1
${ }_{43}$ Consider a finite set of n players $N=\{1,2, \ldots, n\}$. We will denote subsets of N by capital letters ${ }_{44}^{43} A, B, \ldots$ and by $\mathcal{P}(N)$ the set of parts of N. A game v is a function $v: \mathcal{P}(N) \rightarrow \mathbb{R}$ satisfying $45 v(\emptyset)=0$. The value $v(A)$ represents the minimal worth coalition A can obtain if all players in A 46 agree to cooperate, no matter what players outside A might do.
47 In general, several additional conditions can be imposed on function v. One of the most natural 48 49 conditions is monotonicity in v, i.e. $v(A) \leq v(B)$ if $A \subset B$. This means that if players add to a 50coalition, the corresponding worth increases. We will denote by $\mathcal{M} \mathcal{G}(N)$ the set of all monotone games $51_{\text {on }} N$. Other popular conditions are additivity, supermodularity, and many others (see (Grabisch, 52 2016)).
54 On the other hand, it could be the case that some coalitions fail to form. Thus, v cannot be ${ }^{55}$ defined on some of the elements of $\mathcal{P}(N)$ and we have a subset $\mathcal{F C}(N)$ of $\mathcal{P}(N)$ containing all feasible ${ }_{57}$ coalitions. By a similar argument, coalitions with a fixed value may be left outside $\mathcal{F C}(N)$. From $58^{\text {now }}$ on, we will not include \emptyset in $\mathcal{F C}(N)$. Usually, $\mathcal{F C}(N)$ has a concrete structure.
$59{ }^{*}$ This paper has been supportesd by the Ministry of Economy and Competitiveness of Spain under Grant PGC2018-$61095194-B-100$ and by the Interdisciplinary Mathematical Institute of Complutense University.
$62{ }^{\dagger}$ Corresponding author

Order cones: A tool for deriving k-dimensional faces of cones of subfamilies of monotone games*

P. García-Segador
National Statistics Institute
Paseo de la Castellana, 183
28071 Madrid (Spain)
pedro.garcia.segador@ine.es
ORCID: 0000-0001-5079-4900

P. Miranda ${ }^{\dagger}$
Complutense University of Madrid
Plaza de Ciencias, 3
28040 Madrid (Spain)
pmiranda@mat.ucm.es
ORCID: 0000-0002-4931-3636

Abstract

In this paper we introduce the concept of order cone. This concept is inspired by the concept of order polytopes, a well-known object coming from Combinatorics. Similarly to order polytopes, order cones are a special type of polyhedral cones whose geometrical structure depends on the properties of a partially ordered set (brief poset). This allows to study these properties in terms of the subjacent poset, a problem that is usually simpler to solve. From the point of view of applicability, it can be seen that many cones appearing in the literature of monotone TU-games are order cones. Especially, it can be seen that the cones of monotone games with restricted cooperation are order cones, no matter the structure of the set of feasible coalitions.

Keywords: Monotone games, restricted cooperation, order polytope, cone.

Introduction

1
2
3 4identified to the point of $\mathbb{R}^{|\mathcal{F C}(N)|}$ given by $\boldsymbol{v}:=(v(A))_{\{A: A \in \mathcal{F C}(N)\}}$. With some abuse of notation, we
 $7^{\text {a given condition (monotonicity, supermodluarity }, \ldots \text {) and/or such that the set of feasible coalitions }}$
 $9 H e n c e$, it can be given in terms of its vertices and extremal rays. Following this line, many papers ${ }^{10}$ have been devoted to solve the problem of obtaining different geometrical aspects of these polyhedra 12 for particular cases (see e.g. (Grabisch and Kroupa, 2019; Shapley, 1971)).
13 Continuing this line, in this paper, we introduce the concept of order cone. Order cones are 14 defined in terms of a poset and its structure relays on the structure of the corresponding poset. ${ }_{16}^{15}$ Besides, we will show that order cones are deeply related to order polytopes. As many results are 16 17 known for order polytopes, it is possible to translate such properties to order cones.
18 As it will become clear below, order cones are a class of cones including the cones of monotone 19 games with restricted cooperation, no matter which the set $\mathcal{F C}(N)$ is. Thus, order cones allow to $21^{\text {study }}$ this set of cones in a general way. For example, we will characterize the set of extremal rays 22of the cone $\mathcal{M} \mathcal{G}(N)$, a problem that to our knowledge has not been solved yet (Grabisch, 2016).
23 Interestingly enough, order cones can be applied to other situations different to monotone games 24 with restricted cooperation. As an example dealing with such a case, we study the cone of monotone 25 -symmetric games. This also adds more insight about the relationship between order cones and 27 order polytopes.
28 The rest of the paper goes as follows: In next section we introduce the basic concepts and results 30^{29} about cones and order polytopes. Next, we define order cones and study some of its geometrical 31properties. We then apply these results for some special cases of monotone games with restricted 32cooperation. We finish with the conclusions and open problems.

33
34

${ }_{36}^{35} 2$ Basic results

37
38In order to be self-contained and fix the notation, let us start introducing some concepts and results 39that will be needed throughout the paper.

$$
\begin{equation*}
\mathcal{C}:=\{\boldsymbol{x}: A \boldsymbol{x} \leq \boldsymbol{0}\}, \tag{1}
\end{equation*}
$$

${ }^{54}$ for some matrix $A \in \mathcal{M}_{m \times n}$ of binding conditions. Two polyhedral cones are affinely isomorphic ${ }_{56}{ }^{\text {if }}$ there is a bijective affine map from one cone onto the other. Given a polyhedral cone \mathcal{C} and $57 \boldsymbol{x} \in \mathcal{C}, \boldsymbol{x} \neq \mathbf{0}$, the set $\{\alpha \boldsymbol{x}: \alpha \geq 0\}$ is called a ray. In general we will identify a ray with the point $58 \boldsymbol{x}$. Notice also that for polyhedral cones, all rays pass through $\mathbf{0}$. Point \boldsymbol{x} defines an extremal ray ${ }_{60}{ }_{60}$ if $\boldsymbol{x} \in \mathcal{C}$ and there are $n-1$ binding conditions for \boldsymbol{x} that are linearly independent. Equivalently, \boldsymbol{x} ${ }_{61} 1^{\text {cannot }}$ be written as a convex combination of two linearly independent points of \mathcal{C}.

1
2
3 4 5
6Theorem 1. Let \mathcal{P} be a convex polyhedron on \mathbb{R}^{n}. Let us denote by $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{r}$ the vertices of P and ${ }_{8}^{7}$ by $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{s}$ the vectors defining extremal rays. Then, for any $\boldsymbol{x} \in P$, there exists $\alpha_{1}, \ldots, \alpha_{r}$ such that ${ }_{9} \alpha_{1}+\ldots+\alpha_{r}=1, \alpha_{i} \geq 0, i=1, \ldots, r$, and $\beta_{1}, \ldots, \beta_{s}$ such that $\beta_{i} \geq 0, i=1, \ldots, s$, satisfying that

$$
\boldsymbol{x}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{x}_{i}+\sum_{j=1}^{s} \beta_{j} \boldsymbol{v}_{j}
$$

${ }_{20}^{19}$ Corollary 1. For a polyhedral cone \mathcal{C} whose extremal rays are defined by $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{s}$, any $\boldsymbol{x} \in \mathcal{C}$ can 21 be written as

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 cones.

