
Journal of Parallel and Distributed Computing 165 (2022) 120–129

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Evaluation of Intel’s DPC++ Compatibility Tool in heterogeneous 

computing

Germán Castaño a, Youssef Faqir-Rhazoui a, Carlos García a,b,∗, Manuel Prieto-Matías a,b

a Fac. Informática, Universidad Complutense Madrid, Spain
b Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 July 2021
Received in revised form 25 February 2022
Accepted 27 March 2022
Available online 8 April 2022

Keywords:
DPC++
oneAPI
Rodinia
Intel DPCT
CUDA

The Intel DPC++ Compatibility Tool is a component of the Intel oneAPI Base Toolkit. This tool 
automatically transforms CUDA code into Data Parallel C++ (DPC++), thus assisting in the migration 
process. DPC++ is an implementation of the programming standard for heterogeneous computing known 
as SYCL, which unifies the development of parallel applications on CPUs, GPUs or even FPGAs.
This paper analyzes the DPC++ Compatibility Tool by considering the manual intervention required and 
the problems encountered while migrating the Rodinia benchmarks. For this suite, this tool achieves 
an impressive rate of almost 87% for code successfully migrated. Moreover, a comparative study of the 
performance obtained by the migrated code was carried out, showing a moderate overhead in most of 
the migrated examples. Finally, a performance comparison on different devices was also performed.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, heterogeneity is becoming increasingly common 
in both high-performance computing and consumer electronics. 
These systems add a multitude of co-processors or accelerators, 
such as Graphics Processing Units (GPUs), Tensor Processing Units 
(TPUs), and Field Programmable Gate-Arrays (FPGAs), to the tra-
ditional CPU. However, there is no simple, portable and efficient 
method to develop for these systems, although now Intel oneAPI 
aims to fulfill this role.

In recent years a clear tendency towards heterogeneity in com-
puting has been observed, not only in high-performance comput-
ers, where NVIDIA GPUs are widely used as accelerators, but also 
in desktops and handheld devices. Most smartphones include a 
GPU and the latest processors such as the Apple M1 [4] system 
on chip (SOC) integrate ARM CPUs, a GPU and other accelerators 
such as a 16-core Neural Engine for artificial intelligence applica-
tions.

These heterogeneous SOCs, which are becoming more promi-
nent, are clear indicators of this shift toward heterogeneity. A 
result of this is that it is essential to have a unified and straightfor-
ward way of developing for different heterogeneous architectures 
without depending on a specific vendor.

* Corresponding author at: Fac. Informática, Universidad Complutense Madrid, 
Spain.

E-mail address: garsanca@ucm.es (C. García).
https://doi.org/10.1016/j.jpdc.2022.03.017
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
Heterogeneous systems not only improve performance but also 
focus on energy efficiency. One of the challenges that application 
and algorithm developers face is efficiently exploiting this large 
amount of computational resources. Although in heterogeneous 
programming, the arrival one decade ago of CUDA for NVIDIA’s 
GPUs represented a great revolution that has allowed the devel-
opment and adoption of this technology, its use has been limited 
to NVIDIA hardware. The OpenCL standard [22] has tried to solve 
this limitation, allowing the adoption of this heterogeneous pro-
gramming paradigm by different vendors, not only on GPUs but 
also for other accelerators such as the discontinued Intel Xeon-Phi, 
Digital Signal Processors or even FPGAs. However, application de-
velopers’ use of these programming paradigms remains an arduous 
task prone to errors and whose performance portability remains 
limited.

Among the most promising initiatives in the field of heteroge-
neous computing, we can highlight the SYCL standard [18], which 
has been promoted by the Khronos consortium. Although it was 
announced in 2014, this standard has been given a boost by the re-
cent announcement of oneAPI [20] by Intel. Intel’s oneAPI is a suite 
of programming tools divided commercially into Toolkits. The Intel 
Base Toolkit includes the Data Parallel C++ compiler (SYCL com-
piler denoted as DPC++ by Intel) and the Intel DPC++ Compatibility 
Tool (DPCT).

DPCT helps with the migration process by automatically trans-
forming most CUDA code into DPC++, significantly increasing de-
veloper productivity. This paper aims to analyze the migration 
process from CUDA to DPC++ using DPCT and assess the perfor-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.03.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.03.017&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:garsanca@ucm.es
https://doi.org/10.1016/j.jpdc.2022.03.017
http://creativecommons.org/licenses/by/4.0/


G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129
mance obtained by the migrated DPC++ code on different GPU and 
CPU devices using the Rodinia benchmark suite as a workload.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work and outlines some of the innovations intro-
duced by Intel’s oneAPI. Section 3 presents the methodology used 
in this study, and Section 4 discuss the results obtained in the 
migration process. Finally, Section 5 summarizes the main contri-
butions and includes our remarks on the work.

2. Related work

Motivated by the popularity of the use of graphics processors 
with the appearance of CUDA [13], several heterogeneous pro-
gramming paradigms have been proposed in the last few years. 
Among these, we can highlight OpenCL, or Open Computing Lan-
guage, whose strength is its portability on different types of GPUs, 
CPUs or other devices in contrast to CUDA, which is only sup-
ported on NVIDIA graphics cards. Also, the OpenACC [21,12] and 
OpenMP [23] models allow the programmer to express heteroge-
neous parallelism with a higher level of abstraction by means of 
pragmas.

