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Polymorphic beams and Nature 
inspired circuits for optical current
José A. Rodrigo & Tatiana Alieva

Laser radiation pressure is a basis of numerous applications in science and technology such as atom 
cooling, particle manipulation, material processing, etc. This light force for the case of scalar beams is 
proportional to the intensity-weighted wavevector known as optical current. The ability to design the 
optical current according to the considered application brings new promising perspectives to exploit the 
radiation pressure. However, this is a challenging problem because it often requires confinement of the 
optical current within tight light curves (circuits) and adapting its local value for a particular task. Here, 
we present a formalism to handle this problem including its experimental demonstration. It consists of 
a Nature-inspired circuit shaping with independent control of the optical current provided by a new kind 
of beam referred to as polymorphic beam. This finding is highly relevant to diverse optical technologies 
and can be easily extended to electron and x-ray coherent beams.

The ability of light to exert a force on objects along its propagation direction, known as radiation pressure, is a 
well-understood phenomenon. This was first conjectured by Kepler in 1619 to explain why a comet’s tail (dust) 
points away from the sun. The first laboratory demonstrations of the radiation pressure force were reported 
in 1901 by Lebedev1 and Nichols2. Today, the radiation pressure is understood in the context of light-matter 
interaction as a consequence of the conservation of momentum during absorption and scattering of photons. 
As in other areas of science, the invention of the laser prompted renewed interest in the radiation pressure for 
optical manipulation of micro/nano-particles3–9, atom cooling10–14, material processing and cleaning15,16, etc. 
Interestingly, only two decades ago, it has been found that the phase of a laser beam can redirect part of the radi-
ation pressure yielding transverse optical forces suited for manipulation of small particles. Indeed, the rotation 
of micro-particles induced by the familiar Gaussian optical vortex17–22 is a well-known manifestation of such 
transverse forces, which, however, are not restricted to the particular case of vortex beams. This kind of transverse 
forces is proportional to the optical current23 defined as j(r) =​ I(r)∇​Φ​(r), where I(r) and Φ​(r) are the intensity and 
phase distributions of the beam with r =​ (x, y) and ∇​ being the position vector and the gradient in a transverse 
plane, correspondingly.

To efficiently exploit the transverse forces governed by the optical current, this has to be confined into 
well-defined circuits with form and size easily tailored to the considered application. Such circuits for optical 
current correspond to high intensity gradient light curves, where the phase can be independently prescribed in 
a large variety of configurations providing a control of the current flow along the circuit. The combined use of 
high intensity and phase gradients, for example, allows for improving laser micromachining tools24. Moreover, 
three-dimensional (3D) high intensity gradients of the beam yield additional optical forces responsible for stable 
3D trapping of dielectric particles while the phase gradient forces can drive their transport along the circuit25,26. 
Note that transverse optical forces associated to the phase gradient of a focused laser beam along a line and 
circle25 as well as along other closed and open curves26 have been proved suitable for 3D transport of dielec-
tric micro-particles. These conditions cannot be fulfilled by the usually applied Gaussian beams and require 
the use of suitably structured diffraction-limited beams. Another important requirement is the ability to create 
complex circuit shapes tailored to the considered application. Fortunately, Nature has evolved many inspiring 
solutions to design problems. Indeed, the curved circuits can be described by an elegant expression known as 
Superformula, which was found by J. Gielis27 in the study of biological and other natural forms: shapes of plants, 
micro-organisms (e.g.: cells, bacteria and diatoms), small animals (e.g.: starfish), crystals, etc. The Superformula 
gives the radius of the curve
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as a function of the polar angle t, where the real numbers in q =​ (a, b, n1, n2, n3, m) are the design parameters 
of the curve and ρ(t) is a non-periodic function of t required for the construction of asymmetric and spiral-like 
curves (e.g.: ρ(t) ∝​ eαt or ρ(t) ∝​ tα ). For ρ(t) =​ ρ0 and q =​ (1, 1, 1, 1, 1, 0), where t ∈​ [0, 2π], a circle with radius 
R(t) =​ ρ0 is obtained while for other values of q a variety of closed polygons of different symmetry are easily gener-
ated. Note that the Superformula has also been used in the design of 3D dielectric lens antennas28 and to describe 
complex shapes of metamaterials29 and nanostructures30.

Here we introduce the concept of polymorphic beam that fulfills the aforementioned requirements. It can 
be focused into a diffraction-limited light curve described by the Superformula yielding optical current circuits 
with the following key properties: i) high intensity gradients, ii) diversity of forms with inherent biomimicry 
created in a practical way, iii) independent phase gradient control, iv) arbitrary design of the optical current along 
the circuit. This makes the focused polymorphic beam a multi-functional tool of high technological interest. 
In particular, the expected applications include: Single-shot laser lithography, micro-machining (e.g.: drilling 
and marking)24,31, photo-fabrication of structures for tissue engineering scaffolds32–34 or other sophisticated con-
structs35–37, transport of particles along programmed trajectories25,26 required for drug delivery, rheology, creation 
of colloidal motors and study of collective particle dynamics, to name a few.

