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Relative phase for a quantum field interacting with a two-level system
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Several quantum descriptions of the relative phase between an atomic dipole and a one-mode electromag-
netic field are examined. Positive-operator measures for this variable are derived from dipole and field-phase
formalisms. They are analyzed and compared with an operator defined by a polar decomposition. Some
examples of time evolution are discussg81050-2947@7)09407-9
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I. INTRODUCTION cannot lead to any new conclusion with the phase difference
inheriting the same difficulties and the same solutions as the

Phase plays an outstanding role in solving and underabsolute phase. However, the actual situation appears to be
standing a great variety of classical problems, especiallgifferent and it has been shown that the quantum translation
those concerning optical processes. Perhaps one of the md¥t relative phases encounters fewer difficulti@9]. This
relevant examples is that of the atom-field interaction, inProcedure has been carried out previously for the dipole-field
which the atom is coupled to a single electromagnetic field€lative phas¢10].
through the atomic dipole. Many features of their coupled Besides, we have the natural possibility of describing the
dynamics can be fruitfully accounted for by resorting to relative phase in terms of the absolute phases. This procedure
phase relations. leads to results other than a direct definition. Nevertheless,

In quantum terms, this role has been played by the fiel¢ome po_ints of coincidence can bg found. .In this work we
quadrature$1,2] which, in many respects, properly account follow this procedure for the atom-field relative phase.
for phase relations: These are the variables which effectively For such a derivation suitable formalisms for the field
couple the field to the atom; they are free from the difficul-Phase are at hand and some of them are recalled in Sec. II.
ties that phase encounters in the quantum domain. The atomic-dipole phase has received less attention. Several

However, in recent years much effort has been devoted tgossibilities for describing it are examined and compared in
the problem of a suitable description of phase in quantun®€c. lll. They are applied to the study of the relative phase in
terms(for recent reviews see Ref8—7]) and many difficul-  Sec. 1V, where the results are compared with the operator
ties in this context have been overcome. Most of the efforprOVided for by a direct definition. The time evolution of all
has focused on the absolute phase of a one-mode field. NetRese approaches within the Jaynes-Cummings model for the
ertheless, the phase difference is more operationally mea@tom-field interaction is studied in Sec. V.
ingful than the absolute phase. In our context, it is the rela-
tiv<_a phase between the atomic dip_olt_a and th_e fielc_i which is |, pHASE FOR A ONE-MODE ELECTROMAGNETIC
of importance. The quantum description of this variable, and FIELD
its properties, is the subject of this work.

In principle, it seems that, concerning the dipole phase, The first approach to the problem of the phase of a one-
the whole atomic spacdge., all the energy levelshould be mode quantum field is due to Dirqt1], who proposed that
involved. In the semiclassical theory of radiation it is com-the exponential of the phage, should emerge from the po-
mon to work with a two-part assumption: The field is quasi-lar decompositio12]
monochromatic, and its frequency coincides almost exactly
with one of the transition frequencies of the atom. The two- _
level atom is the natural consequence of these hypotheses a=Epa'a, @1
and allows us to describe the interaction between matter and ] ) ] )
radiation in a simple and analytical way, with the hope thatwherea is the complgx amplltL_Jde for the field. It is known
this knowledge can be generalized to more realistic situathat there are no unitary solutions far,, and so Eq(2.1)
tions [1]. Therefore, in what refers to the coupling of the does not define a proper phase operator. Instead, it has the
atom to a single-mode field, we can replace the whole atomifonunitary solution introduced by Susskind and Glogower
system by an effective two-level system which should ac{13l;
count for the relevant details of the interaction. It is the
atomic-dipole phase within this two-level approximation *
which concerns us in this work. Epsc= > In)n+1], 2.2

To study the relative phase two different procedures can n=0
be followed. We can focus directly on the phase difference
and derive a suitable operator for this variable without makwhere|n) are the number states. The eigenstate& p§g
ing any previous assumption about how absolute phasesith unit-modulus eigenvalu€&, sd #)=€'?|6) are known
should be described. It may be thought that this reasonings Susskind-Glogower phase states,
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1 = bodying this concept have been shown to be equivalent,
|6)=—= > €e"’n), (2.3)  leading to the positive-operator measwegg(#) induced by
V2 n=0 the Susskind-Glogower phase stdi&%,18

which prove to be of general interest. Asd(0)=|6)(4, (2.12
The failure of the polar decompositig@.1) has allowed
for the introduction of alternative approaches to this prob-which is in the form of Eq(2.8) with
lem. Virtually all of them can be formulated in terms of
positive-operator measures;(¢) that define a probability Gsg(n,n’)=1. (213
distribution P;(¢) as . , )
Another widely used conception of phase is based on ex-
P;(0) =t psieigd ()], (2.4  amining quasiprobability distributions in phase space.
Among them, one of the most interesting and studied comes
for any field statepfeig. The reality, positiveness, and nor- from the Q function [19-22 Q(a) ={«|pfieid @)/ 7, where
malization ofP;(6) impose |a) is a coherent state. A positive-operator measure for the
field phaseAo(#) can be defined in terms of the radial inte-

Aj(0)T=A,(6), Aj(6)=0, fdaAj(e):L (2.5  gration of[a)(al,

1 . .
but, in general,Aj(#) are not orthogonal projectors. The AQ(G):;J dr rla=re'%{a=re'’, (2.19
mean value of any functioh(6) is 0

which is also in the form of E¢(2.8) with

(f(e)),:f def(o)P;(6). (2.6
I'{(n+n")/2+1)
" . . Go(n,n')= —————. (2.15
If the positive-operator measusg () is canonically con- Jnin'1
jugate to the number operat@n the sense of a weak Weyl
relation), it should verify the shifting propertj14] This less abstract and more pictorial method has the ad-
- - vantage that it corresponds to a realistic scheme for phase
e 2N (geT A=A (6+6"). (2.7 measurement, though a generalized or noisy one. This noisy