Recently, SYCL [19] has become one of the most promising 
alternatives. It is a cross-platform abstraction layer for heteroge-
neous programming using standard ISO C++ where host and kernel 
code can be included in a single source file. It uses generic pro-
gramming with templates and lambda functions to enable higher-
level abstractions. At the same time, developers still have access to 
lower-level code through seamless integration with the native ac-
celeration API through the inter-operability mode, C/C++ libraries, 
and frameworks such as OpenCV or OpenMP.

There are multiple SYCL implementations available, with the 
DPC++ compiler [5] in the Intel oneAPI being one of the most 
promising initiatives. Intel’s oneAPI is a cross-industry initiative 
that stands out for offering the following advantages: (1) it is open 
(the source code is freely available in a git repository1), and (2) 
it is based on the C++ programming standard, which facilitates 
its adoption. Its goal is to provide an efficient, high-performance 
programming model so that developers do not need to maintain 
a separate code base, multiple programming languages, and dif-
ferent tools and workflows for each architecture. The Intel oneAPI 
also supplements the SYCL and OpenCL standards with additional 
extensions, including optimized libraries compatible with DPC++ 
such as oneCCL, for scaling deep learning frameworks across mul-
tiple devices, oneDAL for data science, oneDNN for high perfor-
mance implementations of primitives for deep learning frame-
works, oneMKL for math routines, oneTBB to express thread-
based parallelism for complex applications on multiprocessors, and 
oneVPL for scaling video processing applications.

SYCL is currently supported by four implementations: Code-
play’s ComputeCpp [8], Intel’s LLVM/clang implementation known 
as Intel’s oneAPI DPC++/C++ compiler [20], triSYCL [24] led by Xil-
inx, and hipSYCL [3] led by Heidelberg University.

Furthermore, a debugger tool for SYCL programs that is based 
on GDB and which allows the offloading of kernels to CPU, GPU, or 
FPGA emulator devices has been developed [1]. Regarding oneAPI 
and DPC++ implementation, due to the recent launch of oneAPI 
in December 2020, there are hardly any studies on the use of 
the different oneAPI Toolkits. The early experience of porting a 
tsunami simulation code from CUDA to DPC++ is addressed in [7]. 
In [25], the authors developed a cross-architecture for a real-time 
medical ultrasound imaging application using oneAPI based on the 
open-source project SUPRA. Among the main contributions of [25]

1 https://github .com /oneapi -src.
121
are the evaluation of the Intel’s DPCT tool using different hard-
ware from Intel and Nvidia. An interesting initiative can be found 
within the GROMACS project, a high-performance molecular dy-
namics package used worldwide (it is worth highlighting that GRO-
MACS represents at least 5% of the worldwide consumption of HPC 
resources). It is also worth mentioning that there exist different 
implementations of GROMACS for heterogeneous computing, such 
as CUDA or OpenCL for AMD/Intel devices, which makes the eval-
uation more interesting. Moreover, the authors of [2] discuss the 
experiences and challenges of adding support for SYCL by means of 
the DPC++ compiler in GROMACS as well as the interaction process 
with OpenCL in parallel DAG-based scheduling. Other experiences 
related to the Intel’s oneAPI compatibility Tool are described in [9], 
in which the authors conclude that some programmer adaptations 
are needed to complete the porting task in the test of matrix mul-
tiplication.

More recently, Nozal et al. [14] evaluated the performance and 
energy efficiency for a well-known set of regular and irregular 
HPC benchmarks using both integrated GPUs and CPUs. Among 
the main conclusions, the authors highlight that the use of oneAPI 
achieves competitive performance and co-execution on CPUs and 
GPUs improves efficiency even more when using unified shared 
memory.

2.1. The Intel DPC++ compiler

The DPC++ compiler included in the oneAPI suite allows the 
direct programming of devices such as CPUs or GPUs. DPC++ pro-
grams [17] are written in the ISO C++ standard and use the SYCL 
parallel programming model to distribute computation across pro-
cessing elements in a device. DPC++ extends SYCL with features for 
performance and productivity.

DPC++ is single source, and device and host code can be in-
cluded in the same source file. A DPC++ compiler generates code 
for both the host and device. Any C++ compiler can compile pro-
grams that only use the host subset of DPC++.

From an execution perspective, DPC++ and SYCL use selectors 
to define a queue to execute the kernel code. The most common 
selectors are host_selector, gpu_selector and accelerator_selector. All 
the context and states needed for kernel execution are encapsu-
lated in a DPC++ queue. By default, a queue is created and associ-
ated with an accelerator. Kernels are enqueued to the queue and 
executed.

The memory model is based on the fact that device and host 
memories are separate. Buffers and accessors are used for the data 
transfer between host and device. Data declared on the host is 
wrapped in a buffer and transferred to the accelerators implicitly 
by the DPC++ runtime. The accelerators read or write to the buffer 
through an accessor. Unified Shared Memory (USM) is an alterna-
tive to buffers for managing and accessing memory from the host 
and device. We would like to point out that USM is now supported 
by the SYCL2020 specification. Explicit data movement with USM 
is accomplished, as in CUDA, with device allocations and a spe-
cial memcpy found in the queue and handler classes. Data can be 
allocated for device, host or both (shared).

2.2. The Intel DPC++ compatibility tool

The DPCT [10] works by intercepting the application build pro-
cess and replacing CUDA code with the oneAPI counterpart. Al-
though DPCT automatically migrates most of the code, some man-
ual work might be required for a complete migration. The tool 
outputs warnings to indicate how and where manual interven-
tion is needed. These warnings have an assigned ID, of the form 

https://github.com/oneapi-src


G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129
Fig. 1. Methodology workflow.

