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Relative phase for a quantum field interacting with a two-level system

A. Luis and L. L. Sa´nchez-Soto
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Several quantum descriptions of the relative phase between an atomic dipole and a one-mode electromag-
netic field are examined. Positive-operator measures for this variable are derived from dipole and field-phase
formalisms. They are analyzed and compared with an operator defined by a polar decomposition. Some
examples of time evolution are discussed.@S1050-2947~97!09407-9#

PACS number~s!: 42.50.Dv, 42.50.Ct. 03.65.2w
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I. INTRODUCTION

Phase plays an outstanding role in solving and und
standing a great variety of classical problems, especi
those concerning optical processes. Perhaps one of the
relevant examples is that of the atom-field interaction,
which the atom is coupled to a single electromagnetic fi
through the atomic dipole. Many features of their coup
dynamics can be fruitfully accounted for by resorting
phase relations.

In quantum terms, this role has been played by the fi
quadratures@1,2# which, in many respects, properly accou
for phase relations: These are the variables which effectiv
couple the field to the atom; they are free from the diffic
ties that phase encounters in the quantum domain.

However, in recent years much effort has been devote
the problem of a suitable description of phase in quant
terms~for recent reviews see Refs.@3–7#! and many difficul-
ties in this context have been overcome. Most of the ef
has focused on the absolute phase of a one-mode field.
ertheless, the phase difference is more operationally m
ingful than the absolute phase. In our context, it is the re
tive phase between the atomic dipole and the field whic
of importance. The quantum description of this variable, a
its properties, is the subject of this work.

In principle, it seems that, concerning the dipole pha
the whole atomic space~i.e., all the energy levels! should be
involved. In the semiclassical theory of radiation it is com
mon to work with a two-part assumption: The field is qua
monochromatic, and its frequency coincides almost exa
with one of the transition frequencies of the atom. The tw
level atom is the natural consequence of these hypoth
and allows us to describe the interaction between matter
radiation in a simple and analytical way, with the hope th
this knowledge can be generalized to more realistic sit
tions @1#. Therefore, in what refers to the coupling of th
atom to a single-mode field, we can replace the whole ato
system by an effective two-level system which should
count for the relevant details of the interaction. It is t
atomic-dipole phase within this two-level approximatio
which concerns us in this work.

To study the relative phase two different procedures
be followed. We can focus directly on the phase differen
and derive a suitable operator for this variable without m
ing any previous assumption about how absolute pha
should be described. It may be thought that this reason
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cannot lead to any new conclusion with the phase differe
inheriting the same difficulties and the same solutions as
absolute phase. However, the actual situation appears t
different and it has been shown that the quantum transla
of relative phases encounters fewer difficulties@8,9#. This
procedure has been carried out previously for the dipole-fi
relative phase@10#.

Besides, we have the natural possibility of describing
relative phase in terms of the absolute phases. This proce
leads to results other than a direct definition. Neverthele
some points of coincidence can be found. In this work
follow this procedure for the atom-field relative phase.

For such a derivation suitable formalisms for the fie
phase are at hand and some of them are recalled in Se
The atomic-dipole phase has received less attention. Sev
possibilities for describing it are examined and compared
Sec. III. They are applied to the study of the relative phase
Sec. IV, where the results are compared with the oper
provided for by a direct definition. The time evolution of a
these approaches within the Jaynes-Cummings model fo
atom-field interaction is studied in Sec. V.

II. PHASE FOR A ONE-MODE ELECTROMAGNETIC
FIELD

The first approach to the problem of the phase of a o
mode quantum field is due to Dirac@11#, who proposed that
the exponential of the phaseEu should emerge from the po
lar decomposition@12#

a5EuAa†a, ~2.1!

wherea is the complex amplitude for the field. It is know
that there are no unitary solutions forEu , and so Eq.~2.1!
does not define a proper phase operator. Instead, it has
nonunitary solution introduced by Susskind and Glogow
@13#,

Eu,SG5 (
n50

`

un&^n11u, ~2.2!

where un& are the number states. The eigenstates ofEu,SG
with unit-modulus eigenvalueEu,SGuu&5eiuuu& are known
as Susskind-Glogower phase states,
994 © 1997 The American Physical Society
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56 995RELATIVE PHASE FOR A QUANTUM FIELD . . .
uu&5
1

A2p
(
n50

`

einuun&, ~2.3!

which prove to be of general interest.
The failure of the polar decomposition~2.1! has allowed

for the introduction of alternative approaches to this pro
lem. Virtually all of them can be formulated in terms o
positive-operator measuresD j (u) that define a probability
distributionPj (u) as

Pj~u!5tr@rfieldD j~u!#, ~2.4!

for any field staterfield . The reality, positiveness, and no
malization ofPj (u) impose

D j~u!†5D j~u!, D j~u!>0, E duD j~u!5I , ~2.5!

but, in general,D j (u) are not orthogonal projectors. Th
mean value of any functionf (u) is

^ f ~u!& j5E du f ~u!Pj~u!. ~2.6!

If the positive-operator measureD j (u) is canonically con-
jugate to the number operator~in the sense of a weak Wey
relation!, it should verify the shifting property@14#

eiu8a†aD j~u!e2 iu8a†a5D j~u1u8!. ~2.7!

This condition leads to the following general form fo
D j (u) in the number basis:

D j~u!5
1

2p (
n,n850

`

Gj~n,n8!ei ~n2n8!uun&^n8u, ~2.8!

where the coefficientsGj (n,n8) must ensure the statistica
conditions~2.5!.

Although these positive-operator measures avoid the d
nition of a phase operator, the evaluation of mean values
instance, of phase exponentials^eiku& j , becomes the mea
values of the sequence of operators@15#

E dueikuPj~u!5tr@rfieldEu, j
~k!#, ~2.9!

where

Eu, j
~k!5Eu, j

~2k!†5E dueikuD j~u!. ~2.10!

These operators are not unitary,

Eu, j
~k!Eu, j

~k8!ÞEu, j
~k1k8! , Eu, j

~k!ÞEu, j
k , ~2.11!

whereEu, j5Eu, j
(1) .