- \mathcal{C} is pointed.
- \mathcal{C} contains no line.
- $\mathcal{C} \cap(-\mathcal{C})=\mathbf{0}$.
of (1) defining \mathcal{P}.

for some set $I \subseteq\{1, \ldots, m\}$

$$
\boldsymbol{x}=\sum_{j=1}^{s} \beta_{j} \boldsymbol{v}_{j}, \quad \beta_{j} \geq 0, j=1, \ldots, s
$$

Consequently, in order to determine the polyhedral cone it suffices to obtain the extremal rays.
We will say that a cone is pointed if $\mathbf{0}$ is a vertex. The following result characterizes pointed

Theorem 2. For a polyhedral cone \mathcal{C} the following statements are equivalent:

Finally, in this paper we will deal with the problem of obtaining the faces of order cones. Rememer that given a polyhedron $\mathcal{P} \subseteq \mathbb{R}^{n}$, a non-empty subset $\mathcal{F} \subseteq \mathcal{P}$ is a face if there exist $\boldsymbol{v} \in \mathbb{R}^{n}, c \in \mathbb{R}$

We denote this face as $\mathcal{F}_{\boldsymbol{v}, c}$. The dimension of a face is the dimension of the smallest affine space containing the face. A common way to obtain faces is turning into equalities some of the inequalities

Theorem 3. (Cook et al., 1988) Let $A \in \mathcal{M}_{m \times n}$. Then any non-empty face of $\mathcal{P}=\{\boldsymbol{x}: A \boldsymbol{x} \leq \boldsymbol{b}\}$

$$
\begin{aligned}
\sum_{j} a_{i j} x_{j} & =b_{i} \text { for all } i \in I \\
\sum_{j} a_{i j} x_{j} & \leq b_{i} \text { for all } i \notin I
\end{aligned}
$$

1
2
3 4 yhedron.
Let us now recall the basic results about order polytopes. Consider a poset (P, \preceq), or P for short, ${ }_{7}$ with p elements. Elements of P are denoted x, y and so on. We will say that x is covered by y, 8denoted $x \lessdot y$, if $x \preceq y$ and there is no $z \in P \backslash\{x, y\}$ such that $x \prec z \prec y$. A subset $F \subseteq P$ is a filter 9if $x \in F$ and $x \prec y$ implies $y \in F$. We will denote by $\mathcal{F}(P)$ the set of filters of P. It is well-known 11_{11} that $(\mathcal{F}(P), \subseteq)$ is a distributive lattice (Davey and Priestley, 2002). Posets are usually represented 12 through Hasse diagrams. A poset is connected if the corresponding Hasse diagram is a connected 13graph.
14 For any poset, it is possible to define a polytope on \mathbb{R}^{p}, called the order polytope of P.
15
${ }_{17}^{16}$ Definition 1. (Stanley, 1986) Given a poset (P, \preceq), we associate to P a polytope $\mathcal{O}(P)$ over \mathbb{R}^{p}, ${ }_{18}$ called the order polytope of P, formed by the p-uples f of real numbers indexed by the elements of $19 P$ satisfying 62 and $\boldsymbol{v}_{F_{2}}$ are adjacent to each other if and only if $F_{1} \subset F_{2}$ and $F_{2} \backslash F_{1}$ is a connected subposet of P.

$$
\boldsymbol{v}_{F}(x):= \begin{cases}1 & \text { if } x \in F \\ 0 & \text { otherwise }\end{cases}
$$

Consequently, $\mathcal{O}(P)$ is a 0/1-polytope. Moreover,

$$
\mathcal{O}(P)=\operatorname{Conv}\left(\boldsymbol{v}_{F}: F \subseteq P \text { filter }\right),
$$

1
2
3 4 p 5 this, we need to consider the poset
6
7
8 9 ${ }^{9}{ }^{\text {where }}$ we have added to P a minimum \perp and a maximum \top. Then, $\mathcal{O}(P)$ is equivalent to the 11polytope given by
12
13 $19 x \lessdot y$. Therefore, we can associate faces to partitions $\left\{B_{1}, \ldots, B_{k}\right\}$ of \hat{P} in a way such that the face is ${ }^{21}$ the set of functions f such that $f(x)=f(y)$ for all x, y in the same block. However, not any partition 22 defines a face. A partition $\left\{B_{1}, \ldots, B_{k}\right\}$ is connected if B_{i} is connected as a subposet of \hat{P}. Defining $23 B_{i} \prec B_{j}$ if there exists $x \in B_{i}, y \in B_{j}$ such that $x \preceq_{P} y$, we say that the partition is compatible if \preceq 24 is antisymmetric. Finally, the partition is closed if for $i \neq j$, there exists $g \in \mathcal{O}(P)$ constant in each ${ }_{26}^{25}$ block such that $g\left(B_{i}\right) \neq g\left(B_{j}\right)$. Now, the following holds.

28Theorem 5. A closed partition of \hat{P} defines a face of $\mathcal{O}(P)$ if and only if it is compatible and 29 connected.
30
31 32 check if these conditions on the partition hold. For faces of small dimension, we can solve the problem $34 i n$ another way. Note that any face can be defined equivalently as the convex hull of the vertices in 35the face. Hence, a face can be associated to its vertices. However, not every set of vertices defines 36 a face. Thus, it suffices to obtain a condition for a subset of vertices to define a face. On the other 38 hand, in order polytopes vertices are related to filters of P. If we focus on the set of filters defining 39a face, the following characterization arises.
40
41Theorem 6. (Friedl, 2017) Let $L \subseteq \mathcal{F}(P)$. Then, L determines a face if and only if L is an ${ }_{42}$ embedded lattice of $\mathcal{F}(P)$, i.e. for any two filters $F, F^{\prime} \in \mathcal{F}(P)$
43
44
45
46
47

${ }_{49}^{48} 3$ Order cones

${ }_{51}^{50}$ Let us now turn to the concept of order cones. The idea is to remove the condition $f(a) \leq 1$ from 52Definition 1. Thus, the resulting set is no longer bounded. This is what we will call an order cone. ${ }_{54}^{53}$ Formally,
54
${ }_{56}^{55}$ Definition 2. Let P be a finite poset with p elements. The order cone $\mathcal{C}(P)$ is formed by the 57 -tuples f of real numbers indexed by the elements of P satisfying

$$
J \cup J^{\prime}, J \cap J^{\prime} \in L \Leftrightarrow J, J^{\prime} \in L
$$

i) $0 \leq f(x)$ for every $x \in P$,
ii) $f(x) \leq f(y)$ whenever $x \preceq y$ in P.

