Ĥ(λi) as a combination of the final
eigenvectors of Ĥ(λ f ) of the same parity. For example, the
broken-symmetry ground state at λi may be written

|E0,±(λi)〉 =
∑

n

cn,±|En,±(λ f )〉. (40)

Therefore, we may rewrite the quenched state as a combina-
tion of eigenstates of the final Hamiltonian as

|�t (λ f )〉 = √
α

∑
n

cn,+e−iEn,+(λ f )t |En,+(λ f )〉

+ eiφ
√

1 − α
∑

n

cn,−e−iEn,−(λ f )t |En,−(λ f )〉.

(41)
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Now, parity conservation allows to write the terms of the
PPRP as

L+(t ) = |〈E0,+(λi )|�t (λ f )〉|2

=
∣∣∣∣∣√α

∑
n

cn,+e−iEn,+(λ f )t 〈E0,+(λi )|En,+(λ f )〉
∣∣∣∣∣
2

= α

∣∣∣∣∣
∑

n

|cn,+|2e−iEn,+(λ f )t

∣∣∣∣∣
2

, (42)

and, similarly,

L−(t ) = (1 − α)

∣∣∣∣∣
∑

n

|cn,−|2e−iEn,−(λ f )t

∣∣∣∣∣
2

. (43)

Defining the complex-valued functions

f±(t ) ≡
∑

n

|cn,±|2e−iEn,±(λ f )t , (44)

the components of the PPRP are

L+(t ) = α| f+(t )|2, L−(t ) = (1 − α)| f−(t )|2. (45)

The main result of this section is the following. Conse-
quences will then follow.

Result: If E < Ec, then f+(t ) = f−(t ), ∀t .
Let us prove this result. First, since in the TL En,+(λ f ) =

En,−(λ f ) for all n such that En,± < Ec [52], the oscillatory
parts in f±(t ) are the same. Therefore, we only need to analyze
the coefficients cn,±.

Because �̂ is an exact conserved quantity,
〈En,+(λ f )|E0,−(λi )〉 = 0 since these eigenstates belong to
different parity sectors, and therefore

cn,+ = 〈En,+(λ f )|E0,+(λi )〉. (46)

For E < Ec, Ĉ acts as a conserved quantity. It does not com-
mute with parity because it changes the parity of any Fock
state [52],

Ĉ|E0,±(λi )〉 = |E0,∓(λi )〉, (47)

where we have fixed the arbitrary overall sign to +1 [52].
Also, the unitarity of Ĉ implies Ĉ†Ĉ = 1. Therefore,

|cn,+| = |〈En,+(λ f )|E0,+(λi)〉| = |〈En,−(λ f )|Ĉ†Ĉ|E0,−(λi)〉|
= |〈En,−(λ f )|E0,−(λi)〉| = |cn,−|. (48)

It follows that f+(t ) = f−(t ) in the TL, if all the populated
states are below the critical energy of the ESQPT.

This formal result has two immediate consequences.
Consequence 1: the constancy of Ĉ if E < Ec implies

�+(t ) and �−(t ) cannot intersect. Therefore the mechanism
for DPTs-II proposed in [23] is forbidden for quenches below
the critical energy, E < Ec. It is only allowed if the quench
leads the state to E > Ec.

Let us assume that f+(t ) = f−(t ) for all t ; then, if α ∈
(0, 1), Eq. (45) implies

L+(t )

L−(t )
= α

1 − α
(49)

for all t too. If α = 1/2, then L+(t ) = L−(t ) for all t , and
therefore it is clear that �+(t ) = �−(t ) for all t , implying

no crossing is possible. If 0 < α < 1/2, Eq. (49) implies
L+(t ) < L−(t ) for all t , and from Eq. (37) this implies that
�+(t ) > �−(t ) for all t . Otherwise, 1/2 < α < 1, and in this
case the contrary holds true, �−(t ) > �+(t ). In neither case a
crossing in �±(t ) is possible.

Finally, in the trivial cases where α = 1 or α = 0, we
have that either L+(t ) = | f (t )|2 � 0 = L−(t ) or L−(t ) =
| f (t )|2 � 0 = L+(t ). Thus, no crossing is possible, as L+(t )
and L−(t ) are either equal or different for all time.