Most of the quantum descriptions of phase fall within th
kind of positive-operator-measures formalism. Some of th
have focused on the concept of phase as an observabl
nonically conjugate to the photon number. This is the cas
the Pegg-Barnett formalism which has been extensively s
ied in recent years@16#. This approach and some others e
-

fi-
or

m
ca-
of
d-
-

bodying this concept have been shown to be equival
leading to the positive-operator measureDSG(u) induced by
the Susskind-Glogower phase states@17,18#

DSG~u!5uu&^uu, ~2.12!

which is in the form of Eq.~2.8! with

GSG~n,n8!51. ~2.13!

Another widely used conception of phase is based on
amining quasiprobability distributions in phase spa
Among them, one of the most interesting and studied com
from theQ function @19–22# Q(a)5^aurfieldua&/p, where
ua& is a coherent state. A positive-operator measure for
field phaseDQ(u) can be defined in terms of the radial int
gration of ua&^au,

DQ~u!5
1

pE0
`

dr r ua5reiu&^a5reiuu, ~2.14!

which is also in the form of Eq.~2.8! with

GQ~n,n8!5
G„~n1n8!/211…

An!n8!
. ~2.15!

This less abstract and more pictorial method has the
vantage that it corresponds to a realistic scheme for ph
measurement, though a generalized or noisy one. This n
character is reflected by the fact that the integration
Q(a) over the real or imaginary parts ofa does not give the
probability for the corresponding quadratures of the fie
@23#, nor does the integration overu give the probability
distribution for the actiona†a @24#. On the other hand, defi
nitions based on generalized measurements give differen
sults for different quantum implementations of measurem
schemes which are classically equivalent, and so they do
provide a unique quantum description of phase@25,26#.

In addition to these two formalisms there are other a
proaches to the problem. We have singled out these
descriptions because we think they are representative en
of how phase can be described in the quantum domain.

III. PHASE FOR A TWO-LEVEL ATOM

In this section we focus on the quantum translation of
atomic-dipole phase for a two-level atom.

Denoting byug& and ue& the ground and excited energ
levels of the isolated atom, the effective component of
atomic dipole which couples the atom to a one-mode fi
can be written as

d5deg~ ue&^gu1ug&^eu!5deg~S11S2!52degSx ,
~3.1!

whereS6 are the Pauli spin-flip operators of a 1/2 angu
momentum. It has been assumed that^gudug&5^eudue&50
anddeg can be taken as real.

Considering the atom in the most general pure sta
uc&atom5cgug&1cee

iwue&, wherecg andce are real, the evo-
lution of the mean value ofd under the Hamiltonian of the
isolated atom~in units\51),
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Hatom5
v

2
~ ue&^eu2ug&^gu!5vSz , ~3.2!

is

^d&52cgcedegcos~vt2w!. ~3.3!

This leads us to identifyw as the phase of the atomic dipo
in the stateuc&atom.

The subject that concerns us in this section is the pro
description of this dipole phasew as a quantum variable
instead of as a state parameter. At this stage two alterna
routes can be followed. On the one hand and according to
usual procedure of ascribing an operator to each variabl
can be asked which operator could serve as a quantum t
lation of w. On the other hand and motivated by the fie
phase problem, we can consider that the optimum descrip
of the dipole phase should be provided by a positive-oper
measure. These two procedures are briefly examined in
following.

The mean value~3.3! of the atomic dipole is proportiona
to the real part of

^S2&5cgcee
2 ivteiw. ~3.4!

Thus, it seems appropriate to define the exponential of
atomic phaseEw as the unitary solution of the polar decom
position

S25AS2S1Ew5EwAS1S2, ~3.5!

which is the operator counterpart of Eq.~3.4!. After these
equations are solved forEw , an operatorFw can be defined
by Ew5eiFw. This is a particular case of a general definiti
of the SU~2! phase@27–29#. Here we will just briefly recall
the main properties of this definition, particularizing it to
two-level system.

Contrary to Eq.~2.1!, in this case there are unitary solu
tions of the form

Ew5ug&^eu1ei2w0ue&^gu, ~3.6!

wherew0 is arbitrary. The last term corresponds to a mat
element undefined by Eqs.~3.5! and appears due to the un
tarity requirement. Although the main features of this ope
tor are independent ofw0, its eigenvectors and eigenvalue
depend onw0. For the sake of concreteness we can mak
definite choice by imposing further conditions. For instan
according to Eq.~3.3!, the complex conjugation of the wav
function in the energy basis should reverse the sign ofFw

@10#. This leads toei2w0521, and the exponential of th
dipole phase becomes

Ew5ug&^eu2ue&^gu, ~3.7!

with eigenvectors

uw6&5
1

A2
~ ug&6 i ue&) ~3.8!

andEwuw6&56 i uw6&. To any functionf (w) we can asso-
ciate the operator
er

ve
he
it
ns-

on
or
he

e

-

a
,

f ~Fw!5(
6

uw6& f ~w6!^w6u ~3.9!

and the mean value

^ f ~Fw!&5(
6

f ~w6!P~w6!, ~3.10!

whereP(w6) is the probability distribution,

P~w6!5tr~ratomuw6&^w6u!. ~3.11!

With this choice forw0, Ew is proportional toSy . Also,
becauseEw

†52Ew , we have cosFw50. For other values of
w0 we get similar equations. This is a rather pathologi
behavior caused by the small dimension of the system
such strong relations no longer hold for dimensions ot
than two. In other words, a two-dimensional Hilbert space
not large enough to distinctly accommodate all differe
variables. This means that this behavior is not exclusive
this approach, and we will see later that equivalent un
pected features also appear when other approaches are

Another striking consequence of an operator descript
is that the dipole phase can take only two values6p/2, due
as well to the dimension of the atomic-state space.

One may think it preferable to describe the dipole pha
by a positive-operator measureD j (w), taking continuous
values in a 2p interval, even though this cannot lead to a
operator description. This is the possibility we examine
the following.