1
2
3 $4 \mathbb{R}^{2^{n}-1}$ is an order cone with respect to the poset $P=\mathcal{P}(N) \backslash\{\emptyset\}$ with the partial order given by ${ }^{5} A \prec B \Leftrightarrow A \subset B$. Another example is given at the end of the section.
${ }_{7}$ The name order cone is consistent, as next lemma shows.
8
${ }_{9}$ Lemma 1. Given a finite poset P, then $\mathcal{C}(P)$ is a pointed polyhedral cone.
10
${ }_{11}$ Proof. It is a straightforward consequence of the definition that $\mathcal{C}(P)$ is a polyhedron. Let us then 12show that it is indeed a cone. For this, take $f \in \mathcal{C}(P)$ and consider $\alpha f, \alpha \geq 0$. For $x \preceq y$ in P, we ${ }_{14}^{13}$ have $f(x) \leq f(y)$ and thus, $\alpha f(x) \leq \alpha f(y)$. Hence $\alpha f \in \mathcal{C}(P)$ and the result holds.
14 Moreover, as $f(x) \geq 0, \forall x \in P, f \in \mathcal{C}(P)$, it follows that $\mathcal{C}(P) \cap-(\mathcal{C}(P))=\{\mathbf{0}\}$, and by Theorem 162, $\mathcal{C}(P)$ is a pointed cone.
17
18
19
20
21
22
23
24
25Proof. If $f \in \mathcal{O}(P)$, it follows that for $x, y \in P, x \prec y$, it is $0 \leq f(x) \leq f(y)$. Thus, $f \in \mathcal{C}(P)$.
26 On the other hand, consider a cone \mathcal{C} such that $\mathcal{O}(P) \subset \mathcal{C}$. For $f \in \mathcal{C}(P)$, and $\alpha>0$ small ${ }_{28}^{27}$ enough, we have $\alpha f \in \mathcal{O}(P) \subset \mathcal{C}$. Then, $\frac{1}{\alpha} \alpha f=f \in \mathcal{C}$, and hence $\mathcal{C}(P) \subseteq \mathcal{C}$.
28
29
30
31
32
33
34
35
${ }_{37}{ }^{36}$ Proof. \subseteq) Consider $f \in \mathcal{C}(P) \cap\{\boldsymbol{x}: \boldsymbol{x} \leq \mathbf{1}\}$. Hence, $f(x) \leq 1, \forall x \in P$, and if $x \preceq y$, then ${ }_{38} 0 \leq f(x) \leq f(y) \leq 1$. Thereofore, $f \in \mathcal{O}(P)$.
२) For $f \in \mathcal{O}(P)$, we have $f \in \mathcal{C}(P)$ by Lemma 2 and $f(x) \leq 1, \forall x \in P$.

40
41 43 m terms of its corresponding extremal rays. Next theorem characterizes the set of extremal rays of ${ }_{44}^{43} \mathcal{C}(P)$ in terms of filters of P.
${ }_{46}^{45}$ Theorem 7. Let P be a finite poset and $\mathcal{C}(P)$ its associated order cone. Then, its extremal rays are 47given by
48
49
50
${ }_{51}^{51}$ where \boldsymbol{v}_{F} is the characteristic function of a non-empty connected filter F of P.
52
${ }_{54}^{53}$ Proof. We know that extremal rays of a pointed cone are rays passing through $\mathbf{0}$. Let us show that 55extremal rays of $\mathcal{C}(P)$ are related to vertices of $\mathcal{O}(P)$ adjacent to $\mathbf{0}$. Consider an extremal ray, that 56is given by a vector \boldsymbol{v}. We can assume that \boldsymbol{v} is such that $\boldsymbol{v} \leq \mathbf{1}$ and there exists a coordinate i such
${ }^{57}$ that $v_{i}=1$. Hence, by Lemma 3, $\boldsymbol{v} \in \mathcal{O}(P)$. Let us show that \boldsymbol{v} is indeed a vertex of $\mathcal{O}(P)$. If not, 58 there exist two different points $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in \mathcal{O}(P)$ such that

Consequently, $\mathcal{C}(P)$ has just one vertex, $\mathbf{0}$.
Definition 2 suggests a strong relationship between order polytopes and order cones. The following results study some straightforward aspects of this relation.
Lemma 2. Let P be a finite poset. Then, $\mathcal{C}(P)$ is the conical extension of $\mathcal{O}(P)$.

Indeed, the following holds:
emma 3. Consider a finite poset P. Then,

$$
\mathcal{C}(P) \cap\{\boldsymbol{x}: \boldsymbol{x} \leq \mathbf{1}\}=\mathcal{O}(P)
$$

As $\mathcal{C}(P)$ is a polyhedral cone by Lemma 1 and according to Corollary 1, this cone can be given

$$
\left\{\alpha \cdot \boldsymbol{v}_{F}: \alpha \in \mathbb{R}^{+}\right\}
$$

$$
\boldsymbol{v}=\alpha \boldsymbol{w}_{1}+(1-\alpha) \boldsymbol{w}_{2}, \quad \alpha \in(0,1) .
$$

Besides, $\alpha \boldsymbol{w}_{1},(1-\alpha) \boldsymbol{w}_{2} \in \mathcal{C}(P)$. Remark that \boldsymbol{w}_{1} and \boldsymbol{w}_{2} are linearly independent because 4there exists a coordinate i such that $v_{i}=1$. Consequently, \boldsymbol{v} does not define an extremal ray, a $5^{\text {contradiction. }}$
${ }_{7}$ Next, let us now show that \boldsymbol{v} is adjacent to $\mathbf{0}$. Otherwise, the segment $[\mathbf{0}, \boldsymbol{v}]$ is not an edge of ${ }_{8} \mathcal{O}(P)$. Consequently, $\frac{1}{2} \boldsymbol{v}$ can be written as

$$
\left\{\begin{array}{l}
a \preceq^{\prime} b \Leftrightarrow a \preceq b \quad \text { if } a, b \neq z \\
z \preceq^{\prime} b \Leftrightarrow x \preceq b \\
a \preceq^{\prime} z \Leftrightarrow a \preceq y
\end{array}\right.
$$

Similar conclusions arise when $0 \leq f(x)$ turns into an equality. Moreover, if \mathcal{F} is the face obtained by turning inequalities into equalities, the projection

$$
\begin{array}{cccc}
\pi: & \mathcal{F} & \rightarrow & \mathcal{C}\left(P^{\prime}\right) \\
& (f(a), \ldots, f(x), f(y), \ldots, f(b)) & \hookrightarrow & \hookrightarrow(f a), \ldots, f(x), f(y), \ldots, f(b))
\end{array}
$$

58 is a bijective affine map. Consequently, the following holds.
${ }_{60}^{59}$ Lemma 4. The faces of an order cone are affinely isomorphic to order cones.
Let us now turn to the problem of obtaining the faces of $\mathcal{C}(P)$. As explained in Theorem 3 , faces arise when inequalities turn into equalities. Let us consider the inequality $f(x) \leq f(y)$ for $x \lessdot y$ and assume this inequality is turned into an equality. This means that x and y identified to each other; -

Compare this result with the corresponding result for order polytopes (Stanley, 1986).
${ }_{3}^{2}$ Lemma 5. For an order cone $\mathcal{C}(P)$, the vertex $\mathbf{0}$ is in all non-empty faces. Consequently, all faces 4 can be written as $\mathcal{F}_{\boldsymbol{v}, 0}$.
5
${ }_{7}$ Proof. It suffices to show that for a non-empty face $\mathcal{F}_{\boldsymbol{v}, c}$, it is $c=0$. First, $\boldsymbol{v}^{t} \mathbf{0} \leq c$, so that $c \geq 0$.
${ }_{8}^{7} \quad$ Suppose $c>0$. As $\mathcal{F}_{\boldsymbol{v}, c}$ is non-empty, there exist $\boldsymbol{x} \in \mathcal{C}(P)$ such that $\boldsymbol{v}^{t} \boldsymbol{x}=c$. But then, ${ }_{9}^{8} \boldsymbol{v}^{t} 2 \boldsymbol{x}=2 c>c$, a contradiction. Thus, $c=0$ and $\mathbf{0} \in \mathcal{F}_{\boldsymbol{v}, 0}$.