Results
Description of a polymorphic beam.  The complex field amplitude of a polymorphic beam is written as

∫=





− +






.E x y g t k R t x t y t t( , ) ( )exp i

f
( )( cos sin ) d

(2)

T

0

The function g(t) is a complex valued weight (with dimension of electric field) of the plane waves comprising 
the beam and f is a normalization constant. The parameter T stands for the maximum value of the azimuthal 
angle t, where k =​ 2π/λ with λ being the light wavelength. The radius R(t) given by Eq. (1) varies according the 
curve that can be either closed (T =​ 2π and constant ρ(t)) or open. To create the light curve (optical circuit), the 
polymorphic beam is Fourier transformed:
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by using a convergent lens of focal length f. Taking into account the δ –function properties:
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2 2 , we derive that the complex field amplitude E u v( , ) is described by the 2D 

curve written in parametric form as c(t) =​ (u(t), v(t)), with u(t) =​ −​R(t)cost and v(t) =​ −​R(t)sint. The field ampli-
tude distribution along the curve is given by κ ′=E t g t tc( ) ( ) / ( ) , where: ′ = ′ + ′t u t v tc ( ) ( ) ( )2 2  
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 being the curve length.

For the analysis of the optical current it is convenient to write the complex function g(t) in the form

π
= Ψ =











g t g t i g t l

S T
S t( ) ( ) exp( ) ( ) exp i 2

( )
( ) ,

(5)

with S(t) being an arbitrary real function describing the phase variation along the curve. We underline that the 
parameter l defines the phase accumulation along the entire curve. For closed curves the phase accumulation is 
2πl and l corresponds to the vortex topological charge: = ∇Ψ
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, see for example38. The direction of the 
phase gradient coincides with the curve tangent v = dc/|dc| and then ∇​Ψ​ =​ v · dΨ​/dc, where the phase derivative 
is given by
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Thus, the optical current is expressed as
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Therefore, R(t) defines the form of the circuit while g(t) prescribes the optical current along it.
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In general, the value of the optical current can be modified by changing the intensity distribution or phase 
gradient. However, in the most of applications it is preferable to maintain uniform intensity distribution along the 
circuit, that corresponds to |g(t)| =​ E0κ|c′​(t)|, in which case the optical current is written as
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We recall that the phase function S(t) is arbitrary and can be independently specified. For example, the 
function

∫ τ τ′=S t c( ) ( ) d , (9)
t

0

which prescribes an uniform phase distribution along the curve c(t), can be applied to create circuits with con-
stant optical current: π= −E lLj v20

2 1 .
Thus, the polymorphic beam is a perfect tool for creating arbitrary optical current, governed by g(t), confined 

inside an independently designed circuit with form and size given by R(t).

Non-diffractive beams as a particular case of the polymorphic beam.  For the simple case of con-
stant radius of the curve: R(t) =​ R and T =​ 2π, the Eq. (2) is reduced to the well-known Whittaker’s integral39 
describing non-diffractive beams. Indeed, for κ=g t E R lt( ) exp(i )0 , a Bessel beam40–42 that focuses into a 
ring-like vortex beam25 of radius R with topological charge l is created. The intensity and phase distributions are 
uniform along the ring due to |g(t)| =​ E0κ|c′​(t)| =​ E0κR and S(t) =​ t, respectively. This is easy to demonstrate by 
considering polar coordinates x =​ rcosθ and y =​ rsinθ as it follows: The plane waves of Eq. (2) are exp[−​iκ 
(xcost +​ ysint)] =​ exp(−​iκrsin(θ −​ t)), and the resulting polymorphic beam corresponds to the helical Bessel 
beam of order l:
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The top panel of Fig. 1(a) shows the intensity and phase of the helical Bessel beam 
E x y( , ) with charge 

l =​ 34. The corresponding focused beam (at the Fourier plane), displayed in the bottom panel of Fig. 1(a), reveals 

Figure 1.  Intensity and phase distributions of the polymorphic beam (λ = 532 nm and f = 30 cm) at the 
input (top panel) and at the Fourier plane (bottom panel) for different curve shapes. (a,b) Circle of radius 
R =​ 0.5 mm, (c,d) sandglass, (e) rose, (f) modified-square, (g) starfish, and (h) spiral. The modulus of the 
function g(t) is chosen so that the intensity distribution along the optical circuits is uniform (|g(t)| ∝​ |c′​(t)|) 
except for (d) where ′∝g t tc( ) ( ) . The phase of g(t) is governed by l =​ 34 and S(t) which is uniform 
(Equation (9)) for (a), (c), and (d). While S(t) is given by the expressions = +S t t t l( ) 6 sin(2 )/  for (b) and 
Eq. (12) with α =​ 2 for (e–h). Thus, in these examples the optical current is constant for (a) and (c) whereas 
variable otherwise.
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the circle of radius R where the wavevectors of the plane waves lie. On the other hand, the term S(t) given by 
Eq. (9) yields an uniform vortex phase distribution over the circuit. By maintaining constant the intensity distri-
bution along the circle and varying the phase function α β= + +S t t Nt l( ) sin( )/  in Eq. (5), the so-called 
modulated vortices (which are non-diffractive in our case) are obtained43. The non-uniformity of the phase cor-
respondingly changes the beam intensity in the direct domain creating N–fold Lissajous intensity patterns. For 
example, the modulated vortex described by the phase function = +S t t t l( ) 6 sin(2 )/  with l =​ 34 yields an 
elliptic-like pattern as displayed in the first row of Fig. 1(b). In spite of the fact that the circular shape of the beam 
and its uniform intensity distribution are preserved in the Fourier plane, the phase Ψ​ is non-uniform along the 
circle due to the term 6 sin (2t), see bottom panel of Fig. 1(b). We underline that while the purpose of the intro-
duction of the modulated Gaussian vortices was the reconfiguration of the beam intensity distribution in the 
direct domain, the non-uniform phase distribution along the circle in the Fourier domain is indeed more impor-
tant. It provides a modulated optical current expressed by α β= + +−E lR N Ntj v(1 cos( ))0