“DPCT10XX”, that can be consulted in the Developer Guide and 
Reference.2

To migrate a project with several CUDA source files to DPC++, it 
is necessary to use DPCT multiple times. To simplify the migration 
process in this case, Intel provides the intercept-build script which 
tracks and saves the compilation commands, compilation flags, and 
options automatically in a JSON file. Then, the DPCT tool can be 
used to migrate the source files, and finally, the user should review 
the migration process, checking the DPCT warnings generated.

3. Benchmarking methodology

Fig. 1 shows the workflow used in this study. It involves two 
main phases: (1) the migration process by means of the DPCT tool, 
and (2) the benchmarking phase, where we evaluate the perfor-
mance of the migrated code over the original CUDA code as well 
as the performance portability across different architectures.

As input for the DPCT tool we chose the well-known Rodinia [6]
benchmark suite, whose main features are described in the next 
subsection.

3.1. Rodinia benchmark

The Rodinia Benchmark Suite3 is implemented in CUDA,
OpenMP and OpenCL, and includes applications from a wide range 
of fields such as medical imaging, fluid dynamics or image com-
pression, among other. Table 1 summarizes the main features of 
the benchmarks and the problem size used in the experimentation 
phase.

3.2. Code instrumentation

Most of the Rodinia benchmarks did not output the time spent 
on the different execution stages, and the ones that did have their 
own output format. This is why all the benchmarks, the originals 
in CUDA and the migrated ones in DPC++, had to be adapted to 
ensure the same format of output measurements.

3.3. Benchmarking native CUDA vs DPC++ toolchain

Our first analysis of the migrated code compares its perfor-
mance over the original CUDA code on an Nvidia GPU. We would 

2 Diagnostics Reference of Intel® DPC++ Compatibility Tool available at: 
https://software .intel .com /content /www /us /en /develop /documentation /intel -dpcpp -
compatibility-tool -user-guide /top /diagnostics -reference .html.

3 Source code available in the repository: http://rodinia .cs .virginia .edu /doku .php.
122
like to point out that Intel’s commercial DPC++ available in the 
oneAPI Base Toolkit does not currently support CUDA as a back-
end. However, as the oneAPI project is open, building the DPC++ 
Toolchain with Nvidia CUDA support is possible. For this research, 
the DPC++ compiler was built using experimental support for 
CUDA devices.4

It is also worth mentioning that this experimental backend is 
also available through a Docker Image [11] although it has not 
been updated since oneAPI 2021.2, while the latest version is 
2021.4.

3.4. Performance comparison on other devices

One of the main advantages of DPC++ is the application porta-
bility it enables. The migrated Rodinia benchmark versions can run 
on different CPU or GPU-based systems. In this work, we have used 
a development sandbox, specifically the Intel DevCloud, which al-
lows us to carry out projects and test performance on different 
hardware devices. Subsection 4.2.1 details the features of the sys-
tems selected for the experimentation.

4. Experiments

This section outlines the main issues found in the migration 
process of the Rodinia benchmarks and presents the main results 
obtained from the experiments. All the codes and the output logs 
generated in these experiments are publicly available in our Git 
repository.5

4.1. Migration phase

During the migration process, the DPCT generated a series of 
warnings indicating possible problems and the need for manual 
intervention by the user.

Across all the benchmarks, 99 files were processed by the DPCT, 
with a total of 43485 lines of code. It gave a total of 461 warnings, 
with an average of 4.65 warnings per file or a warning every 94.3 
lines. Table 2 shows the warnings given by the DPCT tool.

These warnings can be grouped into the following categories:

• Error handling related warnings (DPCT1000, DPCT1001,
DPCT1003, DPCT1009, DPCT1010, DPCT1024)

• Device information related warnings (DPCT1005, DPCT1019, 
DPCT1022, DPCT1051, DPCT1072)

• Kernel invocation warnings (DPCT1049)
• Time measurement warnings (DPCT1012)
• Warnings caused by the removal of unnecessary function calls 

(DPCT1026, DPCT1027)
• Warning generated because SYCL does not support something 

(DPCT1059)
• Performance improving suggestions (DPCT1065)
• Macro related warnings (DPCT1064, DPCT1077)
• Other (DPCT1004, DPCT1035, DPCT1039)

Fig. 2 summarizes the warnings generated by the compatibility 
tool. Most of them (57.3%) are caused by the fact that SYCL uses 
exceptions instead of error codes. Although it might be desirable 
in order to handle any error that might occur at runtime, no man-
ual modifications were mandatory for these warnings as the tool 
modifies all error checks, so they always return a success.

4 More information related with building a DPC++ toolchain at https://github .
com /intel /llvm /blob /sycl /sycl /doc /GetStartedGuide .md.

5 Rodinia Benchmarks for DPC++: https://github .com /artecs -group /rodinia -dpct -
dpcpp.

https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top/diagnostics-reference.html
http://rodinia.cs.virginia.edu/doku.php
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/artecs-group/rodinia-dpct-dpcpp
https://github.com/artecs-group/rodinia-dpct-dpcpp


G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129

Table 1
Rodinia suite benchmark with the problem size used.