) - ) character is reflected by the fact that the integration of
This c_ondltlon leads to_ the following general form for Q(a) over the real or imaginary parts afdoes not give the
A;(6) in the number basis: probability for the corresponding quadratures of the field

o [23], nor does the integration ovet give the probability
Ai(0)= zi s Gj(n,nr)ei(n—n’)0|n><nr|, 2.8 distribution for the actiorg*a [24]. On the other'hanq, defi-
T neo nitions based on generalized measurements give different re-
’ sults for different quantum implementations of measurement
where the coefficient§;(n,n") must ensure the statistical schemes which are classically equivalent, and so they do not
conditions(2.5). provide a unigque quantum description of ph§2s,26.

Although these positive-operator measures avoid the defi- |n addition to these two formalisms there are other ap-
nition of a phase operator, the evaluation of mean values, fosroaches to the problem. We have singled out these two
instance, of phase eXponentidIS“)j , becomes the mean descriptions because we think they are representative enough
values of the sequence of operatfit§] of how phase can be described in the quantum domain.

f d6e™"P,(0) =tr] pracE L], 2.9 lll. PHASE FOR A TWO-LEVEL ATOM

In this section we focus on the quantum translation of the
where atomic-dipole phase for a two-level atom.
Denoting by|g) and |e) the ground and excited energy
E(a'fj):E(a,_jk)T:f daeikaAj(a)_ (2.10 Ievelg of.the isolgted atom, the effective component of .the
atomic dipole which couples the atom to a one-mode field
can be written as

, , d:deg(|e><g|+|g><e|):deg(s++sf):2degsxa
el AEN, EfES, @1 @2

These operators are not unitary,

whereEglszﬁ,ﬁ). whereS.. are the Pauli spin-flip operators of a 1/2 angular
Most of the quantum descriptions of phase fall within thismomentum. It has been assumed ttgitd|g)=(e|d|e)=0

kind of positive-operator-measures formalism. Some of thenanddg can be taken as real.

have focused on the concept of phase as an observable ca-Considering the atom in the most general pure state,

nonically conjugate to the photon number. This is the case offis) son= Cq|9) + Cc€'¢|€), wherecy andc, are real, the evo-

the Pegg-Barnett formalism which has been extensively studution of the mean value of under the Hamiltonian of the

ied in recent yearfl6]. This approach and some others em-isolated aton(in unitsz=1),
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Hatom:§(|e><e|_|g><g|):w521 (3-2) f(q%p):zi: |‘Pi>f((Pt)<‘Pi| (3.9
is and the mean value
(d)=2cyCele cO0f 0t — 0). (3.3
o (@ ))=3 f(p)P(e.), (310

This leads us to identify as the phase of the atomic dipole
in the state ¢) aom- . e
The subject that concerns us in this section is the propefnereP(#-) is the probability distribution,
description of this dipole phase as a quantum variable _
instead of as a state parameter. At this stage two alternative P(¢2)=tr(patonf ¢ ) (@ |)-
routes can be followed. On the one hand and according to the . . ) . . .
usual procedure of ascribing an operator to each variable, jt_/th this choice for‘ﬁo’ E,is pri)portlonalhtosy. IAISO’ f
can be asked which operator could serve as a quantum tranR€CaUsee, = —E, , we have co®,=0. For other values o
lation of . On the other hand and motivated by the field #o We get similar equations. This is a rather pathological
phase problem, we can consider that the optimum descriptiopehavior caused by the small dimension of the system, as
of the dipole phase should be provided by a positive-operato?UCh strong relations no longer hold for dimensions other

measure. These two procedures are briefly examined in tH9an Wwo. In other words, a two-dimensional Hilbert space is
following. not large enough to distinctly accommodate all different

The mean valué3.3) of the atomic dipole is proportional vgriables. This means thqt this behavior is not exclusive to
to the real part of this approach, and we will see later that equivalent unex-
pected features also appear when other approaches are used.
(S_>=cgcee*i“"ei"°. (3.4 Another striking consequence of an operator description
is that the dipole phase can take only two valdes/2, due
Thus, it seems appropriate to define the exponential of thas well to the dimension of the atomic-state space.
atomic phasd,, as the unitary solution of the polar decom-  One may think it preferable to describe the dipole phase

(3.11

position by a positive-operator measut;(¢), taking continuous
values in a 2Zr interval, even though this cannot lead to an
S_=VS_S,E,=E,VS,S_, (3.5  operator description. This is the possibility we examine in
the following.
which is the operator counterpart of E(B.4). After these In this case the shifting property associated with the di-

equations are solved fd,, an operatorb , can be defined pole phase is
by Eq,:e""w. This is a particular case of a general definition

of the SU2) phasg[27-29. Here we will just briefly recall e SA (p)e 1 = A (o + o). (3.12
the main properties of this definition, particularizing it to a ! !
two-level system. The most generah(¢) fulfilling this property and the sta-

Contrary to Eq.(2.1), in this case there are unitary solu- jistical conditions(2.5) is of the form
tions of the form

E, = |9)(el + > le)(g], 36 A(9)= 5= (1+ % e¥le)al+ v e la)(e.

where ¢ is arbitrary. The last term corresponds to a matrix 3.13
element undefined by Eq€3.5 and appears due to the uni- o

tarity requirement. Aithough the main features of this operaWith | vj/<1 and we exclude the trivial casg=0. _
tor are independent af,, its eigenvectors and eigenvalues ~Before considering particular examples, let us examine
depend onp,. For the sake of concreteness we can make 0Me propertles_ that can be derived from the general form
definite choice by imposing further conditions. For instance (3-13. Here again we have that mean values of phase func-
according to Eq(3.3), the complex conjugation of the wave tOns, In partlcu(lgr(e “);» become the mean value of opera-
function in the energy basis should reverse the sigbpf  t0ors(e™¥);=(Eg}) with