In this case the shifting property associated with the
pole phase is

eiw8SzD j~w!e2 iw8Sz5D j~w1w8!. ~3.12!

The most generalD j (w) fulfilling this property and the sta-
tistical conditions~2.5! is of the form

D j~w!5
1

2p
~ I1g je

iwue&^gu1g j* e
2 iwug&^eu!,

~3.13!

with ug j u<1 and we exclude the trivial caseg j50.
Before considering particular examples, let us exam

some properties that can be derived from the general f
~3.13!. Here again we have that mean values of phase fu
tions, in particular̂ eikw& j , become the mean value of oper
tors ^eikw& j5^Ew, j

(k) & with

Ew, j5Ew, j
~1!5E dweiwD j~w!5g j* ug&^eu5g j*S2 ,

~3.14!

and^eikw& j50 if uku.1. These relations show that the info
mationPj (w) conveys goes beyond what would strictly b
the atomic phase. For example, for everyratomwe have that
^Sx& and ^Sy& can be expressed in the form

^Sx&5
1

ug j u
E dw cos~w1d j !Pj~w!, ~3.15!
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^Sy&52
1

ug j u
E dw sin~w1d j !Pj~w!,

where d j5argg j . SinceSx
25Sy

251/4, Pj (w) contains the
complete statistics ofSx andSy . In particular, it contains the
whole statistics of the dipole operator and not only of
phase.

The most generalPj (w) is of the form

Pj~w!5
1

2p
~11cje

iw1cj* e
2 iw!, ~3.16!

with cj5^guratomue&g j . This means thatPj (w) is always
broader thanPk(w) if ug j u,ugku. This can be expresse
quantitatively by using the dispersion@30#

Dj
2512U E dweiwPj~w!U2512 z^guratomue& z2 ug j u2,

~3.17!

as a measure of the phase uncertainty. Clearly,Dj>Dk when
ug j u<ugku.

From Eq.~3.13! or ~3.16! we see that anyD j (w) can be
expressed as a linear combination of any otherDk(w) in the
form

D j~w!5
1

2pE dw8F11
g j

gk
ei ~w2w8!1

g j*

gk*
e2 i ~w2w8!GDk~w8!,

~3.18!

for anyg j ,gk . The same relation holds betweenPj (w) and
Pk(w), and so if one of them is known, the other one can
obtained. This means that all of them contain the same
formation about the atom stateratom.

A relevant feature of this approach, based on positi
operator measures, is that it provides an atomic-phase
scription where any value forw is allowed. Some remark
can be made concerning this dependence. This continu
range of variation is not completely effective in the sen
that the valuesPj (w) at every pointw cannot be indepen
dent, and we can find relations between them irrespectiv
the atomic state. In other words, allD j (w) cannot be linearly
independent because the atomic Hilbert spaceHatom is two
dimensional and the algebra of operators acting onHatom is
four dimensional. The most generalPj (w) depends only on
the complex parametercj . This cj can be determined by th
value ofPj (w) at two w points not differing byp. Never-
theless, more manageable expressions emerge if we use
points instead of two, such asw r52pr /3, r521,0,1. We
have

cj5
2p

3 (
r521

1

Pj~w r !e
2 iwr, ~3.19!

which allows us to expressPj (w) for any ratom as

Pj~w!5
1

3 (
k,r521

1

Pj~w r !e
ik~w2wr !, ~3.20!

and so the knowledge of the three valuesPj (w r) gives
Pj (w) at any other pointw. Similarly,
e
n-

-
e-

us
e

of

ree

D j~w!5
1

3 (
k,r521

1

D j~w r !e
ik~w2wr !. ~3.21!

This effective discreteness allows us to compute the m
values of any functionf (w) in a way very similar to Eq.
~3.10!,

^ f ~w!& j5
2p

3 (
r521

1

f̃ ~w r !Pj~w r !, ~3.22!

where f̃ is related tof by

E dweikw f̃ ~w!5E dweikw f ~w!, k50,61,

E dweikw f̃ ~w!50, uku.1, ~3.23!

and so

E dwPj~w! f̃ ~w!5E dwPj~w! f ~w!, ~3.24!

for anyPj (w). Discreteness then is also at the heart of th
formalisms.

Finally, we will consider two particular examples of
dipole-phase description which are motivated by the fie
phase problem. We can begin with a finite-dimensio
translation of Eqs.~2.3! and ~2.12!,

DSG~w!5uw&^wu, uw&5
1

A2p
~ ug&1eiwue&),

~3.25!

which is in the form of Eq.~3.13! with

gSG51. ~3.26!

The definition of this positive-operator measure seems
sonable in the sense that the operatorEw corresponds to a
selection of an orthogonal basis from the setuw&. This
positive-operator measure does not privilege anyuw& and all
of them play the same role.

As another example which parallels Eq.~2.14!, we can
consider the SU~2! coherent states for a 1/2 angular mome
tum @31#,

uq,w&5sinS q

2 D ug&1cosS q

2 Deiwue&, ~3.27!

and the SU~2! Q function they define,

Q~q,w!5
1

2p
tr~ratomuq,w&^q,wu!, ~3.28!

which can be regarded as a probability distribution in t
atomic-phase space. This allows us to define a posit
operator measure for the dipole phasew as

DQ~w!5
1

2pE0
p

dq sinquq,w&^q,wu, ~3.29!
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which corresponds to

gQ5
p

4
. ~3.30!

In this section we focused on phase descriptions fo
1/2 angular momentum because of our interest in its ap
cation to a two-level atom. Nevertheless, the generaliza
of all these definitions to an arbitrary angular momentum
straightforward.

IV. RELATIVE PHASE BETWEEN A TWO-LEVEL ATOM
AND A SINGLE-MODE FIELD

In order to describe in quantum terms the relative ph
between the atomic dipole and the field two main routes
be followed. We can start from previous descriptions of
field and dipole phases and manage them until we get
probability distribution for their differencef5w2u. Alter-
natively, we can focus directly on the relative-phase varia
trying to define the corresponding operator without any p
vious assumption about either the field- or dipole-phase
scriptions.