Application name Dwarves Domain Problem Size

B+Tree b+tree Graph Traversal Search 1M elements
Back Propagation backprop Unstructured Grid Pattern Recognition 65536 input nodes
Breadth-1st Search bfs Graph Traversal Graph Algorithms 1M vertices
CFD Solver cfd Unstructured Grid Fluid Dynamics 0.2M elements
GPUDWT dwt2d Spectral Method Image/Video Compr. 10242 images, forwd. 5/3
Gaussian Elimination gaussian Dense Linear Algebra Linear Algebra 1024 × 1024 matrix
Heart Wall heartwall Structured Grid Medical Imaging 104 frames
HotSpot hotspot Structured Grid Physics Simulation 512x512 matrix
Hotspot3D hotspot3D Structured Grid Physics Simulation 512x512 matrix
Huffman huffman Finite State Machine Lossless data compr. 1 MB file
LavaMD2 lavaMD N-Body Molecular Dynamics 10 boxes
LU Decomposition lud Dense Linear Algebra Linear Algebra 2048 × 2048 points
Myocyte myocyte Structured Grid Biological Simulation 100 time steps
k-Nearest Neighbors nn Dense Linear Algebra Data Mining 5 nearest neighbors
Needleman-Wunsch nw Dynamic Programming Bioinformatics 12000x12000 points
Particle Filter particlefilter Structured Grid Medical Imaging 1M points
PathFinder pathfinder Dynamic Programming Grid Traversal 100000x1000 2D grid
SRAD srad Structured Grid Image Processing 512x512 image
Streamcluster streamcluster Dense Linear Algebra Data Mining 65536 points 256 dimensions

Fig. 2. Distribution of the warnings generated by DPCT.

Table 2
Warnings given by DPCT tool.

Warning code Number of appearances

DPCT1000 4
DPCT1001 4
DPCT1003 171
DPCT1004 1
DPCT1005 15
DPCT1009 45
DPCT1010 38
DPCT1012 20
DPCT1019 1
DPCT1022 2
DPCT1024 2
DPCT1026 8
DPCT1027 2
DPCT1035 9
DPCT1039 7
DPCT1049 75
DPCT1051 2
DPCT1059 14
DPCT1064 2
DPCT1065 29
DPCT1072 1
DPCT1077 9
Total 461

The second group of warnings appears in every kernel invoca-
tion and simply reminds the user that the targeted device might 
have a smaller limit for the workgroup size. This is usually the 
case when moving to a less powerful GPU.

Of the rest, it should be noted that the warnings related to 
macros and device information are the ones that require the most 
manual intervention from the user. It is also worth mentioning 
that, as the migrated code is a benchmark, the number of time 
measurement related warnings is much higher than it would be in 
other codes.

In the end, twenty out of the twenty three benchmarks were 
successfully migrated without major manual intervention, result-
ing in a success rate of almost 87%. Table 3 shows the benchmarks 
that were successfully migrated with a moderate developer inter-
vention.

After the automatic migration, some manual modifications of 
the code were necessary, always addressing the warning messages 
generated by the tool. As a summary, below we illustrate the main 
modifications performed:

• The workgroup size might need to be adjusted depending on 
the device used.
123



G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129
Table 3
DCPT migration of Rodinia benchmark.

Benchmark Successful migration

b+tree Yes
backdrop Yes
bfs Yes
cfd Yes
dwt2d Yes
gaussian Yes
heartwall Yes
hotspot Yes
hotspot3D Yes
huffman Yes
hybridsort No
kmeans No
lavaMD Yes
leukocyte Yes
lud Yes
mummergpu No
myocyte Yes
nn Yes
nw Yes
particlefilter Yes
pathfinder Yes
srad Yes
streamcluster Yes

• When the block size is specified with a macro and used to cre-
ate a sycl::range, the expanded value should be changed back 
to the macro. When this is the case, the tool leaves the origi-
nal macro commented.

• As SYCL uses exceptions instead of error codes, every check is 
modified by the tool in order to always succeed. Proper error 
checking might be added manually with try-catch construc-
tions.

• The device selection logic must be manually reviewed as all 
DPC++ devices (not only the GPU) can be used to submit tasks.

• Many CUDA device properties do not have a SYCL equivalent, 
are slightly different or are not currently supported. On many 
occasions, this will cause the retrieval of incorrect values. For 
this reason, the user must manually review and correct the 
information queries to the device.

• SYCL only supports a 4-channel image format, so the code 
needs to be manually adjusted. An example of the modifica-
tions needed is given in the Intel DPC++ Compatibility Tool 
Developer Guide and Reference [10].

• When a function call is used in a macro definition, it might 
need to be migrated differently depending on how the macro 
is called. All uses of this macro must be reviewed.

• If a macro redefines a standard SYCL type, it may cause con-
flicts. The Developer Guide and Reference [10] suggests that 
the user renames the macro.

Other problems found that can be solved:

• CL_INVALID_IMAGE_SIZE: this is a known issue that occurs 
when the info::device::image2d_max_width value of the device 
is less than the width of the image passed into the kernel. 
There is no solution for GPUs yet, although it will be addressed 
soon for CPUs.6

• The latest CUDA version supported is 11.1. This causes mi-
nor problems with the intercept-build tool as it will not find 
certain libraries. Re-executing the command with the –append
flag solves the error, effectively fixing the problem.

6 DPCT Key Features Releases: https://www.intel .com /content /www /us /en /
developer /articles /release -notes /release -notes -for-intel -dpcpp -compatibility-tool -
2021.html.
124
• A segmentation fault was observed on the particlefilter bench-
mark. This can be solved with a memory initialization.

4.2. Performance results

The results obtained during the benchmarking phase are dis-
cussed in this subsection. We analyze the performance of the na-
tive CUDA vs DPC++ Toolchain and perform a comparison across 
different hardware architectures via the DPC++ compiler available 
in Intel’s Base Toolkit.

