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Spatial Chaos in a Chain of Coupled Bistable Oscillators
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The spatiotemporal behavior of a chain of diffusively coupled bistable oscillators is investigated. It
is stated that there is spatial disorder and its evolutionary character is demonstrated.

PACS numbers: 05.45.+b

One of the problems of modern nonlinear physics at-
tracting great attention of researchers is the investigation
of chaotic behavior of dynamical systems. The phenom-
enon of finite-dimensional spatial disorder (spatial chaos)
has been extensively studied [1—4]. Models in the form
of nonlinear partial differential equations are usually used.
Systems consisting of an infinite or a very great number of
identical coupled maps, or ordinary differential equations,
are also becoming more and more popular (see, e.g. , [5—
10]). These systems may be interpreted as coupled ac-
tive elements located in the nodes of a discrete lattice in
space, where the number of the element is a spatial coor-
dinate. Such systems are called lattice dynamical models.
Many systems in physics, chemistry, and biology can be
described as populations of coupled self-excited oscilla-
tors. In particular, this sort of system has been considered
in studies of biological oscillators [11],nonlinear synchro-
nization networks [12], arrays of optical systems [13—15],
Josephson arrays [16],etc.

Multistability (i.e. , the existence of two or more stable
states) is a fundamental property of nonlinear systems. It
is clear that when such systems are combined into one
common system the property of multistability influences
essentially not only temporal but also the spatial behavior
of this system. The general goal of this Letter is to study
the spatiotemporal dynamics of a one-dimensional lattice
model (i.e., a chain) written in the following form:

x, + x, = &[f—(x, )x, —d(x, ~

—2x, + xj+f)],
j = 1, 2, . . . , N, Xp —X~, x~+i = x~, (1)

where 0 & p, « 1 and f(x) are the parameter and the
function characterizing dynamics of an individual unit of
the chain, respectively, and d is the coupling strength.
Let us place on f(x) the condition such that, for d = 0,
each unit of the chain (1) is a bistable oscillator, namely,
f(x) = ax4 —ax2 + 1, where a ~ 10. In this case there
is a fixed point at the coordinate origin and a stable limit
cycle separated by an unstable limit cycle on the phase
plane of an individual unit of the chain (1). Thus Eqs. (1)
represent the chain of coupled bistable oscillators. The
system (1) belongs to a class of basic models of nonlinear
dynamics. Therefore such systems have been studied over
and over again. The temporal dynamics (for example,
phenomena of synchronization) has been studied in ample
detail [17]. At the present time, many papers appear in
which the primary attention is paid to spatial behavior
of lattice models, for instance [8—10]. Among these
works we note the interesting paper [8], where a nontrivial
dependence of the wave-front velocity on d was shown
by numerical means. Here we will focus on the spatial
disorder phenomenon in the chain (1).

System (1) is quasilinear and therefore it can be studied
by averaging methods. An averaging system for (1) was
obtained in [8] in the following form:

r, = pF(r;) + —pd[r, ~ cos(p, ~
—p, ) —2r, + r, +~ cos(p, +~

—
cp, )],

r j = p, d[r ~ sin(p ~
—p ) + r ~~ sin(p +~

—p )], (2)

j =1,2, . . . , N, rp = r] rN+i = rN Wp
= P]. gN+& = gN

where r, and cp, denote the amplitude and the phase
of oscillations of the jth unit, respectively, and F(r) =
2ar5 —ar3 + r. It was shown in [8] that the system (2)
is a gradient one and has a 2m-period Lyapunov function
U. Thus, the evolution of any initial conditions is such
that one of the equilibrium states of Eqs. (2) is realized.
Let us now find the coordinates of these states.

To begin, let us note that only the states which satisfy
&

—p, = 0 may be stable. This conclusion follows
from detailed analysis of the extremes of function U. It is

(3)
(4)rp = r], rN+1 rN ~

We set u, = r, ~, then (3) is rewritten as

u~+~ = r~, r~+~ = 2r~ —
u~ + d F(rz) .

—1 (5)

obvious that the solutions p, = pp satisfy this condition,
where p is an arbitrary constant, i.e., the invariant line
exists in the phase space of Eqs. (2). As far as the other
coordinates of these equilibrium states are concerned, they
are solutions of the equations

d(r, ~, —2r, + r, )) —F(r, ) = 0,
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20a
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FIG. 3. Scheme of splitting the component L2 by map T.

joining the lines I- = 0 and I + and located in the domains
A~+ and A3+. A similar process takes place for the
transformation component L2. It results in a set consisting
of 2~ 2 curves Ltt

' """ ', m; H (0, I) joining the lines
r = 0 and I +. Thus, on the one hand, the set consisting
of 2 ' curves L&