These two routes will lead to different results. Mainly, t
second one gives an operator, while the first one leads n
rally to a positive-operator measure. However, we will s
that, although they look very different, their structure is qu
similar. This similarity can be ascribed to those particu
features which appear when dealing with the difference
two periodic variables.

For an easier comparison we briefly recall the definit
of an operator for the relative phase@10#. The procedure is
almost the same as that followed for the dipole phase
unitary exponential of the relative phaseEf should emerge
from the equations

S2a
†5AS2S1a

†aEf5EfAS1S2aa
†, ~4.1!

which come directly from a classical factorization. Let
note that the following equation holds,

S2a
†5AS2S1EwAa†aEu

†5AS2S1a
†aEwEu

† , ~4.2!

which seems to lead to a nonunitary solutionEf5EwEu
† .

However, it has been shown that Eq.~4.1! has true unitary
solutions, so thatEfÞEwEu

† is allowed. To some extent, thi
leads us to expect that the relative phase has features
straightforwardly related to the properties of absolute pha

As occurs in other polar decompositions such as E
~2.1! and ~3.5!, Eqs.~4.1! do not fix all the matrix elements
of Ef and further conditions must be imposed@10#. The most
adequate are the translation into quantum mechanics o
classical Poisson brackets verified by the corresponding v
ables. The only one compatible with unitarity and the po
decomposition is

@Sz1a†a,Ef#50. ~4.3!

By imposing this relation, the problem can be reduced to
study of its restriction to each subspaceHn with fixed
Sz1a†a.
a
li-
n
s

e
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e
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The allowed values forSz1a†a are n21/2 with
n50,1 . . . ,̀ . The corresponding subspacesHn are
spanned by the common eigenvectors ofSz and a†a:
$ug,n&, ue,n21&% for n.0 and ug,0& for n50. The total
Hilbert spaceH can be expressed as the direct sum of
these subspaces as

H5 %

n50

`

Hn . ~4.4!

Once the polar decomposition~4.1! has been solved in eac
of these subspaces, obtaining the family of operatorsEf

(n) ,
the solution for the whole space is

Ef5 (
n50

`

Ef
~n! , ~4.5!

from which a Hermitian relative-phase operatorFf can be
defined asEf5eiFf.

The solutions are

Ef
~0!5ug,0&^g,0u,

~4.6!

Ef
~n!5ug,n&^e,n21u2ue,n21&^g,nu,

with eigenvectors

uf0
~0!&5ug,0&,

~4.7!

uf6
~n!&5

1

A2
~ ug,n&6 i ue,n21&), for n.0,

and eigenvalues

Efuf0
~0!&5uf0

~0!&,
~4.8!

Efuf6
~n!&56 i uf6

~n!&, for n.0.

As occurs with the dipole-phase operator, we have t
Ef
†(n)52Ef

(n) for n.0, Ef
†(0)5Ef

(0) , and therefore
cosFf50 outsideH0, and sinFf50 forH0. Another striking
feature of this result is that the relative phase can take o
three values. This may be surprising since any value for
field phase seems allowed. The reasons for these beha
are the same as those discussed for the dipole phase. D
the commutation relation~4.3!, the operator splits into com
ponents acting on two-dimensional subspacesHn ~one di-
mensional forH0), and so the previous features can be
cribed to the particular dimension of the atomic space. T
is supported by the fact that this operator behaves prop
when considering classical limits for either the atom or t
field @10#.

Another relevant point is thatEf cannot be written as a
product of phase exponentials for each system. This rela
phase is not the difference of absolute phases, and it doe
have the usual mathematical properties of a difference.
worth noting that this is not exclusive of this formalism, an
it also arises in other relative-phase approaches, as has
shown for two field modes@32#.
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The other possibility of describing the relative phase is
deriving a positive-operator measure from the correspond
ones for dipole and field absolute phases. This is what
next examine.

The joint-probability distribution for the atomic-dipol
and field phases is

Pj~u,w!5tr@rD j~u,w!#,
~4.9!

D j~u,w!5D j~u! ^ D j~w!,

whereD j (u) andD j (w) are the positive-operator measur
defined in the preceding sections. From these expression
have to consistently derive a positive-operator meas
D j (f) for the relative phasef5w2u. This can be achieved
in many ways.

We could try a change of variables to expressD j (u,w) in
terms of the phase sum and phase difference, then remo
the phase-sum dependence by the corresponding integra
Although this change of variables is nonbijective, it can
carried out by very general methods@24#.
io

s
ilit
ub
y
g
e

we
re

ing
on.
e

Another possibility is to directly define the probabilit
distribution for the relative phase as

Pj~f!5E duPj~u,u1f!5tr@rD j~f!#, ~4.10!

where

D j~f!5E duD j~u,u1f!. ~4.11!

In the Appendix it is shown that this definition is consiste
with the procedure based on the change of variables m
tioned above.

The result forD j (f) can be written as

D j~f!5 (
n50

`

D j~n,f!, ~4.12!

with
D j~n,f!5H 1

2p
@ I ~n!1m j~n!eifue,n21&^g,nu1m j* ~n!e2 ifug,n&^e,n21u#, n.0,

1

2p
I ~0!, n50,

~4.13!
of

y

tor,
where

m j~n!5g jGj~n21,n!, ~4.14!

and I (n) is the identity inHn .
For the two examples considered in the preceding sect

we have

mSG~n!51, mQ~n!5
p

4

G~n11/2!

~n21!!An
. ~4.15!

The exponentials of the relative phaseeikf become the
mean values of the nonunitary operators

^eikf& j5^Ef, j
~k! &5 K E dfeikfD j~f!L . ~4.16!