[10]. This leads toe'?¢o=—1, and the exponential of the

dipole phase becomes E¢,J=EE§,}=J d(Penij(@): y}‘Ig)(eI:y}‘ s
Eo=lg)el—le)(gl. (3.7) (3.14

with eigenvectors and(e™®¢);=0 if |k|>1. These relations show that the infor-
mation P;(¢) conveys goes beyond what would strictly be

1 i the atomic phase. For example, for every,,, we have that
)= E(|g>i'|e>) (3.8 (S and(S,) can be expressed in the form
andE |¢.)=*i|e.). To any functionf(¢p) we can asso- :if N
ciate 'Ephe operator (S0 il de cod e+ 5)P(¢), (3.19
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1 .
(S)=- mf de sin(¢+ ;) Pi(¢),

where 5,=argy; . Since Si=5=1/4, Pj(e) contains the
complete statistics &, andS, . In particular, it contains the

997

1
1 .
Aj(e)=3 2 Ajeeemer, (329

This effective discreteness allows us to compute the mean
values of any functiorf(¢) in a way very similar to Eq.

whole statistics of the dipole operator and not only of its(3.10),

phase.
The most generdP;(¢) is of the form

1 . .
Pi(e)= E(lﬂLcje""Jrcj e’'?),

(3.16

with ¢;=(g|pawni€) 7;. This means thaP;(¢) is always

broader thanP,(¢) if |y|<|y/. This can be expressed

guantitatively by using the dispersi$80]
2
:1_|<9|Patonle>|2 |7j|21
(3.17

as a measure of the phase uncertainty. Cle&x}y; D, when
lyil=<lvd-

From Eq.(3.13 or (3.16 we see that an}\;(¢) can be
expressed as a linear combination of any othge) in the
form

D]-2=1—U dee'“Pj(¢)

*
) . , ’y . !
1+ Do N gmite-e )}Ak((P,)’
Yk

Yk
(3.18

for any y;, . The same relation holds betweBr(¢) and

1
A,—(@):ﬁf de’

27 &~
(o= 2 TlePile),

(3.22
whereT is related tof by
f dsveik“”T(sv):fdsveik*”f(cp), k=0,%1,
f dee*¢T(¢)=0, [K>1, (323

and so

fdson(qo>T<<p>=fdquj(qo)f(qo), (3.29

for any P;(¢). Discreteness then is also at the heart of these
formalisms.

Finally, we will consider two particular examples of a
dipole-phase description which are motivated by the field-
phase problem. We can begin with a finite-dimensional
translation of Eqs(2.3) and (2.12),

P«(¢), and so if one of them is known, the other one can be
obtained. This means that all of them contain the same in-

1 .
Asd@)=]e) e, |<P>=\/T—W(|9)+e"°le>),

formation about the atom stagg;om- (3.29
A relevant feature of this approach, based on positive- = i
operator measures, is that it provides an atomic-phase d¥hich is in the form of Eq(3.13 with
scription where any value fop is allowed. Some remarks _
Yse=1. (3.26

can be made concerning this dependence. This continuous

range of variation is not completely effective in the senserpe gefinition of this positive-operator measure seems rea-

that the values;(¢) at every pointe cannot be indepen- - ¢onapje in the sense that the operdigr corresponds to a
dent, and we can find relations between them irrespective Qfg|ection of an orthogonal basis from the $eb. This

the atomic state. In other words, al|(¢) cannot be linearly positive-operator measure does not privilege pyand all

independent because the atomic Hilbert spage, is two
dimensional and the algebra of operators acting-Qg, is
four dimensional. The most genefd)(¢) depends only on

of them play the same role.
As another example which parallels E@.14), we can
consider the S(2) coherent states for a 1/2 angular momen-

the complex parametes . Thisc; can be determined by the [31]

value of Pj(¢) at two ¢ points not differing byz. Never-

theless, more manageable expressions emerge if we use three

points instead of two, such ag,=2=r/3, r=-1,0,1. We
have

1
2 .
cj=3 2 Pilee (3.19

which allows us to expresB;(¢) for any p,iomas

1
1 4
Pile)=3 2 Pi(gne*e ), (320
kr=-1

and so the knowledge of the three valuBg(¢,) gives
Pj(¢) at any other pointp. Similarly,

0 AN
|ﬁ,¢>=sin(§ |g)+c05(§ e'?|e), 3.29
and the SW2) Q function they define,
1
Q(¥,¢)= 5tr(paord ¥ 0)( D 0]), (3.28

which can be regarded as a probability distribution in the
atomic-phase space. This allows us to define a positive-
operator measure for the dipole phasas

1 T
Ag(e)= EJ; dd sind| 9, o), ¢, (3.29
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which corresponds to The allowed values forS,+a'a are n—1/2 with
n=0,1...o. The -corresponding subspaces{, are
T spanned by the common eigenvectors $f and a'a:
QT g (3:30 {lg,n), |e,n—1)} for n>0 and|g,0) for n=0. The total
Hilbert spaceH can be expressed as the direct sum of all
In this section we focused on phase descriptions for dhese subspaces as
1/2 angular momentum because of our interest in its appli-
cation to a two-level atom. Nevertheless, the generalization

of all these definitions to an arbitrary angular momentum is H=n€|=90 Tn- 4.4
straightforward.
Once the polar decompositidd.1) has been solved in each
IV. RELATIVE PHASE BETWEEN A TWO-LEVEL ATOM of these subspaces, obtaining the family of operaEqu%,
AND A SINGLE-MODE FIELD the solution for the whole space is
In order to describe in quantum terms the relative phase o
between the atomic dipole and the field two main routes can E,= > E (4.5
. .. @ < ] .
be followed. We can start from previous descriptions of the n=0

field and dipole phases and manage them until we get the

probability distribution for their difference=¢— 6. Alter- ~ from which a Hermitian relative-phase operatby, can be

natively, we can focus directly on the relative-phase variableglefined as ,=e'®s.