With this in mind, Theorem 7 can be extended to characterize all the faces of the order cone, not 12only the extremal rays.
13
14Theorem 8. Let P be a finite poset and $\mathcal{C}(P)$ and $\mathcal{O}(P)$ the corresponding order cone and order ${ }_{16}{ }^{15}$ polytope, respectively. For a pair $(\boldsymbol{v}, 0)$, the set $\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}=\mathcal{C}(P) \cap\left\{\boldsymbol{x}: \boldsymbol{v}^{t} \boldsymbol{x}=0\right\}$ is a face of $\mathcal{C}(P)$ if and ${ }_{17}{ }^{\text {only }}$ if $\mathcal{F}_{\boldsymbol{v}, 0}=\mathcal{O}(P) \cap\left\{\boldsymbol{x}: \boldsymbol{v}^{t} \boldsymbol{x}=0\right\}$ is a face of $\mathcal{O}(P)$. Moreover, $\operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}\right)=\operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}\right)$.
18
${ }_{19}^{18}$ Proof. Let $\mathcal{F}_{\boldsymbol{v}, 0}$ be a face of $\mathcal{O}(P)$ containing $\mathbf{0}$ and let us show that it determines a face on $\mathcal{C}(P)$. 20First, let us show that $\boldsymbol{v}^{t} \boldsymbol{x} \leq 0, \forall \boldsymbol{x} \in \mathcal{C}(P)$. Otherwise, there exists $\boldsymbol{x}_{0} \in \mathcal{C}(P)$ such that $\boldsymbol{v}^{t} \boldsymbol{x}_{0}>0$. ${ }^{21}$ But then $\boldsymbol{v}^{t} \epsilon \boldsymbol{x}_{0}>0, \forall \epsilon>0$. As ϵ can be taken small enough so that $\epsilon \boldsymbol{x}_{0} \leq \mathbf{1}$, it follows by Lemma 3 ${ }_{23}^{22}$ that $\epsilon \boldsymbol{x}_{0} \in \mathcal{O}(P)$ and as $\boldsymbol{v}^{t} \epsilon \boldsymbol{x}_{0}>0$, and we get a contradiction. Hence, the pair $(\boldsymbol{v}, 0)$ determines a ${ }_{24}{ }^{\text {face }} \mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$ of $\mathcal{C}(P)$.
25 Consider now a face $\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$ of $\mathcal{C}(P)$. Hence, $\boldsymbol{v}^{t} \boldsymbol{x} \leq 0, \forall \boldsymbol{x} \in \mathcal{C}(P)$. But then, $\boldsymbol{v}^{t} \boldsymbol{x} \leq 0, \forall \boldsymbol{x} \in \mathcal{O}(P)$ 27^{2} and as $\mathbf{0} \in \mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$, this determines a face of $\mathcal{O}(P)$.
28 Let us now see that for each pair $(\boldsymbol{v}, 0), \operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}\right)=\operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}\right)$. First, as $\mathcal{F}_{\boldsymbol{v}, 0} \subseteq \mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$, we have $29 \operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}\right) \leq \operatorname{dim}\left(\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}\right)$.
30 On the other hand, let k be the dimension of $\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$. This implies that there are k vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ ${ }_{32}^{31}$ linearly independent in $\mathcal{F}_{\boldsymbol{v}, 0}^{\prime}$. But now, we can find $\epsilon>0$ small enough such that $\epsilon \boldsymbol{v}_{1} \leq \mathbf{1}, \ldots, \epsilon \boldsymbol{v}_{k} \leq 1$. 32
33
34
35
36
37Theorem 9. Let $L \subseteq \mathcal{F}(P)$. Then, L determines a face of $\mathcal{C}(P)$ if and only if L is an embedded 38lattice of $\mathcal{F}(P)$ containing the empty filter.
39
${ }^{40}$ Remark 1. From Theorem 8, in order to find faces of an order cone, we need to look for faces of 42 the corresponding order polytope containing $\mathbf{0}$. As previously explained in Theorem 3, if we consider 43 the expression of $\mathcal{O}(P)$ as a polyhedron, faces arise turning inequalities into equalities. Vertices in 44 the face are the vertices of the polyhedron satisfying these equalities. If we consider \hat{P}, vertex $\mathbf{0}$ 45 corresponds to function

Consequently, $\mathbf{0}$ satisfies $f(x)=f(y)$ when $y \neq \top$. Thus, we look for the faces where the 52inequalities turned into equalities do not depend on T.
53 In terms of Theorem 5, we have to look for partitions defining faces containing 0. Note that each ${ }_{55}^{54}$ block B_{i} defines a subset of P such that all elements in B_{i} attain the same value for all points in the ${ }_{56}$ face. Therefore, faces containing $\mathbf{0}$ mean that there is a block containing only \top.

58Example 1. Consider the polytope given in Figure 1 left.
59 In this case, we have three elements and both the order polytope and the cone order cone can be ${ }_{61}^{60}$ depicted in \mathbb{R}^{3}, with the first coordinate corresponding to 1 , the second one to 2 and the third to 12 , 62 see Figure 2. The cone $\mathcal{C}(P)$ is given by 3-dimensional vectors f satisfying

1
2 3 4 5 6 7

Figure 1: Example of poset P (left), his extension \hat{P} (center) and his filter lattice (right).

$$
0 \leq f(1), 0 \leq f(2), f(1) \leq f(12), f(2) \leq f(12) .
$$

Let us then explain the previous results for this poset. First, let us start obtaining the vectors defining extremal rays. According to Theorem 7, it suffices to obtain the non-empty filters that are connected subposets of P. Non-empty filters of P are:

$$
\{\{12\},\{1,12\},\{2,12\},\{1,2,12\}\} .
$$

All of them are connected subposets of P. Hence, we have 4 extremal rays, whose respective vectors are

Let us now deal with the facets. For this, consider the poset $\hat{P}=\perp \oplus P \oplus \top$ (see Figure 1 center). According to Theorems 5 and 8, the facets are given by considering one of the following equalities:

$$
f(\perp)=f(1), f(\perp)=f(2), f(1)=f(1,2), f(2)=f(1,2), f(1,2)=f(\top)
$$

Figure 2: Order polytope $\mathcal{O}(P)$ (left) and order cone $\mathcal{C}(P)$ (right).

Note that the facets containing $\mathbf{0}$ are those whose defining equality does not involve \top, as $\mathbf{0}$ satisfies any other equality. In our case, they correspond to the first four cases. Thus, we have four 4

1 2

20facets containing $\mathbf{0}$ and all of them are simplices (indeed triangles) because the corresponding polytope 21 is a chain.

For the 1-dimensional faces, we have to consider two equalities. However, we have to be careful 24 with the selected equalities because they might imply other equalities. For example, if we consider $25 f(\perp)=f(1), f(1)=f(1,2)$, this also implies $f(\perp)=f(2)$, and hence we obtain a point instead of 26 an edge. In our case, the edges containing $\mathbf{0}$ are given by the pairs of equalities defining an edge and 28 not involving \top. There are four pairs in these conditions that are

Figure 3: Subposets when turning an inequaity into an equality.

$$
\begin{gathered}
\{f(\perp)=f(1), f(\perp)=f(2)\}, \quad\{f(\perp)=f(1), f(2)=f(1,2)\} \\
\{f(\perp)=f(2), f(1)=f(1,2)\}, \quad\{f(1)=f(1,2), f(2)=f(1,2)\}
\end{gathered}
$$

Alternatively, we could use the characterization given in Theorem 9. In this case, we have to onsider the filter lattice (see Figure 1 right).