This result sets an important bound on the region of the
spectrum where the main mechanism for DPTs-II is not al-
lowed to occur.

Thus far we have focused on the indicators of DPTs-II
in the return probability for Z2 broken-symmetry systems,
Eq. (34), proposed in Ref. [23]. Next we move onto the
survival probability, closely related to the indicator used in
Ref. [22]. The survival probability is also a measure of the
overlap of the time-evolved state |�t (λ f )〉 with its initial
value, |�0(λi)〉, but no projections onto parity subspaces are
considered,

SP(t ) = |〈�0(λi)|�t (λ f )〉|2. (50)

As mentioned before, SP(t ) is simply the probability associ-
ated to the overlap G(t ), Eq. (33), considered in Ref. [22].
In principle, Eq. (50) is different from L(t ) in Eq. (34),
because L(t ) does not account for the interference between
initial states of different parity. Considering an initial state of
the form Eq. (11) at an initial coupling parameter λi > λc,
and performing a quench λi → λ f , the survival probability
Eq. (50) reads

SP(t ) =
∣∣∣∣∣α

∑
n

cn,+e−iEn,+(λ f )t 〈E0,+(λi)|En,+(λ f )〉

+ (1 − α)
∑

n

cn,−e−iEn,−(λ f )t 〈E0,−(λi)|En,−(λ f )〉
∣∣∣∣∣
2

.

(51)

Making use of Eq. (40) and substituting in the definition of
f±(t ) in Eq. (44), this is

SP(t ) = |α f+(t ) + (1 − α) f−(t )|2. (52)

From this expression, we obtain two different behaviors de-
pending on the energy of the state considered, which we make
explicit below.

(i) If E < Ec, then, according to our previous derivation,
f+(t ) = f−(t ) ≡ f (t ) for all t , and therefore

SP(t ) = | f (t )|2 = L+(t ) + L−(t ) = L(t ). (53)

This shows that, in the TL, Eq. (34) and Eq. (50) are equal if
E < Ec.

(ii) If E > Ec instead, then we have that f−(t ) �= f+(t ) in
general. Thus,

SP(t ) = α2| f+(t )|2 + (1 − α)2| f−(t )|2
+α(1 − α)[ f+(t ) f ∗

−(t ) + f ∗
+(t ) f−(t )]

�= α| f+(t )|2 + (1 − α)| f−(t )|2 = L(t ), (54)
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implying that in this case Eq. (34) and Eq. (50) are different
quantities. Obviously, if α = 0 or α = 1, then SP(t ) = L(t ),
as in this case the initial state Eq. (11) has either positive or
negative parity, and thus no interference is possible between
different parity sectors.

The second main consequence of the analytical results in
this section is therefore the following:

Consequence 2: If E < Ec, Ĉ acts a constant of mo-
tion in the TL and, thus, the return probability L(t ),
Eq. (34), and the survival probability, SP(t ), Eq. (50), coin-
cide in the TL. If E > Ec, these quantities are, in general,
different.

In what follows we will see that this result is important in
understanding the so-called anomalous DPT-II phase [25].

B. Numerical results

In this section we provide a numerical analysis of the return
probability, L(t ), Eq. (34), and the survival probability, SP(t ),
Eq. (50), after a quench. We start with an initial state of the
form Eq. (11) with α = 1/2 and φ = 0, at a certain value of
the control parameter λi > λc. The quench λi → λ f always
ends at λ f = 1.6, the final energy of the quench depending on
λi only. After the quench, the return probability L(t ), Eq. (34),
is computed at different times, and then rN (t ), Eq. (36), is
calculated. The nonanalytic behavior of rN (t ) at certain criti-
cal times, if they exist, is best captured by its first derivative
drN (t )/dt , which we also consider. In our numerical calcu-
lations we have worked with up to 500 significant figures
[101]. Results for rN (t ) are shown in Figs. 11(a)–11(c), while
drN (t )/dt is depicted in Figs. 11(d)–11(f). Different system
sizes, j = N/2, are indicated. In the case of the survival prob-
ability, we consider, in analogy with Eq. (36), the following
rate function:

r̃N (t ) = − 1

N
ln SP(t ). (55)