trying to define the corresponding operator without any pre- The solutions are

vious assumption about either the field- or dipole-phase de-

scriptions. EY’=19,0)(g,0],
These two routes will lead to different results. Mainly, the

second one gives an operator, while the first one leads natu- ES=lg.n)(e,n—1|—|e,n—1)(g,n|,

rally to a positive-operator measure. However, we will see

that, although they look very different, their structure is quitewith eigenvectors

similar. This similarity can be ascribed to those particular

features which appear when dealing with the difference of |6)=]|g,0),

two periodic variables. 4.7
For an easier comparison we briefly recall the definition 1

of an operator for the relative phaft0]. The procedure is |¢p™My=—(]g,n)*ile,n—1)), for n>0,

almost the same as that followed for the dipole phase. A - V2

unitary exponential of the relative phagg, should emerge .

from the equations and eigenvalues

S_a'=\5_S,a'aE,~E4\S,S.aa’,  (4.1) Eglot)=100), s

which come directly from a classical factorization. Let us E¢|¢(i”)>= +ilgpM), for n>0.
note that the following equation holds,

(4.6

As occurs with the dipole-phase operator, we have that
S_a'=\S_S.E,\Ja'aE}=\S_S,aTaE,E}, (4.2 ENV=—ED for n>0, ENV=ED), and therefore
cosb =0 outsideH,, and sirb,=0 for H,. Another striking
which seems to lead to a nonunitary solutiEQ=E‘PE£. feature of this result is that the relative phase can take only
However, it has been shown that Eg.1) has true unitary three values. This may be surprising since any value for the
solutions, so thak ,# E¢E£ is allowed. To some extent, this field phase seems allowed. The reasons for these behaviors
leads us to expect that the relative phase has features nate the same as those discussed for the dipole phase. Due to
straightforwardly related to the properties of absolute phaseghe commutation relatio(4.3), the operator splits into com-
As occurs in other polar decompositions such as Eqsponents acting on two-dimensional subspatgs(one di-
(2.1 and(3.5), Egs.(4.1) do not fix all the matrix elements mensional forHy), and so the previous features can be as-
of E,, and further conditions must be impoddd®]. The most  cribed to the particular dimension of the atomic space. This
adequate are the translation into quantum mechanics of the supported by the fact that this operator behaves properly
classical Poisson brackets verified by the corresponding variwhen considering classical limits for either the atom or the
ables. The only one compatible with unitarity and the polarfield [10].
decomposition is Another relevant point is the, cannot be written as a
product of phase exponentials for each system. This relative
[S,+ aTa,E¢]:O. 4.3 phase is not the difference of absolute phases, and it does not
have the usual mathematical properties of a difference. It is
By imposing this relation, the problem can be reduced to thevorth noting that this is not exclusive of this formalism, and
study of its restriction to each subspaég, with fixed it also arises in other relative-phase approaches, as has been
S,+a'a. shown for two field mode§32].
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The other possibility of describing the relative phase is by Another possibility is to directly define the probability
deriving a positive-operator measure from the correspondindistribution for the relative phase as
ones for dipole and field absolute phases. This is what we
next examine.

The joint-probability distribution for the atomic-dipole Pi(¢)=J doP;(0,0+ ¢)=tpAj(¢)], (4.10
and field phases is

Pi(0,0)=t{pA;(0,¢)], .9
A(6,9)=A;(0)@A(¢), AJ<¢>=f d0A,(0,0+ ). @11

whereA;(#) andA(¢) are the positive-operator measure
defined in the preceding sections. From these expressions
have to consistently derive a positive-operator measur
Aj(¢) for the relative phasé= ¢ — 6. This can be achieved
in many ways.

We could try a change of variables to exprésge, ¢) in ®
terms of the phase sum and phase difference, then removing () — _
the phase-sum dependence by the corresponding integration. 4(4) nZO Ai(n.4). (4.12
Although this change of variables is nonbijective, it can be
carried out by very general metho4]. with

where

SVU% the Appendix it is shown that this definition is consistent
ith the procedure based on the change of variables men-
ioned above.

The result forA;(¢) can be written as

1 : .
E[I(”H,uj(n)e'ﬂe,n—1)(g,n|+M}*(n)e"‘/’|g,n><e,n—1|], n>0,

A=y (4.13
— 10 =
27TI , h=0,
|
where spaceH,,. This is a consequence of the shifting property of
Aj(#) andA;(¢) which leads to

i’ (S,+ata) —ig'(S,+ala)_ A
andl(™ is the identity in,, . € Aj(¢)e Ai(¢). (418
For the two examples considered in the preceding sections, . . . . .
P P 9 MPhis implies the commutation relatidi\;(¢),S,+ a'a]=0

we have and then the previous splitting a;(¢) follows. In other
7 T(n+1/2) words, this expresses the invariance Bf(¢) under any
n)=1, nN=—e — "~ (4.15  phase-sum shift. The system statend
. . . el¢'(Sralape-ivlis,rala) (4.19
The exponentials of the relative phag&? become the
mean values of the nonunitary operators have the sam®;(¢). Thus shifting the phase of the field by
¢' is equivalent to shifting the dipole phase byp'. If this
<eik¢>j:<Eg;>j :< f d¢eik¢>A]_(¢)>_ (4.16 fqrmalism were to emerge from a rqutive-_phase operator,
’ this property would imply its commutation witB,+a'a as
o ) _ Cna o in Eq. (4.3).
Thls gIVESE.(/)’J-—O unI_essk—O,_ 1. The cas&=0 gives the On the other hand, from Eq&2.7), (3.12, and(4.11), we
identity, whilek=1 gives have the relative-phase shifting property
* i (s,~ala)2p i/ (a2 A (b b
£0 =B}~ 3 uf (vlgnen-1/-€, &}, ; e T 20