Hence, edges are given by pairs of filters defining a sublattice and involving the empty filter. Thus, he possible choices are the following pairs:

$$
\{\{\emptyset\},\{12\}\},\{\{\emptyset\},\{1,12\}\},\{\{\emptyset\},\{2,12\}\},\{\{\emptyset\},\{1,2,12\}\} .
$$

Thus, the extremal rays of $\mathcal{C}(P)$ are given by vectors $(0,0,1),(1,0,1),(0,1,1),(1,1,1)$.
For 2-dimensional faces, we have to consider all possible sublattices of height 2 and involving the filter. These sublattices are:
$\{\{\emptyset\},\{1,12\},\{1,2,12\}\},\{\{\emptyset\},\{2,12\},\{1,2,12\}\},\{\{\emptyset\},\{12\},\{1,12\}\},\{\{\emptyset\},\{12\},\{2,12\}\}$.
Hence, the 2-dimensional faces for $\mathcal{C}(P)$ are defined by vectors

$$
\{(1,0,1),(1,1,1)\},\{(0,1,1),(1,1,1)\},\{(0,0,1),(1,0,1)\},\{(0,0,1),(0,1,1)\}
$$

Notice that we cannot consider

$$
\{\{\emptyset\},\{1,12\},\{2,12\},\{1,2,12\}\},\{\{\emptyset\},\{12\},\{1,12\},\{2,12\}\}
$$

because they are not embedded sublattices.

${ }_{3}^{2} 4 \quad$ Application to Game Theory

4
5In this section, we show that some well-known cones appearing in the field of monotone games can ${ }_{7}^{6}$ be seen as order cones. Hence, all the results developed in the previous section can be applied to ${ }_{8}$ these cones. The first example deals with the general case of monotone games when all coalitions are gfeasible. We next extend this to the case where $\mathcal{F} \mathcal{C}(N) \subset \mathcal{P}(N) \backslash\{\emptyset\}$. As an example of applicability 10for subfamilies of monotone games satisfying a property on v but not on the set of feasible coalitions, $\frac{11}{12}$ we also treat the case of k-symmetric monotone games.

${ }_{15}^{14} 4.1$ The cone of general monotone games

${ }_{17}^{16}$ Consider monotone games when all coalitions are feasible, i.e. the set $\mathcal{M \mathcal { G }}(N)$. We consider $\mathcal{M} \mathcal{G}(N)$ 18 as a subset of $\mathbb{R}^{2^{n}-1}$ (we have removed the coordinate for \emptyset because its value is fixed). This set is given 19by all games satisfying $v(A) \leq v(B)$ whenever $A \subset B$. Thus, a game $v \in \mathcal{M G}(N)$ is characterized 20by the following conditions:
21
22
23
24
25
26

- $0 \leq v(A)$.
- $v(A) \leq v(B)$ if $A \subseteq B$.

Then, $\mathcal{M G}(N)=\mathcal{C}(\mathcal{P}(N) \backslash\{\emptyset\})$, where the order relation \prec on $\mathcal{P}(N) \backslash\{\emptyset\}$ is given by $A \prec B$ if 28 and only if $A \subset B$. For example, for $|N|=3$, this poset is given in Figure 4. However, little else is 29known about $\mathcal{M G}(N)$; for example, the set of extremal rays is not known and this question appears ${ }^{30} \mathrm{in}$ (Grabisch, 2016) as an open problem. We will study this set at the light of the results of the ${ }_{32}{ }^{2}$ previous section. Let us first deal with the extremal rays.
${ }_{34}^{33}$ Corollary 2. The vectors defining an extremal ray of $\mathcal{M G}(N)$ are defined by non-empty filters of ${ }_{35}^{34} \mathcal{P}(N) \backslash\{\emptyset\}$.
${ }_{37}^{36}$ Proof. Following Theorem 7 , we need to find the filters of $\mathcal{P}(N) \backslash\{\emptyset\}$ that are connected. But in this $38^{\text {case }}$, all filters except the empty filter, corresponding to vertex $\mathbf{0}$, contain N. Hence, all of them are 39connected.

41 For obtaining the number of extremal rays, note that any filter in a poset is characterized in 42 terms of its minimal elements and that these minimal elements are an antichain of the poset. For ${ }_{44}^{43}$ the boolean poset $\mathcal{P}(N)$, the number of antichains is known as the Dedekind numbers, D_{n}. The first 45 values of D_{n} are given in Table 1.
46 For $\mathcal{M} \mathcal{G}(N)$, we have to remove the antichain $\{\emptyset\}$ because the poset defining the order cone $47_{\mathrm{is}} \mathcal{P}(N) \backslash\{\emptyset\}$. Besides, the empty antichain corresponds to 0 and thus, it should be removed, too. ${ }_{49}$ Hence, the number of extremal rays of $\mathcal{M} \mathcal{G}(N)$ is $D_{n}-2$.
${ }_{51}^{50}$ Example 2. Let us compute the extremal rays of the order cone $\mathcal{M G}(N)$ where $N=\{1,2,3\}$. Note 52 that $\mathcal{C}(P)$ is a cone in \mathbb{R}^{7}. Then, considering $P=B_{3} \backslash\{\emptyset\}$, it suffices to compute the filters of P.

Removing \emptyset, we have a total of 18 extremal rays. Note that $D_{3}=20$.

41Definition 3. Let \mathcal{P} be a convex polytope and \boldsymbol{x} be a point outside the affine space generated by \mathcal{P}, 42 denoted aff (\mathcal{P}). Point \boldsymbol{x} is called apex. We define a pyramid with base \mathcal{P} and apex \boldsymbol{x}, denoted by ${ }_{44}^{43} \operatorname{pyr}(\mathcal{P}, \boldsymbol{x})$, as the polytope whose vertices are the ones of \mathcal{P} and \boldsymbol{x}.
45
46 47 way to find faces containing \boldsymbol{x} for a pyramid that we write below.
48
49Proposition 2. For a pyramid of apex \boldsymbol{x} and base \mathcal{P}, the k-dimensional faces containing \boldsymbol{x} are given 51^{50} by the $(k-1)$-dimensional faces of \mathcal{P}.
51
52
53 ${ }_{54} \boldsymbol{v}$ corresponds to the value $v(N)$.
55
${ }_{56}$ Proposition 3. Consider the poset $\mathcal{P}(N) \backslash\{\emptyset\}$ with the relation order $A \prec B \Leftrightarrow A \subset B$. Then, the 57 order polytope $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset\})$ is a pyramid with apex $\mathbf{0}$ and base $\{(\boldsymbol{x}, 1): \boldsymbol{x} \in \mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\}\}$.
58
59Proof. Note that for any non-empty filter F, it follows that $N \in F$. Then, the characteristic function
${ }_{61}{ }^{\circ}$ of any non-empty filter v_{F} satisfies $v_{F}(N)=1$. Hence, any vertex of $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset\})$ except $\mathbf{0}$ is in
$62^{\text {the }}$ hyperplane $v(N)=1$. Consequently, $\mathcal{O}(\mathcal{P} \backslash\{\emptyset\})$ is a pyramid with apex $\mathbf{0}$. Finally, the points 63
${ }_{3}^{2} \boldsymbol{v}$ of $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset\})$ in the hyperplane $v(N)=1$ satisfy $v(A) \leq v(B)$ if $A \subseteq B$. Thus, these points 4can be associated to the order polytope $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$, where the order relation \preceq is given by ${ }_{6}^{5} A \preceq B \Leftrightarrow A \subseteq B$.
7 This allows us to study the k-dimensional faces of $\mathcal{M G}(X)$ from a different point of view that ${ }_{9}$ the one of Theorems 9 and 8. In particular, as apex \boldsymbol{x} is adjacent to every vertex in the base \mathcal{P}, 10edges are given by segments $[\boldsymbol{x}, \boldsymbol{y}]$ with \boldsymbol{y} a vertex of \mathcal{P}, thus recovering the result of Corollary 2. In 11general, applying Proposition 2, the following holds.