Note that this rate function is simply r̃N (t ) = 2Re [g(t )]. The
corresponding results are shown in Fig. 12. In both Fig. 11 and
Fig. 12, the first row shows the results for a quench with an
average energy ε = −1.07 < εc, which is below the ESQPT,
i.e., the ESQPT has not been crossed. In the second row,
the average energy coincides exactly with the ESQPT critical
energy, εc = −1. Finally, in the third row, the average energy
is above the ESQPT, ε = −0.92 > εc, so the ESQPT has been
crossed.

If ε < εc, we observe that results in Figs. 11(a) and 11(b)
and Figs. 12(a) and 12(b) are the same. As we have shown in
the previous section, this is a consequence of the conservation
of Ĉ in the TL. Some small differences between these fig-
ures can be observed only for small values of j, reflecting the
fact that Ĉ is only strictly constant in the TL [52]. We observe
a set of oscillations in rN (t ) and r̃N (t ), with some maxima.
At first sight, the nature of some of these maxima is differ-
ent. The first maximum at t ≈ 3 does not show any relevant
feature, as it appears to be smooth. However, the remaining
maxima are apparently much sharper as j increases, and have
the appearance of kinks. Although this representation would
hint to nonanalytic behavior in rN (t ) in the TL, and thus to a

dynamical phase transition at certain critical times t∗, the main
mechanism for this phenomenon is forbidden by our analyti-
cal results from the previous section since ε < εc. In fact, the
derivatives shown in Figs. 11(d) and 12(d) do not feature any
clear scaling behavior around these kinks. These derivatives
are magnified for clarity in the various insets of each panel, in-
dicated by a black arrow. This is the so-called anomalous [25]
phase of the DPT-II because all kinks in rN (t ) and r̃N (t ) appear
after the first minimum of these functions. Results in [25] sug-
gest that the farther the final energy of the quench from Ec, the
larger the number of smooth local maxima before the first kink
appears.

If ε > εc, the behavior of rN (t ) and r̃N (t ) is different,
as exemplified in Figs. 11(c) and 12(c) and expected from
our analytical results. In the case of rN (t ) we observe some
nonanalytic points, whose derivatives, showed in Fig. 11(f),
display a scaling typical of a phase transition as the system
size increases. These derivatives approach a clear discontinu-
ous behavior as j increases. This bears some resemblance to
first-order phase transitions because it is the first derivative of
rN (t ) and in the TL, limN→∞ drN/dt , which is discontinuous
at certain critical times t = t∗. However, the singularities ob-
served for r̃N (t ) in Figs. 12(c) and 12(f) are similar to those in
the case ε < εc [Figs. 12(a) and 12(d)] in that the derivatives
dr̃N (t )/dt do not show a clear scaling behavior when N is
increased. This is the regular phase of the DPT-II, because in
both cases the kinks appear before the first minimum in rN (t )
or r̃N (t ).

Finally, if ε = εc, the behavior of rN (t ) and r̃N (t ) is also
different, as shown in Figs. 11(b) and 12(b). The most relevant
difference between rN (t ) and r̃N (t ) in this critical case is that
drN/dt becomes discontinuous when N → ∞ around t∗ ≈
3.75 [Fig. 11(e)], while such nonanalytic point completely
disappears in dr̃N (t )/dt [Fig. 12(e)].