4.1
(@19 The compatibility withS,+a'a allows us to introduce the
k= —1 being the Hermitian conjugate of this last one. joint-probability distributionPj(n,¢) for n and ¢, in the
Perhaps the most important feature of both approaches ferm
expressed in the previous decomposition of the probability
distribution over the independent contributions for each sub- Pj(n,¢)=tr[pAj(n,d)], (4.2
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satisfying Its apparent simplicity belies the fact that the evolution of
physical quantities displays an extraordinary complexity, and
- S0 it serves as a testing ground for many theoretical concepts.
go Pi(n,#)=Pj(¢), For our purposes, its sensitivity to the relative phase between
(4.22  the atomic dipole and the field has been te$435.
The Hamiltonian commutes with the total excitation num-
f déPj(n,¢)=P(n), ber S,+a'a and can be diagonalized in the subspatgs
giving the dressed stat¢36]

whereP(n) is the probability of getting the value— 1/2 for |\If(°>>=| 0)

S,+a'a. 0 /=195 (5.2)
We have here a point of comparison with the relative-
phase operator obtained from the polar decomposition. From
different starting points, we arrive at the same compatibility
with S,+a'a, which is expressed by the relative-phase op-

)= (|g.ny=le.n—1))
sy \/E i) ) ]

erator in Eq.(4.3). with eigenvalues
Despite this common property, a strong difference still
remains. The polar decomposition leads to only three al- HIp Oy = — w P (0)
: : ¥o)==5I¥g"),
lowed values for the relative phase, while any value seems 2

possible for the positive-operator measures. Due to the pre- (5.3

vious splitting into independent contributions over each HP M =[(n—1/2w+\/n]|TD).

‘H,, here we are in a position similar to that found for the

dipole phase. Accordingly, we could translate the same A first interesting and simple example of evolution is the

analysis here. case where the initial state of the system is the product of the
Due to the dimension of{,,, any operator has just two atom in its ground state and the field in a number state

eigenvalues fon>1 and one fom=0. On the other hand, |¥)=|g,n) with n>0. At later timeg, the state is given by

the most general form dP;(n, ¢) is o
W (t))=cogxynt)[g,n)—isin(AVnt)|e,n—1),
1 . . 5.4
Pi(n,¢)= E[a”‘”rB](”)e"/’+ﬁj(”)*e"‘f’], (4.23 54
and the probabilities of finding the atom in the upper and

wherea™ =P(n) is real. Since this function depends just on lower states are

three parameters, it can be completely fixed by its value on _ e
three properly choses points for eacm. This corresponds Py(t) COSZ()\\/HU’ Pe(t) sz()\‘/ﬁt)' (5.9

to the analysis in each subspallg. In addition to this, we  The population inversiolV/=|e)(e| —|g)(g| =25, is then
also have that the whole;(¢) can be written in the form

(W)= —cog 2\ y/nt). (5.6)

We can begin by considering the operator description of
the relative phase. If we ask for the probability of finding the
The completeP;(¢) function depends just on two param- system with phase differences-0z/2 or /2, we have
eters and thus can be completely fixed by its value in two

1 ip | k=i
Pj(¢)=§(1+cje +cie ). (4.24

points. This means that formuld8.20), (3.21, and(3.22 P_,(t)=cog(\ \/ﬁt— wl4),

could be translated here exactly in the same terms and, there-

fore, these formalisms show an effective discreteness despite Po(t)=0, (5.7
their apparent continuity. Moreover, this effective discrete-

ness applies to any relative-phase description with the prop- Pw,z(t)zsinz()\\/ﬁt— wl4).

erties(4.18 and(4.20.
This gives the mean value
V. EVOLUTION OF THE ATOM-FIELD RELATIVE i s
PHASE IN THE JAYNES-CUMMINGS MODEL (Eg)=—i sin(2xynt), (5.8

In this section we study the evolution of the relative phaseand so(cos® ,)=0.
between the atomic dipole and the field for the Jaynes- Concerning the evolution of the relative phase given by
Cummings mode]33], comparing the approaches developedthe two positive-operator measures of the preceding section,
in the preceding section. The evolution of the absoluteve have the mean values
phases of both systems is briefly examined as well. .

The Jaynes-Cummings Hamiltonian for the atom-field in- i o .
teraction reads$in the rotating-wave approximation, at exact (e ¢>i_ 2Hi (n)sin(2\ Vo). (5.9

resonance, and=1)
For the two positive-operator measures studied pg(e) is

H=wS,+wa'a+A(a'S_+S,a). (5.2 real, and so we havcos¢);=0, as occurs for the operator
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description. For all approaches we have the same harmonic
evolution but with different amplitudes.