12

${ }^{13}$ Corollary 4. The k-dimensional faces of $\mathcal{M G}(N)$ are given by the $(k-1)$-dimensional faces of ${ }_{15}^{14} \mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$.
16
17 18ities or fuzzy measures.
19
20Definition 4. A capacity on X is a map $\mu: \mathcal{P}(N) \rightarrow \mathbb{R}$, satisfying 21
22
23
24
25
26
27
${ }^{28}$ the name of fuzzy measure (Sugeno, 1974). These measures are also called "non-additive mesaures"
29(Denneberg, 1994). From the point of view of Game Theory, capacities are just normalized monotone 31games. Capacities constitute an extension of a probability distribution, where additivity is turned 32 into monotonicity and they have been applied in many different fields, as for example Decision Making 34 (see (Grabisch, 2016) and references therein). The set of capacities on a referential set N is denoted 35by $\mathcal{F} \mathcal{M}(N)$ and it can be seen (Combarro and Miranda, 2010) that

44 For this order polytope, many results are known, as for example wether two vertices are adjacent 45 or the centroid (Combarro and Miranda, 2010, 2008). Applying Corollary 4, we conclude that 247dimensional faces of $\mathcal{M \mathcal { G }}(N)$ are given by an edge of $\mathcal{F} \mathcal{M}(N)=\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$. On the other 48hand, an edge in $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$ is given by two adjacent vertices $\boldsymbol{v}_{F_{1}}, \boldsymbol{v}_{F_{2}}$. Another characterization ${ }_{50}^{49}$ specific for $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$ is given in (Combarro and Miranda, 2008). Moreover, as both F_{1}, F_{2} $51^{\text {are }}$ adjacent to $\mathbf{0}$, the following holds.

53Corollary 5. Any 2-dimensional face of $\mathcal{M G}(N)$ are defined in terms of 2-dimensional simplices 54 given by $\left\{\mathbf{0}, \boldsymbol{v}_{F_{1}}, \boldsymbol{v}_{F_{2}}\right\}$ where $F_{2} \backslash F_{1}$ is a connected subposet of $\mathcal{P}(N) \backslash\{\emptyset, N\}$.
55
${ }^{56}$ Example 3. Continuing with the previous example, the previous discussion allows to derive the 2${ }_{58}^{57}$ dimensional faces of $\mathcal{M G}(N)$, as by Corollary 4 they can be given in terms of edges of $\mathcal{O}(\mathcal{P}(N) \backslash\{\emptyset, N\})$. 59 The filters of $\mathcal{P}(N) \backslash\{\emptyset, N\}$ are:

$$
\mathcal{F}(P)=\{\emptyset,\{12\},\{13\},\{23\},\{12,13\},\{12,23\},\{13,23\},
$$

1
${ }_{13}^{12}$ Let us now treat the problem when we face a situation of restricted cooperation. Then, several 14coalitions are not allowed and we have a set $\mathcal{F C}(N) \subset \mathcal{P}(N) \backslash\{\emptyset\}$ of feasible coalitions. Many papers ${ }^{15}$ have been devoted to this subject, usually imposing an algebraic structure on $\mathcal{F C}(N)$ (see e.g. (Faigle, 161989 ; Pulido and Sánchez-Soriano, 2006; Katsev and Yanovskaya, 2013; Grabisch, 2011)). From the 18point of view of polyhedra, if a coalition is not feasible, this implies that this subset is removed from $1^{19 \mathcal{F C}}(N)$. We will denote by $\mathcal{M} \mathcal{G}_{\mathcal{F C}(N)}(N)$ the set of all monotone games whose feasible coalitions are ${ }_{21}^{20} \mathcal{F C}(N)$. Thus, a game $v \in \mathcal{M} \mathcal{G}_{\mathcal{F C}(N)}(N)$ is characterized by the following conditions:
21
22
23
24
25 28 and only if $A \subset B$.
30 Assume first that $N \in \mathcal{F C}(N)$. This is the usual situation, as most of the solution concepts on 31Game Theory assume that all players agree to form the grand coalition (see e.g. (Grabisch, 2013)). ${ }_{33}{ }^{32}$ In this case, the following holds.
${ }_{35}^{34}$ Corollary 6. If $N \in \mathcal{F C}(N)$, then the set of extremal rays of $\mathcal{M} \mathcal{G}_{\mathcal{F C}(N)}(N)$ is given by
36
37
38
${ }^{39}$ Proof. Applying Theorem 7, the set of extremal rays is given by the set of vertices \boldsymbol{v}_{F} of $\mathcal{O}(\mathcal{F C}(N))$ ${ }_{41}$ such that F is a connected filter in $\mathcal{F C}(N)$. As $N \in \mathcal{F C}(N)$, it follows that all filters are connected 42subposets of $\mathcal{F C}(N)$, so that we have as many extremal rays as vertices in $\mathcal{O}(\mathcal{F C}(N))$ different from 430. And this value is given by the number of filters minus one (for the empty filter corresponding to ${ }_{45}^{44}$ vertex 0).
45
46 47 48^{n}
49
${ }_{50}$ Proposition 4. Assume $N \in \mathcal{F C}(N)$ and consider the poset $\mathcal{F C}(N)$ with the relation order $A \prec$ $51 B \Leftrightarrow A \subset B$. Then, the order polytope $\mathcal{O}(\mathcal{F C}(N))$ is a pyramid with apex $\mathbf{0}$ and base $\{(\boldsymbol{x}, 1): \boldsymbol{x} \in$ ${ }_{53} \mathbf{O}(\mathcal{F C}(N) \backslash\{N\}\}$.
${ }_{55}^{54}$ Proof. It is a straightforward translation of the proof of Proposition 3.
56
57 58results for any order cones developed in Section 3. Alternatively, we can apply Proposition 2 and ${ }^{59}$ derive the results from the structure of the order polytope $\mathcal{O}(\mathcal{F C}(N) \backslash\{N\})$ just as it has been done ${ }_{61}^{60} \mathrm{for} \mathcal{M \mathcal { G }}(N)$. In this last case, the following holds.

Indeed, we can translate in this case the results obtained for $\mathcal{M G}(N)$. Assuming the last coordinate corresponds to subset N, the following holds.

49

- $0 \leq v(A), A \in \mathcal{F C}(N)$.
- $v(A) \leq v(B)$ if $A \subseteq B, A, B \in \mathcal{F C}(N)$.

Then, $\mathcal{M G}_{\mathcal{F C}(N)}(N)=\mathcal{C}(\mathcal{F C}(N))$, where the order relation \prec on $\mathcal{F C}(N)$ is given by $A \prec B$ if

$$
\left\{\boldsymbol{v}_{F}: \emptyset \neq F, F \text { filter of } \mathcal{F} \mathcal{C}(N)\right\}
$$

1
2
3
4
5
6
7
8 9 10
11
12Corollary 7. The k-dimensional faces of $\mathcal{M G}(\mathcal{F C}(N))$ are given by the $(k-1)$-dimensional faces $13_{\text {of }} \mathcal{O}(\mathcal{F C}(N) \backslash\{N\})$.
${ }_{16}^{15}$ Example 4. Suppose a situation with four players, and assume that the only feasible coalitions are ${ }_{17}^{16} \mathcal{F C}(N)=\{12,23,34,1234\}$. The corresponding Hasse diagram is given in Figure 5.