This givesEf, j
(k)50 unlessk50,61. The casek50 gives the

identity, whilek51 gives

Ef, j5Ef, j
~1! 5 (

n51

`

m j* ~n!ug,n&^e,n21u5Ew, jEu, j
† ,

~4.17!

k521 being the Hermitian conjugate of this last one.
Perhaps the most important feature of both approache

expressed in the previous decomposition of the probab
distribution over the independent contributions for each s
ns

is
y
-

spaceHn . This is a consequence of the shifting property
D j (u) andD j (w) which leads to

eif8~Sz1a†a!D j~f!e2 if8~Sz1a†a!5D j~f!. ~4.18!

This implies the commutation relation@D j (f),Sz1a†a#50
and then the previous splitting ofD j (f) follows. In other
words, this expresses the invariance ofPj (f) under any
phase-sum shift. The system stater and

eif8~Sz1a†a!re2 if8~Sz1a†a! ~4.19!

have the samePj (f). Thus shifting the phase of the field b
f8 is equivalent to shifting the dipole phase by2f8. If this
formalism were to emerge from a relative-phase opera
this property would imply its commutation withSz1a†a as
in Eq. ~4.3!.

On the other hand, from Eqs.~2.7!, ~3.12!, and~4.11!, we
have the relative-phase shifting property

eif8~Sz2a†a!/2D j~f!e2 if8~Sz2a†a!/25D j~f1f8!.
~4.20!

The compatibility withSz1a†a allows us to introduce the
joint-probability distributionPj (n,f) for n and f, in the
form

Pj~n,f!5tr@rD j~n,f!#, ~4.21!
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satisfying

(
n50

`

Pj~n,f!5Pj~f!,

~4.22!

E dfPj~n,f!5P~n!,

whereP(n) is the probability of getting the valuen21/2 for
Sz1a†a.

We have here a point of comparison with the relativ
phase operator obtained from the polar decomposition. F
different starting points, we arrive at the same compatibi
with Sz1a†a, which is expressed by the relative-phase o
erator in Eq.~4.3!.

Despite this common property, a strong difference s
remains. The polar decomposition leads to only three
lowed values for the relative phase, while any value see
possible for the positive-operator measures. Due to the
vious splitting into independent contributions over ea
Hn , here we are in a position similar to that found for t
dipole phase. Accordingly, we could translate the sa
analysis here.

Due to the dimension ofHn , any operator has just two
eigenvalues forn.1 and one forn50. On the other hand
the most general form ofPj (n,f) is

Pj~n,f!5
1

2p
@a~n!1b j

~n!eif1b j
~n!* e2 if#, ~4.23!

wherea (n)5P(n) is real. Since this function depends just o
three parameters, it can be completely fixed by its value
three properly chosenf points for eachn. This corresponds
to the analysis in each subspaceHn . In addition to this, we
also have that the wholePj (f) can be written in the form

Pj~f!5
1

2p
~11cje

if1cj* e
2 if!. ~4.24!

The completePj (f) function depends just on two param
eters and thus can be completely fixed by its value in t
points. This means that formulas~3.20!, ~3.21!, and ~3.22!
could be translated here exactly in the same terms and, th
fore, these formalisms show an effective discreteness de
their apparent continuity. Moreover, this effective discre
ness applies to any relative-phase description with the p
erties~4.18! and ~4.20!.

V. EVOLUTION OF THE ATOM-FIELD RELATIVE
PHASE IN THE JAYNES-CUMMINGS MODEL

In this section we study the evolution of the relative pha
between the atomic dipole and the field for the Jayn
Cummings model@33#, comparing the approaches develop
in the preceding section. The evolution of the absol
phases of both systems is briefly examined as well.

The Jaynes-Cummings Hamiltonian for the atom-field
teraction reads~in the rotating-wave approximation, at exa
resonance, and\51)

H5vSz1va†a1l~a†S21S1a!. ~5.1!
-
m
y
-

ll
l-
s
e-

e

n

o

re-
ite
-
p-

e
-

e

-

Its apparent simplicity belies the fact that the evolution
physical quantities displays an extraordinary complexity, a
so it serves as a testing ground for many theoretical conce
For our purposes, its sensitivity to the relative phase betw
the atomic dipole and the field has been tested@34,35#.

The Hamiltonian commutes with the total excitation num
ber Sz1a†a and can be diagonalized in the subspacesHn ,
giving the dressed states@36#

uC0
~0!&5ug,0&,

~5.2!

uC6
~n!&5

1

A2
~ ug,n&6ue,n21&),

with eigenvalues

HuC0
~0!&52

v

2
uC0

~0!&,
~5.3!

HuC6
~n!&5@~n21/2!v6lAn#uC6

~n!&.

A first interesting and simple example of evolution is t
case where the initial state of the system is the product of
atom in its ground state and the field in a number st
uC&5ug,n& with n.0. At later timest, the state is given by

uC~ t !&5cos~lAnt!ug,n&2 isin~lAnt!ue,n21&,
~5.4!

and the probabilities of finding the atom in the upper a
lower states are

Pg~ t !5cos2~lAnt!, Pe~ t !5sin2~lAnt!. ~5.5!

The population inversionW5ue&^eu2ug&^gu52Sz is then

^W&52cos~2lAnt!. ~5.6!

We can begin by considering the operator description
the relative phase. If we ask for the probability of finding t
system with phase differences 0,2p/2 or p/2, we have

P2p/2~ t !5cos2~lAnt2p/4!,

P0~ t !50, ~5.7!

Pp/2~ t !5sin2~lAnt2p/4!.

This gives the mean value

^Ef&52 i sin~2lAnt!, ~5.8!

and so^cosFf&50.
Concerning the evolution of the relative phase given

the two positive-operator measures of the preceding sec
we have the mean values

^eif& j52
i

2
m j* ~n!sin~2lAnt!. ~5.9!

For the two positive-operator measures studied herem j (n) is
real, and so we havêcosf&j50, as occurs for the operato
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56 1001RELATIVE PHASE FOR A QUANTUM FIELD . . .
description. For all approaches we have the same harm
evolution but with different amplitudes.

If we ask for the evolution of the field and dipole absolu
phases, we getPj (u)5Pj (w)51/(2p), and so they are al
ways uniform.