If we ask for the evolution of the field and dipole absolute
phases, we geR;( ) =P;j(¢)=1/(2m), and so they are al- 05
ways uniform. -

When initially the field is in a coherent stdte), the close 0.0
relation (simply a time translationbetween the evolution of
the relative phase and the population inversion of the previ-
ous example allows us to expect similar collapses and reviv-
als for the relative phase as those experienced by the popu-

1.0 . . . , . ,

lation inversion. When the initial state |ig)|), with | ) an A0 s 0 s 0
arbitrary field state, we have the mean value associated with
the operator description A

* FIG. 1. Evolution of the mean values of the population inversion
(Eg)=Py(0)=i 2, sin2xyn)Py(n),  (5.10 (W) (thick solid ling, the sine of the relative phageing)q (thin
n=1 solid line), and(sing)s (dotted ling when the field is initially in a
coherent state with mean-photon numheg?=5 and the atom is in

where P,(n) is the field photon-number distribution the ground state.

[(n|¢)|2. Equivalently we have

s}

tons |@|?=5. The mean valuésin®,) is not represented

(sin® ;)= _nzo sin(2\ \/ﬁt)P¢(n) since(sind ,)=2(sing)ss. One can appreciate the similarity
between(sing)q and(sing)ss, and their close relation with
S (W). In particular({sing); and (sin® ) experience the same
=ImLEO e 'Zx‘ntpw(n)}, (5.1)  collapse and revival danamics of the population inversion.
Next we outline a plausible physical interpretation of the
and(cosb )=P ,(0). similarity between relative phase and population inversion.
On the other hand, the positive-operator measures give 'ghe Interaction Hamiltonian in the rotating-wave approxima-
similar evolution tion is proportional to the components of the atomic dipole

and field quadratures and also proportional to ¢oh clas-
_ Pz sical terms, the dipole energy is maximum or minimum ei-
<e'¢’>j=—52 pF(n)sin2xVnt)P,(n).  (5.12  ther when sigp=0 or when the field quadratures or the
n=1 atomic dipole components vanish. In the quantum case, for
the initial statgg,n), the population inversion has maximum
or minimum values precisely whegsin® ,)=(sin¢);=0.
This relation holds very approximately when the initial state
1.7 is |g)|a), as can be seen in Fig. 1.
(sing);=— 52 pi(n)sin(2xVnt)P ,(n) If the atom is initially in its ground state, the mean value
n=0 of the dipole operator vanishes and therefore so does the
1 o interaction Hamiltonian. Since in the resonant case the inter-
=_Iim| > ,uj(n)e“z“ﬁth(n) , (5.13  action Hamiltonian is a constant of the motion, we would
2" 170 expect co®=0 and sip==1 at all later times. Whichever
i formalism is used, the relative phase is effectively uniform at
and here again we hayeos$);=0. _ t=0 due to the randomness of the dipole phase. Due to the
We should point out that the equalitgos ¢);=0 is due to quantum fluctuations, the condition gir*+1 cannot be es-
the fact that the atom is initially in its ground state (apjished instantaneously, whereas this is possible classi-
(the excited state will also provide the same rgsuftat .51y Nevertheless, the trend to satisfy this phase relation
t=0 the atom is in a superposition, we will have in generalcan e recognized in Fig. 1 in the initial stages of the evolu-
(cosp);#0, whereas the operator will always give (ion before the quantum evolution displays its complexity.

Taking into account the reality gisg(n) and uq(n) this is
equivalent to

<C°§D_¢>>:|Cg|?Pw(0)- _ _ On the other hand, we always ha{@sp);=0, and so at
' This relative-phase evolutlon_can be c_ompared with the-any time arge' ¢>j: + /2, in agreement with the preceding
time dependence of the population inversion discussion. For the operator descripti@osb 4)=P,(0), and
o so ardE,)==a/2 will occur only provided that
- _ P (0)<(sind,,).
W cog2AyYnt)P,(n W ¢
W) nZO g \/_ JPy(n) Therefore expression(s.11), (5.13, and(5.14) as well as

Fig. 1 show that the previously discussed relationship be-
tween relative phase and population inversion extends to the
qguantum case.

In addition to this we can show that Fig. 1 also conveys
In Fig. 1 we show(W), (sin¢g)q, and(sing)sc when the field  relevant information about the evolution of the relative-phase
is initially in a coherent statir) with mean number of pho- uncertainty. Since we are dealing with arzeriodic vari-

:—ReLZO e '2p (). (5.1
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1 P T R RO R - P T PR [P
0 5 10 15 20 25 30 0 5 10 15 20 25 30

A PN

FIG. 2. Evolution of the mean values of the population inversion ~ FIG. 3. Evolution of the mean values of the population inversion
(W) (solid ling) and the sine of the relative pha&ging)sc (dotted (W) (solid line) and the sine of the relative phagging)sc (dotted
line) when the field is initially in a coherent state with mean photonline) when the field is initially in a squeezed state with) =10,
number|«|?=10 and the atom is in the ground state. r=0.5, 6=0 and the atom is in the ground state.

able, a suitable measure of this relative-phase uncertainty is If 6=0, the initial squeezed state has phase uncertainty
provided by the dispersiof80,37). In the case of the opera- higher than that of a coherent state of the same mean photon
tor description, the dispersion is defined as number and a narrower photon-number distribution. If
6=/2, it has lesser phase uncertainty and broader photon-
D2=1-[(E,)|?=1—(sind4)?—(cosb,)?, (5.15  number distribution.
In Fig. 3 we have representédlV) and (sing)sg for an
whereas for the positive-operator measures we have initial squeezed state witfn)=10, r=0.5, and5=0. In
2 (D2 o 5 comparison with the unsqueezed coherent state in Fig. 2 we
Dif=1-[(E; =1~ (sing)] —(cosp)j. (5.1  can see that the first revival time coincidéise mean photon
number is the sameThe revival is narrower and the maxi-
Thum amplitude of the oscillations is higher.