We also study the link between DPTs-II and the zeros of
the order parameter of DPTs-I. In the case of the infinite-
range transverse-field Ising model, it has been proposed that
nonanalytic times in the rate function and the time when
the order parameters of DPT-I vanish are closely connected
[25,26]. In Fig. 13(a) we show rN (t ) and r̃N (t ) for λi = 7.437
and j = 1600, and in Fig. 13(b) we show 〈Ĵx(t )〉 and 〈Ĉ(t )〉
for the same quench. Therefore, these results correspond to
the regular dynamical phase. We can see that the nonana-
lytical points in rN (t ) are close to the times when the order
parameters of DPT-I vanish, 〈Ĵx(t )〉 = 0 and 〈Ĉ(t )〉 = 0, but
irregular deviations are also clear in the figure. Therefore, it
seems that neither these results nor our theory are enough
to conclude whether this apparent correlation is caused by a
common mechanism or not. Anyhow, it is worth remarking
that nonanalytical points in rN (t ) occur either when rN (t )
and r̃N (t ) separate or when they become equal again. In
terms of f±(t ), defined in Eq. (44), this means that the first
nonanalytical point in rN (t ) happens at the time t when
f+(t ) and f−(t ) separate [which cannot happen if E < Ec,
as in this case f+(t ) = f−(t ), ∀t]. The second nonanalytical
point occurs when f+(t ) and f−(t ) coincide again, and so
on. However, the kinks observed in r̃N (t ) are linked neither
to the zeros of 〈Ĵx(t )〉 and 〈Ĉ(t )〉, nor to the behavior of
f±(t ).
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FIG. 11. [(a)–(c)] Rate function rN (t ) of the PPRP L(t ), Eq. (36), for a quench from (a) λi = 2.535, (b) λi = 4, and (c) λi = 7.437. All
quenches end at λ f = 1.6. [(d)–(f)] Time derivatives r′

N (t ) corresponding to rN (t ) in panels [(a)–(c)], respectively. The average energy of
the quench is [(a),(d)] ε = −1.07 < εc, [(b),(e)] ε = εc = −1, and [(c),(f)] ε = −0.92 > εc. The insets show magnifications of the finite-size
scaling. Several values of the system size j are indicated. The initial state considered for the quench has α = 1/2 and φ = 0.

C. Discussion and open questions

Our results allow us to formulate a classification of DPTs-
II in collective quantum systems in terms of the region of the
excited-state energy diagram where the quench ends: below,
above, or at the ESQPT critical energy.

(i) Anomalous phase, E < Ec. In this phase, we have shown
analytically that SP(t ) = L(t ) in the TL. Because f+(t ) =
f−(t ), the main mechanism for the appearance of kinks in L(t )
is forbidden. Some kinks appear in SP(t ) and L(t ) at certain
times, but its behavior in the TL is unclear as they fail to show
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FIG. 12. Same results as in Fig. 11 but for the rate function of the survival probability, r̃(t ), Eq. (55).

a finite-size scaling typical of quantum phase transitions. The
first of these kinks appears after the first maximum in r(t )
and r̃(t ), and the farther the final energy from Ec, the more
smooth local maxima in these functions before the first kink
appears.

(ii) Regular phase, E > Ec. In this phase, the survival
probability SP(t ) and the echo L(t ) do not coincide in gen-
eral, SP(t ) �= L(t ). Kinks appear in the rate function of L(t ).
The finite-size scaling of dr(t )/dt is typical of quantum phase

transitions and strongly suggests a true discontinuity in the
TL. These kinks occur at the times when SP(t ) and L(t )
separate or coincide again. Kinks are also present in SP(t ),
but at different times than in L(t ); unlike L(t ), the scaling
behavior of the rate function of SP(t ) seems unclear in the
TL.

(iii) Critical line, E = Ec. Kinks appear in L(t ) because
the quench still populates some eigenstates with energy E >

Ec. Therefore, our proof for SP(t ) = L(t ) when E < Ec no
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FIG. 13. Comparison of indicators of DPT-I and DPT-II after a
quench λi = 7.347 → λ f = 1.6, which leads the initial state above
the ESQPT critical energy, ε = −0.92 > −1. The initial state has
α = 1/2 and φ = 0. Results correspond to j = 1600. (a) rN (t ) and
r̃N (t ); (b) dynamics of Ĵx (orange) and Ĉ (green). In (b), the dashed
horizontal line marks the value 0. Dashed vertical lines signal the
times when the expectation value of the order parameter vanishes,
〈Ĵx (t )〉 = 0.

longer applies and �+(t ) and �−(t ) may intersect at certain
critical times. There are no kinks in SP(t ): one maximum in
its rate function r̃(t ) is observed at short times, and it then
becomes highly noisy for long times. This suggests that the
nature of the nonanalyticities in SP(t ) may change precisely
at the ESQPT.