When initially the field is in a coherent stateua&, the close
relation~simply a time translation! between the evolution o
the relative phase and the population inversion of the pr
ous example allows us to expect similar collapses and re
als for the relative phase as those experienced by the p
lation inversion. When the initial state isug&uc&, with uc& an
arbitrary field state, we have the mean value associated
the operator description

^Ef&5Pc~0!2 i(
n51

`

sin~2lAnt!Pc~n!, ~5.10!

where Pc(n) is the field photon-number distributio
u^nuc&u2. Equivalently we have

^sinFf&52 (
n50

`

sin~2lAnt!Pc~n!

5ImF (
n50

`

e2 i2lAntPc~n!G , ~5.11!

and ^cosFf&5Pc(0).
On the other hand, the positive-operator measures gi

similar evolution

^eif& j52
i

2(n51

`

m j* ~n!sin~2lAnt!Pc~n!. ~5.12!

Taking into account the reality ofmSG(n) andmQ(n) this is
equivalent to

^sinf& j52
1

2(n50

`

m j~n!sin~2lAnt!Pc~n!

5
1

2
ImF (

n50

`

m j~n!e2 i2lAntPc~n!G , ~5.13!

and here again we have^cosf&j50.
We should point out that the equality^cosf&j50 is due to

the fact that the atom is initially in its ground sta
~the excited state will also provide the same result!. If at
t50 the atom is in a superposition, we will have in gene
^cosf&jÞ0, whereas the operator will always giv
^cosFf&5ucgu2Pc(0).

This relative-phase evolution can be compared with
time dependence of the population inversion

^W&52 (
n50

`

cos~2lAnt!Pc~n!

52ReF (
n50

`

e2 i2lAntPc~n!G . ~5.14!

In Fig. 1 we shoŵW&, ^sinf&Q , and^sinf&SGwhen the field
is initially in a coherent stateua& with mean number of pho
ic

i-
v-
u-

ith

a

l

e

tons uau255. The mean valuêsinFf& is not represented
since^sinFf&52^sinf&SG. One can appreciate the similarit
between̂ sinf&Q and^sinf&SG, and their close relation with
^W&. In particular^sinf&j and ^sinFf& experience the sam
collapse and revival dynamics of the population inversion

Next we outline a plausible physical interpretation of t
similarity between relative phase and population inversi
The interaction Hamiltonian in the rotating-wave approxim
tion is proportional to the components of the atomic dipo
and field quadratures and also proportional to cosf. In clas-
sical terms, the dipole energy is maximum or minimum
ther when sinf50 or when the field quadratures or th
atomic dipole components vanish. In the quantum case,
the initial stateug,n&, the population inversion has maximum
or minimum values precisely when̂sinFf&5^sinf&j50.
This relation holds very approximately when the initial sta
is ug&ua&, as can be seen in Fig. 1.

If the atom is initially in its ground state, the mean valu
of the dipole operator vanishes and therefore so does
interaction Hamiltonian. Since in the resonant case the in
action Hamiltonian is a constant of the motion, we wou
expect cosf50 and sinf561 at all later times. Whicheve
formalism is used, the relative phase is effectively uniform
t50 due to the randomness of the dipole phase. Due to
quantum fluctuations, the condition sinf561 cannot be es-
tablished instantaneously, whereas this is possible cla
cally. Nevertheless, the trend to satisfy this phase rela
can be recognized in Fig. 1 in the initial stages of the evo
tion, before the quantum evolution displays its complexit

On the other hand, we always have^cosf&j50, and so at
any time arĝeif& j56p/2, in agreement with the precedin
discussion. For the operator description^cosFf&5Pc(0), and
so arĝEf&.6p/2 will occur only provided that
Pc(0)!^sinFf&.

Therefore expressions~5.11!, ~5.13!, and~5.14! as well as
Fig. 1 show that the previously discussed relationship
tween relative phase and population inversion extends to
quantum case.

In addition to this we can show that Fig. 1 also conve
relevant information about the evolution of the relative-pha
uncertainty. Since we are dealing with a 2p-periodic vari-

FIG. 1. Evolution of the mean values of the population invers
^W& ~thick solid line!, the sine of the relative phase^sinf&Q ~thin
solid line!, and^sinf&SG ~dotted line! when the field is initially in a
coherent state with mean-photon numberuau255 and the atom is in
the ground state.
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1002 56A. LUIS AND L. L. SÁNCHEZ-SOTO
able, a suitable measure of this relative-phase uncertain
provided by the dispersion@30,37#. In the case of the opera
tor description, the dispersion is defined as

D2512u^Ef&u2512^sinFf&22^cosFf&2, ~5.15!

whereas for the positive-operator measures we have

Dj
2512u^Ef, j

~1! &u2512^sinf& j
22^cosf& j

2 . ~5.16!

For the cases considered in this work we have alw
^cosf&j50 and ^cosFf&5Pc(0), and so the evolution o
^sinf&j and ^sinFf& represented in Fig. 1 directly gives th
evolution of the relative-phase uncertainty. The dispersio
minimum for those interaction times for whicĥsinf&j is
maximum and vice versa.

It is interesting to examine how the evolution of the re
tive phase depends on the initial state of the field. In the fi
place, we can consider the dependence of the relative-p
dynamics on the mean-photon number when the field sta
initially coherent. In Fig. 2 we shoŵW& and^sinf&SGwhen
^n&5uau2510 and the atom is in the ground state. He
again the relative phase closely follows the population inv
sion, the oscillations being alwaysp/2 out of phase. The firs
revival occurs later than in Fig. 1, it is slightly broader, a
the maximum amplitude of the oscillations is almost t
same. This dependence on^n& is known for^W& and here we
show that it is also experienced by the relative phase. L
we will show these features more clearly when consider
the limit of high photon numbers.

There are other interesting initial field states like idea
squeezed states,

ua,j&5eaa†2a* aej* a22ja† 2
u0&. ~5.17!