In Fig. 4 we have representédlV) and (sin¢g)sg for an
initial squeezed state witftn)=10, r=0.5, andé==/2. In
%omparison with Fig. 2 the revival time is the same but now
the envelope is broader and the maximum value of the oscil-

For the cases considered in this work we have alway
(cosp);=0 and (cosb,)=P,(0), and so the evolution of
(sing); and(sind,) represented in Fig. 1 directly gives the
evolution of the relative-phase uncertainty. The dispersion i
minimum for those interaction times for whicfsing); is
maximum and vice versa. lations is smaller.

It is interesting to examine how the evolution of the rela- Throughout we have pointed out the close relation be-
tive phase depends on the initial state of the field. In the ﬁrs{ween population inversion and relative phase. In Egs.
place, we can consider the dependence of the relative-phagg

; . 15.11), (5.13, and (5.14 they are the real and imaginary
dynamics on the mean-photon number when the field state arts of the same expression. We can take advantage of this

initially coherent, (Ijn ';'g' 2 we ?h‘?‘w"g and<s'”§’>SG When 5t to translate to the relative phase the previous analysis of
<n>._|arl _1IO an r: € atlom IIS f'r;lt € gr;]roun Tta_te. Herene gynamics of the population inversion. In particular, some
again the relative phase closely follows the population INVerapproximate analytical expressions fow) in Eq. (5.14 are

Siof" the oscillations being alwayﬂz O,Ut O,f phase. The first available[38,39 which can be directly translated to the rela-
revival occurs later than in Fig. 1, it is slightly broader, and

the maximum amplitude of the oscillations is almost the
same. This dependence ¢m) is known for(W) and here we L L L
show that it is also experienced by the relative phase. Later
we will show these features more clearly when considering
the limit of high photon numbers.

There are other interesting initial field states like ideally 0
squeezed states,

|, &) =g ~a*age*a?=ca' gy (5.17)
These states offer the possibility of examining how the A
dipole-phase dynamics is influenced by the initial field-phase 0 5 10 15 20 25 30
uncertainty. This is because the field-phase distribution At

depends ona and £ For fixed values ofr=2|¢ and

lal, it depends strongly on the squeezing direction  F|G, 4. Evolution of the mean values of the population inversion
d=arg(a) —arg(£)/2 (the angle between the direction of the (w) (solid line) and the sine of the relative pha&ging)sg (dotted
coherent component and the minor axis of the uncertainty line) when the field is initially in a squeezed state wqtt)= 10,
ellipse in the quadrature phase space r=0.5, = #/2 and the atom is in the ground state.
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/2 40

FIG. 6. Evolution of theR, o (dashed ling R, s (dotted ling,
FIG. 5. Behavior of the envelope for the first revival as a func-andR,, (solid line) factors modulating the harmonic evolution of the
tion of the squeezing directiod when the field is initially in a  field and atomic-dipole phases, respectively, when the field is ini-
squeezed state win)=100,r =0.5 and the atom is in the ground tially in a coherent state with mean photon numpef?=1.6 and
state. the atom is in the ground state.

tive phase in Eqs(5.11) or (5.13. Such an approximation of the first revival envelope wittd for fixed mean photon
can be very useful to prove the previous features of the phasaumber(n)=100. This dependence agrees with that shown
evolution when the mean photon number is very large. in Figs. 3 and 4 for smaller values of the mean photon num-
Under appropriate conditions it has been shg®@@] that  ber.
it is essentially the shape of the photon-number distribution Although throughout this work we have focused on the
which governs the first revivals envelope. For instance, theelative phase, it could be also interesting to consider briefly
first revival of the population inversion becomes the time variation of the dipole and field absolute phases.
When the system is initially in the statg)|a) with

A2t2) At D s a=|ale'® we have, for the dipole and field phases,
(W)y=—-P,| n= 2 —~ 7l (5.18 . _

" (e')j=—17}Ry(|al,He "=, (5.22
The same approximation can be applied to £&q13), lead- ” i(et-) '
ing to a first revival of(sing)sg of the form (€9)=Ry;(|al,t)e ,

N2t2\ nt \22 o where
(smqs)SG—— w( )Tr\/_ sm( Z)' B
(5.19 R¢(|a|,t)=|a|r§0 sin(A/n—+ 1t)cog A ynt)

We can note that the envelope is the same and the relation
between the oscillations agrees with the previous discus- % P_(n)
sions. Replacing ,(n) by the corresponding expression for Jn+1 7
a coherent or squeezed state the dependence of the relative (5.23

phase with(n) and § in Figs. 2, 3, and 4 can be easily

derived. In the case of large photon number and moderatqagJ lal, t)—|a|2 [Gi(n, n+1)cog A yn+1t)cogry/n \/—t)

squeezmg%(n) can be replaced by a Gaussian approxima-

tion +G;(n—Lm)sin(x yn+ Tt)sin(x Y1)
1 (n—(n))?

P,n)=——expg - —=~+-7

A= oran F{ 2(An)?

. (520 «

1
\/ﬁpa(n)-

These functlonqu,(|a| t) and R6,(|a| t) are always real,

_or or and they are plotted in Fig. 6 forr|>=1.6. We can note that

(An)*=((n)—sinlfr)(e” *cos's+e”sin o) Ry, is smaller tharR, s, leading to slightly greater values
+ 2sintfr cosHr. (5.21) of the phase dispersion, in accordance with the general rela-

tion between these two approachégd|

Equations(5.19, (5.20, and (5.21) show how the relative The evolutiong5.22 show the natural harmonic variation

phase dynamic§revival time, width, and peak of the enve- of both phases with the- 7/2 phase difference discussed
lope modulating the oscillationglepends on the field initial above. The harmonic evolution is modulated by the terms

conditions. R.(lal,t) andRy(|a|,t), which contain the quantum details
For example, in Fig. 5 we have represented the variatiof the evolution, since in a classical theory they are constant.

with
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model. Although numerical values are different, all these for-
malisms provide the same relevant features. Such an evolu-
tion is in agreement with some classical and semiclassical
relations and also with the notable quantum character of this
kind of dynamics.