' "-' ' and L&
' "' ' is formed

as a result of N —2 iterations of L2 and L2. On the
other hand, only the portions of the trajectories of map
T which starts on L2 or L2 and get to L~ are of
interest to us. It is clear that inside the rectangle H+

L& has two monotonically increasing curves joining the
lines u = 0 and B+. That is why L& intersects both

L&
' "' ' and L&

' "" ' ' at two points. As a result
of these intersections there exist 2 points located in the
increasing portions of the curve Ltt [the points lying in
the decreasing portion of L~ are not considered because
they correspond to the maxima of the function U and
unstable solutions of Eqs. (2)]. Hence, 2~ portions of
trajectories of map T joining L2 and L& exist in the first
quadrant of the (u, r)-phase plane. The coordinates of the
points of these portions determine 2~ sets of solutions

r, = r,',j = 1, 2, . . . , N, of the system (3) and (4). Note
that there are two homogeneous solutions independent of
j: ttr) ——0) and (rj ——r*)

Thus the system (2) has 2~ equilibrium states with
the coordinates r, = rj*, p, = p, where j = 1, 2, . . . , N.
Consequently, the oscillations in the chain (1) are syn-
chronized. At this regime the distribution of oscillation
amplitudes along the chain is described by the map (5)
and can be very complex.

In order to verify and supplement some of the theoreti-
cal predictions made above we simulated Eqs. (1) numer-
ically. First, we considered a synchronization of oscilla-
tors in the chain. To this end, we integrated the system of
ten oscillators. (All numerical results were obtained with
a = 14, d = 0.07, and /L = 0.01.) The main results of the
experiments may be summarized as follows. The process
of the onset of synchronous motions may be divided into
two stages having different time scales. (i) Formation of
clusters (Here we define . a cluster as a set of oscilla-
tors in which p; =—p, for i, j belonging to one set. ) At
this stage, the oscillators are divided into some groups in
which the oscillators are phase locked. Figure 4(a) illus-
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FIG. 4. The mean phase vs the number of oscillator at three
different instants of time: (a) t = 0 (asterisks), t = II000 (dark
squares), and t = 45000 (squares); (b) t = 90000 (asterisks),
t = 220000 (dark squares), and t = 300000 (squares).

trates the process of formation of two clusters. (ii) In
teraction of clusters. At this stage, the clusters interact
with one another, as a result of which the phase differ-
ence between clusters changes. However, this difference
does not become equal to zero as it follows from the in-
vestigation of Eqs. (2). It is explained by the fact that
we observe a quasiperiodic solution of Eqs. (1) in numer-
ical experiment (po is the first component of asymptotic
expansion of a phase of this solution). In the interaction
process, clusters move very slowly. The distribution of
oscillator amplitudes essentially influences this process.
Figure 4(b) shows the phase distribution at different in-
stants of time.

We now consider the amplitude distribution. We in-
tegrated Eqs. (1) where N = 40. The initial amplitude
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FIG. 5. The dependence of amplitude of oscillations on the
number of oscillator (circles, initial; squares, final).

distributions were chosen to be sinusoidal. Our experi-
ments show that the system has high sensitivity to initial
distributions of x(t) Note .that the sensitivity is peculiar
to a large class of spatially extended systems [3]. Fig-
ure 5 illustrates a typical initial and final distribution of
amplitude of oscillations. In the course of amplitude dis-
tribution, phase singularities are formed at the values of j
corresponding to inhomogeneous amplitude distribution.

In conclusion, we summarize the results of our work.
The chain (1) represents a nonequilibrium medium, i.e.,
the processes are developing both in time and in space.
In time at the units of the chain occur oscillations with
the same frequency. The process of synchronization
takes place through clustering. The amplitude distribu-
tion of oscillations along the spatial coordinate j is de-
termined by the portions of the trajectories of map T
and can be described by a sequence of two symbols
(0 m2 m3 ~ ~ ~ mN —1) (I m2 m3 ~ mN —1)
{0,1). Moreover, the symbol "0" corresponds to a small
enough amplitude of oscillations, and the symbol "1"cor-
responds to the amplitude that is close to the amplitude
of a limit cycle of an individual oscillator that is not af-
fected by the neighboring oscillators. There are 2~ —1

such motions, hence the system (1) is a multistable one.
Since the map T has chaotic dynamics, the alternations
of the symbols "0" and "1"will be quite diverse and, for

N ~, can be described by the Bernoulli shift. Con-
sequently, the oscillations in the chain (I) are regular in
time and disordered in space. The finite spatial disorder
in the chain is evolutionary (i.e. , it can be formed out of
order) as the averaging system (2) is a gradient one.

We thank M. I. Rabinovich and M. G. Velarde for
useful discussions.
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