4.2.1. Experimental environment
The software used for the experimental phase is based on the 

latest commercial version of Intel’s oneAPI that is currently avail-
able, namely 2021.4. Regarding CUDA, the Nvidia GPU device uses 
the 11.4 version.

Table 4 shows the main characteristics of the CPU devices we 
used. We chose two systems hosted in the Intel’s Devcloud, which 
were based on Intel Core i9-10920X and Intel Xeon E-2176G pro-
cessors. We would like to point out that in the third system we 
only evaluate the Nvidia GPU, so no performance measurement is 
presented for the CPU.

Regarding the GPU devices (see Table 5), we chose two of Intel’s 
GPUs available in the Intel DevCloud (the integrated UHD P630 
GPU and the DG1 connected via the PCIe bus), and a personal com-
puter equipped with an Nvidia GT 1030 GPU.

4.2.2. Performance of the memory operations
In order to compare the performance of the memory operations 

we considered the overhead of memory management on the de-
vice and the cost of data transfer between the host and the device 
memories. This experiment evaluates the original CUDA version 
against the migrated DPC++ versions of the said benchmarks us-
ing the same GPU (Nvidia GT 1030).

Fig. 3 shows the average time spent (in seconds) on each mem-
ory operation across all the timed benchmarks. The comparison 
uses the average times for all the benchmarks. Although DPC++ 
achieves a similar performance on these operations with respect 
to CUDA, it introduces a series of CUDA API calls for context and 
event management (among others) that were not needed by the 
original CUDA program, and this introduces a slight overhead of 
up to a few milliseconds, depending on the specifics of the appli-
cation.

4.2.3. Performance evaluation: native CUDA vs DPC++ on Nvidia GPUs
Figs. 4 and 5 show the time employed for native CUDA and 

DPC++ ported code on the Nvidia GT 1030. For the sake of visu-
alization, we split the results into two charts. Fig. 4 presents the 
time employed in the tests that took less than a second, and Fig. 5
shows the same for those tests that took more than a second. In 
addition, both figures use a log representation on the time axis to 
facilitate the interpretation of the results.

While some of the migrated applications achieved very similar 
performance to the original CUDA, others display a considerable 
overhead, varying from 25% to 190%. However, considering that 
many of the tests finish in less than a second, we take a deeper 
look at the tests in Fig. 5, because the profiling tools usually in-
troduce overhead in the execution time, and this could cause a 
significant variation in the short time tests. In those cases, we use 
the Nvidia Visual Profiler [15] to explore the difference between 
the CUDA and DPC++ versions.

Regarding the cfd/euler3d test, it shows a significant time degra-
dation, performing 32% (CUDA 10.8 s, DPC++ 15.9 s) worse in 
DPC++. Using the profiler tool, we found that while the main ker-
nel in CUDA spends 45% of the time on memory operations, its 
DPC++ counterpart spends 75% of the time on those operations. 

https://www.intel.com/content/www/us/en/developer/articles/release-notes/release-notes-for-intel-dpcpp-compatibility-tool-2021.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/release-notes-for-intel-dpcpp-compatibility-tool-2021.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/release-notes-for-intel-dpcpp-compatibility-tool-2021.html


G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129

Fig. 3. The mean of the time (s) of all benchmarks involved on the memory operations.

Fig. 4. Time comparison between CUDA and DPC++ in tests that account for less than one second.

Fig. 5. Time comparison between CUDA and DPC++ in tests that account for more than one second.
125



G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129

Table 4
Specifications of the CPU devices used in the experimentation stage.

System n. OS CPU Cores Cache Perf. Peak RAM Memory BW

1 Ubuntu Intel 12 L1-64 KB per core 672 94
18.04.3 Core (×2) L2-1 MB per core GFLOPS GB/s
LTS i9-10920X HT L3-19.25 MB shared (FP32)

2 Ubuntu Intel 6 L1-384 KB per core 355.2 41.6
18.04.3 Xeon (×2) L2-1.5 MB per core GFLOPS GB/s
LTS E-2176G HT L3-12 MB shared (FP32)

3 Ubuntu Intel 8 L1-64 KB per core 371.2 45.8
20.04 Core (×2) L2-256 KB per core GFLOPS GB/s
LTS i7-10700 HT L3-16 MB shared (FP32)

Table 5
Specifications of the GPUs devices used in the experimentation stage.

System n. SW GPU Cores Driver Perf. Peak RAM Memory BW

1 oneAPI Intel 24 i915 480 41.6
2021.4 UHD EUs 21.33.20678 GFLOPS GB/s

P630 (FP32)
2 oneAPI Intel 96 i915 2534 62.26

2021.4 IRIS Xe EUs 21.33.20678 GFLOPS GB/s
MAX DG1 (FP32)

3 CUDA NVIDIA 384 1127 48.0
11.4 GT CUDA 470.42.01 GFLOPS GB/s

1030 cores (FP32)
The memory profiler shows that the DPC++ kernel suffers from 
more write operations into the GPU main memory than the native 
CUDA version, causing higher contention on the memory interface.

With regards to the particlefilter tests, there was a ≈42% drop 
in performance in the migrated code (CUDA 268.2 s vs DPC++ 
470.9 s). The Nvidia profiler reveals more instructions (2.3× more) 
in the DPC++ version, with a significant increment in the number 
of miscellaneous CUDA instructions.