These states offer the possibility of examining how t
dipole-phase dynamics is influenced by the initial field-ph
uncertainty. This is because the field-phase distribut
depends ona and j. For fixed values ofr52uju and
uau, it depends strongly on the squeezing directi
d5arg(a)2arg(j)/2 ~the angle between the direction of th
coherent componenta and the minor axis of the uncertaint
ellipse in the quadrature phase space!.

FIG. 2. Evolution of the mean values of the population invers
^W& ~solid line! and the sine of the relative phase^sinf&SG ~dotted
line! when the field is initially in a coherent state with mean phot
numberuau2510 and the atom is in the ground state.
is

s
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-
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If d50, the initial squeezed state has phase uncerta
higher than that of a coherent state of the same mean ph
number and a narrower photon-number distribution.
d5p/2, it has lesser phase uncertainty and broader pho
number distribution.

In Fig. 3 we have represented^W& and ^sinf&SG for an
initial squeezed state witĥn&510, r50.5, andd50. In
comparison with the unsqueezed coherent state in Fig. 2
can see that the first revival time coincides~the mean photon
number is the same!. The revival is narrower and the max
mum amplitude of the oscillations is higher.

In Fig. 4 we have represented^W& and ^sinf&SG for an
initial squeezed state witĥn&510, r50.5, andd5p/2. In
comparison with Fig. 2 the revival time is the same but n
the envelope is broader and the maximum value of the os
lations is smaller.

Throughout we have pointed out the close relation
tween population inversion and relative phase. In E
~5.11!, ~5.13!, and ~5.14! they are the real and imaginar
parts of the same expression. We can take advantage o
fact to translate to the relative phase the previous analys
the dynamics of the population inversion. In particular, so
approximate analytical expressions for^W& in Eq. ~5.14! are
available@38,39# which can be directly translated to the rel

FIG. 3. Evolution of the mean values of the population invers
^W& ~solid line! and the sine of the relative phase^sinf&SG ~dotted
line! when the field is initially in a squeezed state with^n&510,
r50.5, d50 and the atom is in the ground state.

FIG. 4. Evolution of the mean values of the population invers
^W& ~solid line! and the sine of the relative phase^sinf&SG ~dotted
line! when the field is initially in a squeezed state with^n&510,
r50.5, d5p/2 and the atom is in the ground state.
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56 1003RELATIVE PHASE FOR A QUANTUM FIELD . . .
tive phase in Eqs.~5.11! or ~5.13!. Such an approximation
can be very useful to prove the previous features of the ph
evolution when the mean photon number is very large.

Under appropriate conditions it has been shown@39# that
it is essentially the shape of the photon-number distribut
which governs the first revivals envelope. For instance,
first revival of the population inversion becomes

^W&.2PcS n5
l2t2

4p2D lt

pA2
cosS l2t2

2p
2

p

4 D . ~5.18!

The same approximation can be applied to Eq.~5.13!, lead-
ing to a first revival of̂ sinf&SG of the form

^sinf&SG.2
1

2
PcS n5

l2t2

4p2D lt

pA2
sinS l2t2

2p
2

p

4 D .
~5.19!

We can note that the envelope is the same and the rela
between the oscillations agrees with the previous disc
sions. ReplacingPc(n) by the corresponding expression f
a coherent or squeezed state the dependence of the re
phase with^n& and d in Figs. 2, 3, and 4 can be easi
derived. In the case of large photon number and mode
squeezingPc(n) can be replaced by a Gaussian approxim
tion

Pc~n!.
1

A2pDn
expF2

~n2^n&!2

2~Dn!2 G , ~5.20!

with

~Dn!25~^n&2sinh2r !~e22rcos2d1e2rsin2d!

12sinh2r cosh2r . ~5.21!

Equations~5.19!, ~5.20!, and ~5.21! show how the relative
phase dynamics~revival time, width, and peak of the enve
lope modulating the oscillations! depends on the field initia
conditions.

For example, in Fig. 5 we have represented the varia

FIG. 5. Behavior of the envelope for the first revival as a fun
tion of the squeezing directiond when the field is initially in a
squeezed state witĥn&5100,r50.5 and the atom is in the groun
state.
se

n
e

on
s-

tive

te
-

n

of the first revival envelope withd for fixed mean photon
number^n&5100. This dependence agrees with that sho
in Figs. 3 and 4 for smaller values of the mean photon nu
ber.

Although throughout this work we have focused on t
relative phase, it could be also interesting to consider brie
the time variation of the dipole and field absolute phas
When the system is initially in the stateug&ua& with
a5uaueid we have, for the dipole and field phases,

^eiw& j52 ig j*Rw~ uau,t !e2 i ~vt2d!,
~5.22!

^eiu& j5Ru, j~ uau,t !e2 i ~vt2d!,

where

Rw~ uau,t !5uau (
n50

`

sin~lAn11t !cos~lAnt!

3
1

An11
Pa~n!,

~5.23!

Ru, j~ uau,t !5uau (
n50

`

@Gj~n,n11!cos~lAn11t !cos~lAnt!

1Gj~n21,n!sin~lAn11t !sin~lAnt!#

3
1

An11
Pa~n!.

These functionsRw(uau,t) andRu, j (uau,t) are always real,
and they are plotted in Fig. 6 foruau251.6. We can note tha
Ru,Q is smaller thanRu,SG, leading to slightly greater value
of the phase dispersion, in accordance with the general r
tion between these two approaches@14#

The evolutions~5.22! show the natural harmonic variatio
of both phases with the6p/2 phase difference discusse
above. The harmonic evolution is modulated by the ter
Rw(uau,t) andRu, j (uau,t), which contain the quantum detail
of the evolution, since in a classical theory they are const

-
FIG. 6. Evolution of theRu,Q ~dashed line!, Ru,SG ~dotted line!,

andRw ~solid line! factors modulating the harmonic evolution of th
field and atomic-dipole phases, respectively, when the field is
tially in a coherent state with mean photon numberuau251.6 and
the atom is in the ground state.
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1004 56A. LUIS AND L. L. SÁNCHEZ-SOTO
In Eqs.~5.23! it can be seen that these terms contain t
different kinds of frequencies. The product of harmon
terms gives rise to the frequenciesl(An116An) which, for
high enoughn, are of the formlAn and l/(2An). The
lAn terms give rise to the Rabi oscillations and the collap
and revival dynamics. On the other hand, thel/(2An) fre-
quencies are much smaller with a period close to the
revival time. The effect of both kinds of frequencies
clearly shown byRw(uau,t) in Fig. 7, whereuau2520.