VI. CONCLUSIONS

In this paper we provide a theory of DPTs in collec-
tive quantum systems, i.e., many-body quantum systems
with infinite-range interaction. Our results are exemplified
in the fully connected transverse-field Ising model; how-
ever, they remain valid also for an important class of
collective many-body systems. We have shown that two
kinds of DPTs characterized by different phenomenology,
DPTs-I and DPTs-II, are closely linked in these systems
to ESQPTs. In the end, we have established the phase
diagram in Fig. 1 for a large class of well-known col-
lective systems exhibiting QPTs, ESQPTs, DPTs-I and
DPTs-II.

Regarding DPTs-I, we provide an understanding of the
order parameters m, and describe their values across the
critical point through a generalization of the standard mi-
crocanonical ensemble. This is the first main result of this
paper. In particular, we show that the typical order param-
eters can only be nonzero for quantum quenches leading
the initial state below the ESQPT criticality, i.e., it is

possible that m �= 0 for E < Ec, whereas they always be-
come zero (in the TL) when the quench leads the initial
state above the ESQPT: m = 0 always if E > Ec. The phases
demarcated by the ESQPT are characterized by markedly
different thermodynamic properties. One of the phases, E <

Ec, is characterized by the existence of three noncommuting
charges, �̂, Ĉ, and K̂, allowing parity-broken long-time av-
erages. By contrast, the parity symmetry is restored in the
phase defined by E > Ec, where �̂ is the only remaining
conserved charge. All of these features are accounted for
by a generalization of the microcanonical ensemble. DPTs-I
are thus associated with a mechanism of information erasure,
whereby the details of the initial state are lost upon crossing
the ESQPT and cannot be recovered by a backward quench
protocol. The nonequilibrium dynamics resulting from quan-
tum quenches are also analyzed. As the system size increases,
the quantum dynamics of the system follows the semiclas-
sical expectations up to a time that grows with system size
as a power law if the quench ends below or above the ES-
QPT; yet, this scaling changes dramatically for quenches
ending exactly at the ESQPT, turning into a logarithmic law
instead.

Regarding DPTs-II, we have shown analytically that the
main mechanism for nonanalyticities in the rate function r(t )
of the parity-projected return probability L(t ) can only happen
within the phase with restored symmetry, E > Ec, while it
is forbidden in the broken-symmetry phase, E < Ec. This is
the second main result of this paper. We also show analyti-
cally that the usual definition of the survival probability SP(t )
coincides with the return probability L(t ) only within the
broken-symmetry phase. A numerical investigation suggests
that if E > Ec, dr(t )/dt becomes discontinuous in the TL
at certain critical times, but the scaling of dr̃(t )/dt at any
energy and that of dr(t )/dt if E < Ec is inconclusive. In the
end, the regular and anomalous dynamical phases associated
with DPTs-II can be formulated in terms of the energy of
the quenched state starting from the broken-symmetry phase:
when E < Ec, this gives rise to an anomalous [25,26] phase
while when E > Ec one finds a so-called regular phase. In the
regular phase, dr(t )/dt becomes discontinuous in the TL at
certain times, while in the anomalous phase there are possible
kinks in both dr(t )/dt and dr̃(t )/dt . Thus, it is precisely the
ESQPT at E = Ec that triggers the change of phase type in
these systems.

A natural continuation of this paper is to look for ex-
tensions of our systematic analysis for collective systems
to quantum spin chains with finite-range interactions, where
the concept of ESQPT has not been established due to the
lack of a proper classical limit. Results in [26,43] show that
typical features of collective models, like the anomalous dy-
namical phase, also appear if the interaction between spins is
long-range enough. This may open the door to ESQPT-esque
behavior in such models. We hope to tackle this problem in
the near future.

In closing, our paper provides a unification of the concept
of dynamical phase transition and that of excited-state quan-
tum phase transitions in collective quantum systems, which
should stimulate further research both on the theoretical and
experimental ends.
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