In the case of the nw test, there was a 99.3% of performance 
drop in the DPC++ version (CUDA 7.7e-03 s vs DPC++ 1.15 s). The 
main cause is the under-utilization of the GPU resources. While the 
CUDA version creates warps of 32 threads, the DPC++ just uses 24. 
When focusing on the active threads, the tool reveals that CUDA 
uses 1024 threads vs 768 for the DPC++ version. The profiling re-
port shows that the GPU utilization factor is only ≈36% in the 
DPC++ version. By contrast, the native CUDA code reaches a GPU 
utilization of up to ≈50%.

4.2.4. Performance of the kernel execution on CPUs
In this subsection we analyze the performance regarding porta-

bility of the Rodinia benchmark suite generated by Intel’s DPCT 
compatibility tool in comparison with the parallelized benchmarks 
obtained with OpenMP [6]. We would like to point out that the lat-
est (3.1) version of the OpenMP Rodinia benchmarks was used, and 
the source codes was instrumented to measure the kernel times.

Figs. 6 and 7 summarize the execution times of the Rodinia 
suite. The processors used in the comparison corresponded to a 
desktop computer based on the Intel Core i9-10920X processor and 
a server based on the Intel Xeon E-2176G processor.

Fig. 6 shows the performance results for the lightweight Rodini-
a’s benchmarks that take less than one second in our platforms. 
OpenMP versions clearly outperform the DPC++ counterparts. A 
profilining with Intel vTune reveals huge overheads in the back-
prop, myocyte, nw, srad_v1 and srad_v2 benchmarks. Those over-
heads appear at the end of the parallel_for regions, where the 
DPC++ implementation uses an atomic section implemented at low 
level with a futex lock.

On the contrary, for larger workloads such as those shown in 
Fig. 7, the DPC++ versions outperformed the OpenMP counterparts 
in most cases. The DPC++-based benchmarks were up to 4 times 
faster than the OpenMP equivalents.
126
4.2.5. Performance of the kernel execution on Intel GPUs
The following subsection addresses the performance results on 

two Intel GPUs: an integrated GPU (UHD P630) and a discrete GPU 
(Intel Iris Xe MAX DG1).

Once again, we split the execution times into those that take 
less than a second (Fig. 8) and those that lasted more than a sec-
ond (Fig. 9). Most benchmarks (20/21) run successfully in the P630 
GPU but the DG1 does not support double-precision arithmetic and 
cannot run 10 benchmarks.

As expected, the Intel DG1 performed better than the integrated 
one. The average speedup achieved by the DG1 over the UHD P630 
is around ×2.4. Nevertheless, higher performance can be achieved 
in both GPUs adjusting parameters such the ndrange or the simd 
length [16].

5. Conclusions

OneAPI aims to provide a unified and straightforward program-
ming method across different heterogeneous systems, indepen-
dently of the accelerator used or the vendor, allowing high and 
low level approaches, thus facilitating the programmer’s work in 
this highly heterogeneous world we are entering.

This work has evaluated the Intel DPCT tool using the well-
known Rodinia benchmarks as a workload. The main conclusions 
from our research are the following:

• DPCT greatly streamlines the migration process from CUDA to 
oneAPI. Twenty out of the twenty three benchmarks were suc-
cessfully migrated without major developer interventions.

• Memory operations (device memory management operations 
and data transfers between host and device memories) take 
roughly the same time in the migrated and native codes.

• While some migrated applications achieved similar perfor-
mance to the original CUDA versions, others experience signif-
icant overheads (from 25% to 190%). This performance degra-
dation is caused by diverse factors that strongly depend on 
the actual benchmarks. The most important issues we found 
where a higher number of instructions (particlefilter), higher 
memory contention (cfd and euler3d) and lower hardware oc-
cupancy (nw).



G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129

Fig. 6. Performance comparison of OpenMP and DPC++. Rodinia kernel times less than one second.

Fig. 7. Performance comparison of OpenMP and DPC++. Rodinia kernel times more than one second.

Fig. 8. Time comparison on the Intel GPUs (tests taking less than one second).
127



G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129

Fig. 9. Time comparison on the Intel GPUs (tests taking more than one second).
Focusing on other relevant aspects such as performance porta-
bility on other types of devices such as CPUs or GPUs, we can 
conclude that:

• Lightweight benchmarks translated with DPCT perform poorly 
on CPUs, where OpenMP counterparts clearly outperform the 
migrated code. Synchronization issues in parallel for regions 
are the leading cause of this behavior. However, the DPCT ver-
sions are faster than the OpenMP codes for computationally-
demanding benchmarks.

• Not all benchmarks run successfully on Intel’s DG1 GPU, due 
to its lack of double-precision support. As expected, perfor-
mance results are better on the DG1 than on the integrated 
UHD P630 GPU. Nevertheless, as Rodinia benchmarks are not 
fully optimized for GPU devices, higher performance rates can 
be achieved by tuning parameters related to data-parallelism 
exploitation.

Finally, in order to facilitate the reproducibility of our exper-
iments and to encourage further comparisons, the source codes 
and log files generated in this work have been publicly released 
at https://github .com /artecs -group /rodinia -dpct -dpcpp.

CRediT authorship contribution statement

Germán Castaño: conception and design of study, acquisi-
tion of data, analysis and/or interpretation of data, drafting the 
manuscript, approval of the version of the manuscript to be pub-
lished. Youssef El Faqir El Rhazoui: acquisition of data, analy-
sis and/or interpretation of data, approval of the version of the 
manuscript to be published. Carlos García: conception and de-
sign of study, acquisition of data, analysis and/or interpretation 
of data, revising the manuscript critically for important intellec-
tual content, drafting the manuscript, approval of the version of 
the manuscript to be published. Manuel Prieto-Matias: analysis 
and/or interpretation of data, revising the manuscript critically for 
important intellectual content, drafting the manuscript, approval of 
the version of the manuscript to be published.