Concerning the field evolution, the SG case contains o
the low frequencies. TheQ case also contains the high
frequencies. However, they are modulated
GQ(n,n11)2GQ(n21,n) which is close to zero for high
enoughn, and so only the slowly varying part is effective.
the case of mean photon numberuau2520 in Fig. 7,Ru,Q and
Ru,SG coincide and cannot be distinguished.

These modulating factors also provide a measure of
phase uncertainty through the dispersion. For instance,
can see that the dispersion of the field phase becomes m
mumRu, j (uau,t)50 near the collapse time. A detailed stud
of the field phase evolution within this framework can
found in Refs.@40,41#. Also and according to the conclu
sions of Sec. III, the atomic dipole moment displays t
same kind of evolution@42#.

VI. CONCLUSIONS

In this work we have studied and compared several p
sible descriptions of the atom-field relative phase. These
an operator defined in terms of a polar decomposition
two positive-operator measures derived from the correspo
ing measures for field and dipole phases. This led us to
amine quantum descriptions of the dipole phase for a t
level atom.

The evaluation of these formalisms shows that, althou
strictly speaking they give different results, they share a
of properties. In all the cases, we have that this variabl
compatible with the total excitation number. This inevitab
leads to an effective discreteness even if in principle a c
tinuous range of variation is assumed. These two facts
naturally reflected by the operator description.

We have also found similarities when studying the evo
tion of the relative phase within the Jaynes-Cummin

FIG. 7. Evolution of theRu,SG ~dotted line! andRw ~solid line!
factors when the field is initially in a coherent state with me
photon numberuau2520 and the atom is in the ground state.
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model. Although numerical values are different, all these f
malisms provide the same relevant features. Such an ev
tion is in agreement with some classical and semiclass
relations and also with the notable quantum character of
kind of dynamics.

The relative phase studied here involves a system des
able by a two-dimensional Hilbert space and a very dissi
lar one described by an infinite-dimensional space. This c
can be generalized along the same lines to situations inv
ing other spinlike systems describable by Hilbert spaces
arbitrary finite dimension.

For all the approaches considered, some unexpected
tions arise which are entirely due to the particular dimens
of the atomic state space. These pathological behaviors
appear as soon as the dimension is increased, and so th
not imply any flaw for the phase formalisms studied here
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APPENDIX: POSITIVE-OPERATOR MEASURE
FOR THE RELATIVE PHASE

Let us consider a joint-probability distribution functio
P(f1 ,f2) for two 2p-periodic variablesf1 ,f2 that in gen-
eral will arise from a positive-operator measureD(f1 ,f2),

P~f1 ,f2!5tr@rD~f1 ,f2!#, ~A1!

wherer is any system state. We will refer tof1 andf2 as
phases, although the procedure to be followed can be app
to any pair of 2p-periodic variables.

As a first step, we want to find the probability distributio
functionP(f1 ,f2) for the phase sum and difference,

f15f11f2 , f25f22f1 , ~A2!

where we assume thatf1 and f2 are also 2p periodic.
Then we integrateP(f1 ,f2) over the phase sum in order t
obtain the probability-distribution function for the phase d
ference

P~f2!5E df1P~f1 ,f2!. ~A3!

Our final objective is to get a positive-operator meas
D(f2) such that

P~f2!5tr@rD~f2!#. ~A4!

As far as we consider all these variables as 2p periodic,
the change~A2! is nonbijective since the pairs (f1 ,f2) and
(f11p,f21p) give the same (f1 ,f2) mod(2p). There-
fore, in order to obtainP(f1 ,f2) from P(f1 ,f2), the
change~A2! must be followed by the addition of these tw
contributions, so that, taking into account the Jacobean
transformation~A2!, we getP(f1 ,f2) as
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P~f1 ,f2!5
1

2FPS f12f2

2
,
f11f2

2 D1PS f12f2

2

1p,
f11f2

2
1p D G , ~A5!

which is a 2p-periodic function off1 andf2 . This rela-
tion is equivalent to imposing the following equalities for th
mean values of thef1 ,f2 exponentials:

E df1df2e
ikf1ei l f2P~f1 ,f2!

5E df1df2e
ik~f11f2!ei l ~f22f1!P~f1 ,f2!.

~A6!

SinceP(f1 ,f2) andP(f1 ,f2) are both 2p periodic, we
have the Fourier decomposition

P~f1 ,f2!5
1

~2p!2(k,l Pk,l e
2 ikf1e2 i l f2,

P~f1 ,f2!5
1

~2p!2(k,l Pk,l e
2 ikf1e2 i l f2. ~A7!

Both Eqs.~A5! and~A6! lead to the equation for the Fourie
amplitudes,

Pk,l 5Pk2l ,k1l . ~A8!
el

s

.

Concerning the probability distributionP(f2) for the
phase difference it has the Fourier expression

P~f2!5
1

2p(
l
Pl e2 i l f2. ~A9!

Using Eqs.~A3! and ~A6! we have the relations

Pl 5P0,l 5P2l ,l . ~A10!

On the other hand, the following equation holds:

P2l ,l 5E df2e
i l f2E duP~u,u1f2!, ~A11!

and so Eqs.~A9!, ~A10!, and~A1! give

P~f2!5E duP~u,u1f2!5trFrE duD~u,u1f2!G .
~A12!

Then, Eq.~A5! provides the desired positive-operator me
sure as

D~f2!5E duD~u,u1f2!, ~A13!

which is Eq.~4.11!.
This shows that the transformation law~A5! is consistent

with the natural definition~4.10!.
ett.
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