The relative phase studied here involves a system describ-
able by a two-dimensional Hilbert space and a very dissimi-
lar one described by an infinite-dimensional space. This case
can be generalized along the same lines to situations involv-
ing other spinlike systems describable by Hilbert spaces of
arbitrary finite dimension.

For all the approaches considered, some unexpected rela-

At tions arise which are entirely due to the particular dimension
of the atomic state space. These pathological behaviors dis-
FIG. 7. Evolution of theR, s (dotted ling andR,, (solid line)  appear as soon as the dimension is increased, and so they do

factors when the field is initially in a coherent state with mean¢ imply any flaw for the phase formalisms studied here.
photon numbeta|?=20 and the atom is in the ground state.
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and revival dynamics. On the other hand, w2 n) fre-

guencies are much smaller with a period close to the first APPENDIX: POSITIVE-OPERATOR MEASURE

revival time. The effect of both kinds of frequencies is FOR THE RELATIVE PHASE

clearly shown byR,(||,t) in Fig. 7, where||?=20. ) . o .
Concerning the field evolution, the SG case contains only L€t us consider a joint-probability distribution function

the low frequencies. Th€ case also contains the higher P (#1,$2) for two 2a-periodic variables, , ¢ that in gen-

frequencies. However, they are modulated byeral will arise from a positive-operator measuvéep, , @),

Gg(n,n+1)—Gg(n—1,n) which is close to zero for high

enoughn, and so only the slowly varying part is effective. In P(¢1,d2)=tlpA(1,42)], (A1)
the case of mean photon numbet?=20 in Fig. 7,R, o and _ _
Ry,sc coincide and cannot be distinguished. wherep is any system state. We will refer tp; and ¢, as

These modulating factors also provide a measure of th@hases, although the procedure to be followed can be applied
phase uncertainty through the dispersion. For instance, wi@ any pair of 2r-periodic variables. o
can see that the dispersion of the field phase becomes maxi- AS @ first step, we want to find the probability distribution
mumRy,;(|al,t) =0 near the collapse time. A detailed study function ”(¢..,¢) for the phase sum and difference,
of the field phase evolution within this framework can be

found in Refs.[40,41. Also and according to the conclu- br=d1t b2, d=do— b, (A2)
sions of Sec. lll, the atomic dipole moment displays this o
same kind of evolutiofi42]. where we assume that, and ¢_ are also 2r periodic.

Then we integrat@®(¢ . ,¢_) over the phase sum in order to

obtain the probability-distribution function for the phase dif-
VI. CONCLUSIONS ference

In this work we have studied and compared several pos-
sible description_s of t_he atom-field relative phase. T_hese are 7;((;57):[ db. P(d. ,b_). (A3)
an operator defined in terms of a polar decomposition and
two positive-operator measures derived from the correspond-
ing measures for field and dipole phases. This led us to eXour final objective is to get a positive-operator measure
amine quantum descriptions of the dipole phase for a twoA(¢-) such that
level atom.
The evaluation of these formalisms shows that, although P(¢-)=tpA(g-)]. (Ad)
strictly speaking they give different results, they share a lot
of properties. In all the cases, we have that this variable is As far as we consider all these variables as fZeriodic,
compatible with the total excitation number. This inevitably the chang&A2) is nonbijective since the pairshg, ¢,) and
leads to an effective discreteness even if in principle a cont¢,+ 7, ¢,+ ) give the samed_ ,¢_) mod(2w). There-
tinuous range of variation is assumed. These two facts arfore, in order to obtainP(¢, ,¢_) from P(¢4,¢,), the
naturally reflected by the operator description. change(A2) must be followed by the addition of these two
We have also found similarities when studying the evolu-contributions, so that, taking into account the Jacobean of
tion of the relative phase within the Jaynes-Cumminggransformation(A2), we getP(¢, ,¢_) as



1 (b= .+ -
7’(¢+,¢):§[P(¢ 2¢ K 2¢ +P<¢> 2¢
+w,¥+wﬂ, (AS)

which is a 2r-periodic function of¢p, and ¢_ . This rela-

tion is equivalent to imposing the following equalities for the

mean values of théb, ,¢_ exponentials:
f do.de_e e ?-P(¢, ,¢p_)

:f d¢1d¢2eik(lf>1+¢2)ei/(¢2—4>1)p(¢1’¢2).
(AB)

SinceP(¢. ,¢_) andP(¢,,¢,) are both 2r periodic, we
have the Fourier decomposition

P(¢1,02)=

1 e
G Pue e

1 : )
- —ikp, a—i/ P
P(bs1$-)= e Puse K0re 0 (AT)
Both Egs.(A5) and(A6) lead to the equation for the Fourier
amplitudes,

Pe,=Px—yksrs- (A8)
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Concerning the probability distributio(¢_) for the
phase difference it has the Fourier expression

1 .
- —i/¢_
Pl¢)=5-2 Pe /. (A9)
Using Eqgs.(A3) and (A6) we have the relations
P/=P0’/=P_/’/. (AlO)

On the other hand, the following equation holds:

Ft/,/=fd¢,e‘/¢ffdaP(e,0+¢,), (A11)

and so Eqgs(A9), (A10), and(Al) give

P(¢_):fdep(e,9+¢_):tr[pf d0A(0,0+¢_)}.
(A12)

Then, Eq.(A5) provides the desired positive-operator mea-
sure as

A(¢_)=fd0A(9,a+¢_), (A13)

which is Eq.(4.12).
This shows that the transformation Ia#5) is consistent
with the natural definitior{4.10.
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