Declaration of competing interest

The authors certify that they have NO affiliations with or in-
volvement in any organization or entity with any financial in-
terest (such as honoraria; educational grants; participation in 
128
speakers’ bureaus; membership, employment, consultancies, stock 
ownership, or other equity interest; and expert testimony or 
patent-licensing arrangements), or non-financial interest (such 
as personal or professional relationships, affiliations, knowledge 
or beliefs) in the subject matter or materials discussed in this 
manuscript.

Acknowledgment

This paper has been supported by the Community of Madrid; 
UE FEDER and the Spanish MINECO under grants S2018/TCS-4423, 
RTI2018-093684-B-I00 and PID2021-126576NB-I00.

References

[1] B. Aktemur, M. Metzger, N. Saiapova, M. Strasuns, Debugging SYCL programs on 
heterogeneous Intel® architectures, in: Proceedings of the International Work-
shop on OpenCL, IWOCL ’20, 2020, pp. 1–10.

[2] A. Alekseenko, S. Páll, E. Lindahl, Experiences with adding sycl support to gro-
macs, in: International Workshop on OpenCL, IWOCL’21, Association for Com-
puting Machinery, New York, NY, USA, 2021, https://doi .org /10 .1145 /3456669 .
3456690.

[3] Aksel Alpay, hipSYCL implementation, https://github .com /illuhad /hipSYCL, 
2019.

[4] Apple unleashes M1, https://www.apple .com /newsroom /2020 /11 /apple -
unleashes -m1, 2020.

[5] B. Ashbaugh, A. Bader, J. Brodman, J. Hammond, M. Kinsner, J. Pennycook, R. 
Schulz, J. Sewall, Data parallel C++: enhancing SYCL through extensions for pro-
ductivity and performance, in: Proceedings of the International Workshop on 
OpenCL, IWOCL ’20, Association for Computing Machinery, New York, NY, USA, 
2020, https://doi .org /10 .1145 /3388333 .3388653.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, K. Skadron, Rodinia: 
a benchmark suite for heterogeneous computing, in: 2009 IEEE International 
Symposium on Workload Characterization (IISWC), IEEE, 2009, pp. 44–54.

[7] S. Christgau, T. Steinke, Porting a legacy CUDA stencil code to oneAPI, in: 2020 
IEEE International Parallel and Distributed Processing Symposium Workshops 
(IPDPSW), 2020, pp. 359–367.

[8] Codeplay Software, Computecpp, https://codeplay.com /products /computesuite /
computecpp, 2019.

[9] M. Costanzo, E. Rucci, C. Garcia Sanchez, M. Naiouf, Early experiences migrating 
CUDA codes to oneAPI, short papers of the 9th conference on cloud com-
puting conference, big data & emerging topics, https://doi .org /10 .35537 /10915 /
121564, 2021.

[10] DPC++ Intel® compatibility tool developer guide and reference, https://
software .intel .com /content /www /us /en /develop /documentation /intel -dpcpp -
compatibility-tool -user-guide /top .html, 2021.

[11] DPCPP CUDA examples docker image, https://github .com /Ruyk /dpcpp -cuda -
examples -docker, 2020.

[12] R. Farber, Parallel Programming with OpenACC, 1st edition, Morgan Kaufmann 
Publishers Inc., San Francisco, CA, USA, 2016.

https://github.com/artecs-group/rodinia-dpct-dpcpp
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib444037E0FEAE9527E44AF2D87EC11FE2s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib444037E0FEAE9527E44AF2D87EC11FE2s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib444037E0FEAE9527E44AF2D87EC11FE2s1
https://doi.org/10.1145/3456669.3456690
https://doi.org/10.1145/3456669.3456690
https://github.com/illuhad/hipSYCL
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://doi.org/10.1145/3388333.3388653
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibDFAF2A9739FED7A3277B57596814F4C0s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibDFAF2A9739FED7A3277B57596814F4C0s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibDFAF2A9739FED7A3277B57596814F4C0s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibD9D9730CCF49AF64E45316B3207FD494s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibD9D9730CCF49AF64E45316B3207FD494s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bibD9D9730CCF49AF64E45316B3207FD494s1
https://codeplay.com/products/computesuite/computecpp
https://codeplay.com/products/computesuite/computecpp
https://doi.org/10.35537/10915/121564
https://doi.org/10.35537/10915/121564
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html
https://github.com/Ruyk/dpcpp-cuda-examples-docker
https://github.com/Ruyk/dpcpp-cuda-examples-docker
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib531D6BDA53BC5FCB0B93B5578283C04Fs1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib531D6BDA53BC5FCB0B93B5578283C04Fs1


G. Castaño, Y. Faqir-Rhazoui, C. García et al. Journal of Parallel and Distributed Computing 165 (2022) 120–129
[13] D.B. Kirk, W.-m.W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, 1st edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, 
USA, 2010.

[14] R. Nozal, J.L. Bosque, Exploiting co-execution with oneAPI: heterogeneity from 
a modern perspective, in: Euro-Par 2021: Parallel Processing. Euro-Par 2021, 
2021.

[15] NVIDIA visual profiler, https://developer.nvidia .com /nvidia -visual -profiler, 2021.
[16] oneAPI GPU optimization guide, https://www.intel .com /content /dam /develop /

external /us /en /documents /oneapi -gpu -optimization -guide .pdf, 2021.
[17] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, X. Tian, Data 

Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems Us-
ing C++ and SYCL, Springer Nature, 2021.