For this example, the non-empty filters of $\mathcal{F C}(N)$ are:

$$
\begin{gathered}
F_{1}=\{1234\}, F_{2}=\{12,1234\}, F_{3}=\{23,1234\}, F_{4}=\{34,1234\}, F_{5}=\{12,23,1234\}, \\
F_{6}=\{12,34,1234\}, F_{7}=\{23,34,1234\}, F_{8}=\{12,23,34,1234\}
\end{gathered}
$$

Thus, we have 8 extremal rays. For example, the extremal ray corresponding to F_{5} is given by 27 vector $\boldsymbol{v}=(1,1,0,1)$, where the third coordinate corresponds to subset $\{34\}$.
28 For k-dimensional faces, it just suffice to note that $\mathcal{F C}(N) \backslash\{1234\}$ is an antichain. Then, ${ }_{30}^{29} \mathcal{O}(\mathcal{F C}(N) \backslash\{N\})$ is a cube. For example, for finding 2-dimensional faces, we have to consider pairs of 31adjacent vertices of the cube $\mathcal{O}(\mathcal{F C}(N) \backslash\{N\})$ (there are 12 pairs). Similarly, for 3-dimensional faces ${ }^{32}$ we have to consider 2-dimensional faces of the cube (six cases), and there is just one 4-dimensional ${ }_{34}{ }_{34}$ face.
35
36 Now, assume $N \notin \mathcal{F C}(N)$. This situation is more tricky and needs to study each case applying ${ }_{37}$ Theorems 7 and 8 . For example, in this situation it could happen that some vertices are not adjacent 38to $\mathbf{0}$ and thus, they do not define an extremal ray. Moreover, the 2-dimensional faces are not defined ${ }_{40}^{39}$ necessarily via 2 -dimensional simplices.
41 As examples for this case, we study two situations. Assume $\mathcal{F C}(N) \cup\{\emptyset\}$ is a poset with a top 42element T and thus, we can extend all the results that we have obtained when $N \in \mathcal{F C}(N)$.
43
44Proposition 5. Consider the poset with top element $\mathcal{F C}(N) \cup\{\emptyset\}$ with the relation order $A \prec B \Leftrightarrow$ ${ }_{46}^{45} A \subset B$ and top element T. Then, the order polytope $\mathcal{O}(\mathcal{F C}(N) \backslash\{\emptyset\})$ is a pyramid with apex $\mathbf{0}$ and ${ }_{46}$ base $\{(\boldsymbol{x}, 1): \boldsymbol{x} \in \mathcal{O}(\mathcal{F C}(N) \backslash\{\top\}\}$.
48
${ }_{49}$ Corollary 8. The k-dimensional faces of $\mathcal{M G}(\mathcal{F C}(N))$ are given by the $(k-1)$-dimensional faces 50of $\mathcal{O}(\mathcal{F C}(N) \backslash\{T\})$.
51
Suppose as a second example that $\mathcal{F C}(N)$ is a union of connected posets

$$
\mathcal{F C}(N)=P_{1} \cup \ldots \cup P_{r}, \quad P_{i} \text { connected. }
$$

In this case, the only connected filters are the connected filters $F_{i} \subseteq P_{i}$. Then, we have:
 3

For example, if $\left|P_{i}\right|=1 \forall i$, then $\mathcal{F C}(N)$ is an antichain and the only connected filters are the 4singletons. Thus, there are just r extremal rays for $\mathcal{M G}(\mathcal{F C}(N))$. Indeed, note that the corresponding ${ }_{6}$ order polytope is the r-dimensional cube and thus the vertices adjacent to $\mathbf{0}$ are $\boldsymbol{e}_{i}, i=1, \ldots, r$.
${ }_{9}^{8}$ Example 5. Assume again a 4-players game and let us consider the coalitions given in Figure 6 left. 10 We have in this case a 4-dimensional cone order.

11
12
13
14
15 16
17
18
19
20
21
22
23
24
25
26 ${ }_{27} 7_{28} \hat{P}$.

29
30
31 32are given in Table 2.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 In order to obtain the facets of this order cone, we look for facets of the corresponding order ${ }_{50}{ }^{\text {polytope containing }} \mathbf{0}$ (Theorem 8). For this, we consider $\perp \oplus P \oplus \top$ (see Figure 6 right). As we are 50 looking for facets, we just turn an inequality not involving T into an equality. Then, the facets are 52given in Table 3.
53 Another way to look for extremal rays is Theorem 6. For this, we need to build the lattice of ${ }_{55}^{54}$ filters, that is given in Figure 7.
55 Then, the extremal rays are given by filters that together with \emptyset form an embedded sublattice. 57These filters are
58
59

Filter	\emptyset	123	34	34, 123	12, 123
Vertex	(0,0,0,0)	(0,0,0,1)	(0,0,1,0)	(0,0,1,1)	(1,0,0,1)
Filter	13, 123	12, 12, 123	12, 34, 123	13, 34, 123	12, 13, 34, 123
Vertex	(0,1,0,1)	(1,1,0,1)	(1,0,1,1)	(0,1,1,1)	(1,1,1,1)

Table 2: Filters and vertices of poset of Figure 6.

Vertices defining an extremal ray are those whose corresponding filter is connected. The five ertices in these conditions are written in boldface.

1

	Restriction	$f(\perp)=f(12)$	$f(\perp)=f(13)$	$f(\perp)=f(34)$	$f(12)=f(123)$	$f(13)=f(123)$
	Vertices	$(0,0,0,0)$	$(0,0,0,0)$	$(0,0,0,0)$	$(0,0,0,0)$	$(0,0,0,0)$
$\mathbf{6}$		$(0,0,0,1)$	$(0,0,0,1)$	$(0,0,0,1)$	$(1,0,0,1)$	$(0,1,0,0)$
7		$(0,0,1,0)$	$(0,0,1,0)$	$(1,0,0,1)$	$(1,0,1,1)$	$(0,1,1,1)$
8		$(0,0,1,1)$	$(0,0,1,1)$	$(0,1,0,1)$	$(1,1,0,1)$	$(1,1,0,1)$
9		$(0,1,0,1)$	$(0,1,0,1)$	$(1,1,0,1)$	$(1,1,1,1)$	$(1,1,1,1)$

Table 3: Facets of the order cone of poset of Figure 6.

Figure 7: Lattice of filters.

4.3 The cone of k-symmetric measures

${ }_{49}^{48}$ As explained before, order cones can be applied to more general situations than games with restricted 50 cooperation. In this subsection we will apply it to k-symmetric monotone games. We have chosen 51this case because the set of k-symmetric capacities with respect to a fixed partition is an order ${ }_{53}^{52}$ polytope (Combarro and Miranda, 2010).
54 The concept of k-symmetry appears in the theory of capacities as an attempt to reduce the 55 complexity (Miranda et al., 2002). The subjacent idea is that several players could act exactly in the 56 same way, so that we do not need to care about which players in these conditions are in a coalition 57 and we just need to know how many players are inside it. The key concept of k-symmetric monotone $59 g a m e$ is subset of indifference. Basically, a subset of indifference is a group of indistinguishable 60elements in terms of game v. Mathematically, this translates into
61
62
63
64
65

1
2
3
4
5 6

$$
v\left(B_{1} \cup C\right)=v\left(B_{2} \cup C\right), \forall C \subseteq X \backslash A, B_{1} B_{2} \subset A,\left|B_{1}\right|=\left|B_{2}\right|
$$