[18] R. Reyes, V. Lomüller, SYCL: single-source C++ accelerator programming, in: G.R. 
Joubert, H. Leather, M. Parsons, F.J. Peters, M. Sawyer (Eds.), Parallel Comput-
ing: On the Road to Exascale, Proceedings of the International Conference on 
Parallel Computing, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK, 
in: Advances in Parallel Computing, vol. 27, IOS Press, 2015, pp. 673–682.

[19] Khronos SYCL working group, SYCL 1.2.1 specification, https://www.khronos .
org /registry /SYCL /specs /sycl -1.2 .1.pdf, 2020.

[20] The oneAPI specification, https://spec .oneapi .com/.
[21] The OpenACC specification, https://www.openacc .org/.
[22] Khronos OpenCL Working Group, The OpenCL specification, version 1.1, https://

www.khronos .org /registry /cl /specs /opencl -1.1.pdf, 2011.
[23] The OpenMP specification, https://www.openmp .org/.
[24] The triSYCL project, https://github .com /triSYCL /triSYCL, 2019.
[25] W. Yong, Z. Yongfa, W. Scott, Y. Wang, X. Qing, W. Chen, Developing medi-

cal ultrasound imaging application across gpu, fpga, and cpu using oneapi, in: 
International Workshop on OpenCL, IWOCL’21, Association for Computing Ma-
chinery, New York, NY, USA, 2021, https://doi .org /10 .1145 /3456669 .3456680.

Germán Castaño received the degree in computer 
science at Complutense University of Madrid last 2021 
June. His final degree project dealt with the use of the 
Intel’oneAPI toolkit for DPCT code migration.
129
Youssef El Faqir El Rhazoui is a PhD candidate 
at Complutense University of Madrid studying com-
puter science. His research includes parallel computa-
tion, and GPGPU algorithm design for massively par-
allel simulations. Actually he is focuses on comparing 
SYCL and DPC ++ with other paradigms such as CUDA 
or OpenMP of heterogeneous programming under the 
prism of performance and programmability.

Carlos García received the B.S. degree in physics 
and the Ph.D. degree in computer science from the 
Universidad Complutense de Madrid (UCM), Madrid, 
Spain, in 1999 and 2007, respectively. He is currently 
an Associate Professor with UCM. He has authored 
more than 50 research papers, including more than 
25 peer-reviewed articles in international journals. He 
has frequently served as a referee for international 
journals on image processing and high-performance 

computing. His research interests include high- performance computing 
for heterogeneous parallel architecture, including efficient parallel ex-
ploitation on modern devices such as multicore, many- core, GPUs, and 
FPGAs.

Manuel Prieto-Matias received the Ph.D. degree in 
computer science from the Complutense University of 
Madrid (UCM), Madrid, Spain, in 2000. He is currently 
a Full Professor with the Department of Computer 
Architecture, UCM. He has co-written numerous ar-
ticles in journals and for international conferences in 
the field of parallel computing and computer architec-
ture. His research interests include parallel computing 
and computer architecture. Most of his activities have 

focused on leveraging parallel computing platforms and on complexity-
effective microarchitecture design. His research addresses emerging issues 
related to heterogeneous systems, memory hierarchy performance, and 
energy-aware computing, with a special emphasis on the interaction be-
tween the system software and the underlying architecture.

http://refhub.elsevier.com/S0743-7315(22)00072-7/bib7878CA046BFC3C0D8BAD3AD313A8BB9Ds1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib7878CA046BFC3C0D8BAD3AD313A8BB9Ds1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib7878CA046BFC3C0D8BAD3AD313A8BB9Ds1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib3E6CC1EB3C5C80946A944F07370D676Ds1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib3E6CC1EB3C5C80946A944F07370D676Ds1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib3E6CC1EB3C5C80946A944F07370D676Ds1
https://developer.nvidia.com/nvidia-visual-profiler
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-gpu-optimization-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-gpu-optimization-guide.pdf
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib1DAAD40B4259B476146C06619FF0CF63s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib1DAAD40B4259B476146C06619FF0CF63s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib1DAAD40B4259B476146C06619FF0CF63s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib5E747187C695BD24C009AB1005A28323s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib5E747187C695BD24C009AB1005A28323s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib5E747187C695BD24C009AB1005A28323s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib5E747187C695BD24C009AB1005A28323s1
http://refhub.elsevier.com/S0743-7315(22)00072-7/bib5E747187C695BD24C009AB1005A28323s1
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://spec.oneapi.com/
https://www.openacc.org/
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.openmp.org/
https://github.com/triSYCL/triSYCL
https://doi.org/10.1145/3456669.3456680

	Evaluation of Intel’s DPC++ Compatibility Tool in heterogeneous computing
	1 Introduction
	2 Related work
	2.1 The Intel DPC++ compiler
	2.2 The Intel DPC++ compatibility tool

	3 Benchmarking methodology
	3.1 Rodinia benchmark
	3.2 Code instrumentation
	3.3 Benchmarking native CUDA vs DPC++ toolchain
	3.4 Performance comparison on other devices

	4 Experiments
	4.1 Migration phase
	4.2 Performance results
	4.2.1 Experimental environment
	4.2.2 Performance of the memory operations
	4.2.3 Performance evaluation: native CUDA vs DPC++ on Nvidia GPUs
	4.2.4 Performance of the kernel execution on CPUs
	4.2.5 Performance of the kernel execution on Intel GPUs


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