This allows us to write a coalition in terms of the number of players inside each subset of indif7ference.
8
9Lemma 6. (Miranda et al., 2002) If $\left\{A_{1}, \ldots, A_{k}\right\}$ is a partition of indifference for N, then any $C \subseteq N$ ${ }_{11}$ can be identified with a k-dimensional vector $\left(c_{1}, \ldots, c_{k}\right)$ with $c_{i}:=\left|C \cap A_{i}\right|$.
${ }_{18}^{17}$ Definition 5. We say that a game is k-symmetric with respect to the partition A_{1}, \ldots, A_{k} if this is 18
${ }_{56}$ Example 6. For $\mathcal{M G}^{1}(N)$, the set of monotone symmetric games, the corresponding order polytope 57is a chain of n elements. Thus, we have n non-empty filters F_{1}, \ldots, F_{n}, given by $F_{i}:=\{i, \ldots, n\}$ and $58 \boldsymbol{v}_{F_{i}}=(0, \ldots, 1, \ldots, 1)$. Therefore, we have n extremal rays.
69 Besides, by Theorem 4, we conclude that all vertices are adjacent to each other. Hence, we have $61\binom{n}{2}$ 2-dimensional faces and in general, the number of k-dimensional faces is $\binom{n}{k}$, for $k \geq 2$.
${ }_{3}^{2}$ Example 7. For the 2-symmetric case $\mathcal{M G}^{2}\left(A_{1}, A_{2}\right)$, it has been proved in (García-Segador and 4Miranda, 2020) that the order polytope $\mathcal{F M}^{2}\left(A_{1}, A_{2}\right)$ can be associated to a Young diagram (Bandlow, ${ }^{5}$ 2008) of shape $\boldsymbol{\lambda}=\left(\left|A_{2}\right|, \ldots,\left|A_{2}\right|\right)$.
6 Moreover, there is a correspondence between filters and staircase walks from $(0,0)$ to $\left(a_{1}, a_{2}\right)$ in $8 a\left(\left|A_{1}\right|+1\right) \times\left(\left|A_{2}\right|+1\right)$ grid (see Figure 8). Cell (i, j) represents the subset (i, j). In this sense, 9 the walk separates subsets with value 0 from subsets with value 1 (see (García-Segador and Miranda, 112020)). For example, the empty filter corresponds to the staircase walk going from $(0,0)$ to $\left(a_{1}, 0\right)$ 12 and then to $\left(a_{1}, a_{2}\right)$.

35 and by Corollary 9 the number of vertices determining an extremal ray is $\binom{a_{1}+a_{2}+2}{a_{1}+1}-1$.
36

${ }_{38}^{37}$ Conclusions

39
${ }^{40}$ In this paper we have introduced the concept of order cones. This concept is a natural extension of $42^{\text {order polytopes, a well-known object in Combinatorics with which order cones share many properties. }}$ ${ }_{43} \mathrm{We}$ have shown that all order cones are pointed, and we have derived some of their geometrical 44properties. Namely, we have characterized its k-dimensional faces. In particular, we have obtained 45 a characterization of extremal ray in terms of the corresponding subjacent poset. The results in the 47paper show that the geometrical structure of order cones can be derived from the order structure of 48the subjacent poset, thus simplifying many results.
49 We feel that order cones could be a powerful tool to study different cones appearing in Game ${ }_{51}^{50}$ Theory in a general way. As examples of applicability, in the second part of the paper, we have 52 applied these results to some special subfamilies of monotone games that satisfy the conditions of 53 order cone. We have shown that the results derived in the first part can be applied to the set of ${ }_{54}{ }^{5}$ monotone games with restricted cooperation, no matter the structure of the set of feasible coalitions. ${ }_{56}^{5}$ Then, we have studied in the first place the set of monotone games when all coalitions are allowed. 57 For this case, we have shown that it is closely related to the order polytope of capacities. In a second $58_{\text {step, }}$ we have studied this set when a set of feasible coalitions arises. We have shown that the set of ${ }_{60}{ }^{5}$ monotone games with restricted cooperation always leads to an order cone whose structure relays on $61^{\text {the }}$ poset of feasible coalitions. And we have seen that roughly speaking, there are two possible cases:
${ }_{3}$ the one with a top element (usually N) as a feasible coalition, that is very similar to the general 4case, and the case where there are several maxima, that leads to a more complicated problem.
5 Finally, we have studied an example where an order cone arises if constraints are added to the ${ }_{7}^{6}$ values of the game. This shows that order cones can be applied to situations different of monotone 8games with restricted cooperation. More concretely, we have studied the set of k-symmetric monotone 9 games.
10 We also feel that the concept of order cone could be an interesting tool for studying several families ${ }_{12}{ }^{\text {of }}$ monotone games just focusing on the subjacent poset. Note on the other hand that the order 13 relation is essential for order cones. This means that the definition fails if we remove monotonicity. ${ }_{15}$ Studying a generalization dealing with this situation seems to be a complex problem that we intend ${ }_{16}^{15}$ to study in the future.
17

18
 ${ }_{19}^{18}$ References

${ }_{22}^{21}$ Bandlow, J.2008. An elementary proof of the hook formula. The Electronic Journal of Combinatorics,

23
24
25
26
27Combarro, E. F. and Miranda, P. 2008. On the polytope of non-additive measures. Fuzzy Sets and 28 Systems, 159(16):2145-2162.
29
${ }_{31}^{30}$ Combarro, E. F. and Miranda, P. 2010. Adjacency on the order polytope with applications to the 31 32

33
34 Cook, W., Cunningham, W., Pulleyblank, W. and Schrijver, A. 1988. Combinatorial Optimization, 35 Wiley Series in Discrete Mathematics and Optimization. Wiley.
36
37 Davey, B. A. and Priestley, H. A. 2002. Introduction to lattices and order. Cambridge University 38 Press.
39
${ }_{41}^{40}$ Denneberg, D. 1994. Non-additive measures and integral. Dordrecht (The Netherlands): Kluwer 42 Academic.
43
44Faigle, U. 1989. Cores of games with restricted cooperation. Zeitschrift für Operations Research, 45 33(6):405-422.
${ }_{48}^{47}$ Friedl, T. 2017. Double posets and real invariant varieties: Two interactions between combinatorics 48 and geometry. PhD thesis, Fachbereich Mathematik und Informatik der Freien Universität Berlin50 Tokyo Institute of Technology.
51
${ }^{52}$ García-Segador, P. and Miranda, P. 2020. Applying young diagrams to 2-symmetric fuzzy measures
${ }_{3}^{2}$ Grabisch, M. 2016. Set functions, games and capacities in Decision Making, volume 46 of Theory and Decision Library. Springer.
${ }_{7}$ Grabisch, M. and Kroupa, T. 2019. The cone of supermodular games on finite distributive lattices. Discrete Applied Mathematics, 260:144-154.
${ }_{0}^{9}$ Katsev, I. and Yanovskaya, E. 2013. The prenucleolus for games with restricted cooperation. Mathematical Social Sciences, 66(1):56-65.
12
13Miranda, P., Grabisch, M. and Gil, P. 2002. p-symmetric fuzzy measures. International Journal of 14 Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (Suppl.):105-123.
15
${ }_{17}^{16}$ Pulido, M. and Sánchez-Soriano, J. 2006. Characterization of the core in games with restricted cooperation. European Journal of Operational Research, 175(2):860-869.
19
20Shapley, L. S.1971. Cores of convex games. International Journal of Game Theory, 1:11-26.
21
22Stanley, R.1986. Two poset polytopes. Discrete Comput. Geom., 1(1):9-23.
23
24Sugeno, M. 1974. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of