2 1  yielding variable 
forces exerted over particles that can be interesting for optical tweezers applications.

Versatile shaping of the intensity and phase along circuits.  The intensity and phase governing the 
optical current can be also designed for non-circular curves in distinct configurations. To illustrate this fact and 
the ability to set different optical currents for the same circuit shape, let us first consider a sandglass curve corre-
sponding to q =​ (0.9, 10, 4.2, 17, 1.5, 4) in the Superformula Eq. (1). For example, the optical current in the case 
of Fig. 1(c) is uniform because both intensity and phase are so, whereas it is variable in Fig. 1(d) due to the 
non-uniform intensity created by using η ′=g t tc( ) ( ) . This non-uniformity of the intensity along the sandg-
lass circuit is responsible for variation of the optical current: j =​ κ−2η22πl(L|c′​(t)|)−1v. We recall that the intensity 
and phase are independently prescribed along the curve and therefore it is possible to create a non-uniform 
intensity distribution along the curve and yet preserving the phase profile, as observed in Fig. 1(d), and 
viceversa.

Variable optical current for any non-circular curve can easily be obtained by using, for example, the following 
constraint

∫ τ τ= αS t R( ) ( )d , (12)
t

0

with α being a real number and R(τ) is given by the Superformula. Then, for uniform intensity distribution along 
the circuit, the optical current is proportional to ′ +αR t R t R t( )/ ( ) ( )2 2 . In Fig. 1(e–h) there are displayed the 
intensity and phase distributions of polymorphic beams (α =​ 2 and l =​ 34) in the form of: Rose q =​ (1.6, 1, 1.5, 2, 
7.5, 12) Fig. 1(e), modified-square q =​ (1, 1, 15, 15, 15, 4) Fig. 1(f), starfish q =​ (10, 10, 2, 7, 7, 5) Fig. 1(g), and 
spiral q =​ (1, 1, 5, 5, 5, 10) Fig. 1(h). Here, ρ(t) =​ ρ0 is constant and T =​ 2π expect for the spiral in Fig. 1(h) where 
ρ(t) =​ ρ0e0.2t/40 and T =​ 6π.

Note that well-defined circuits of different forms are preserved independently on the design of the optical 
current governed by the phase distribution along the curve. To illustrate this important fact, let us now consider 
a rectangle q =​ (1, 2/3, 15, 15, 15, 4) with uniform intensity but different phase distributions as displayed in Fig. 2. 
Specifically, in the case of Fig. 2(a) the phase is uniform (S(t) is given by Equation (9) and |∇​Ψ​| =​ constant), while 
in the case of Figs 2(b) and 1(c) the prescribed phase is variable (S(t) is given by Eq. (12)) by using α =​ 2 
(∇Ψ ∝ ′ +R t R t R t( ) / ( ) ( )2 2 2 ) and α =​ −​1 (∇Ψ ∝ ′ +R t R t R t1/ ( ) ( ) ( )2 2 ), respectively. This example 
demonstrates that rather different optical currents can easily be created in the same circuit without altering its 
shape and size, see bottom row of Fig. 2.

Holography for the experimental generation of polymorphic beams.  The complex field amplitude 
of the polymorphic beams studied in this work has been created in about 10 seconds by numerical calculation 
of the integral Eq. (2), programmed by us in Matlab. To experimentally generate the beam, it has been encoded 
(in ~5 s) as a phase-only hologram by using the technique reported in ref. 44. Here, we have used a programma-
ble liquid-crystal spatial light modulator (SLM, Holoeye PLUTO, pixel size of 8 μm) to display the hologram. 
As an example, the intensity distribution of several polymorphic beams measured by using a sCMOS camera 
(Hamamatsu, Orca Flash 4.0, 16-bit gray-level, pixel size of 6.5 μm) are shown in the top row of Fig. 3. While, the 
corresponding intensity of the focused beams at the Fourier plane of a convergent lens (focal length of 15 cm) are 
presented in the bottom row of Fig. 3. These experimental results are in good agreement with the expected ones 
displayed in Fig. 1. Note that, in general, the curved beam observed in the Fourier plane can be directly encoded 
into the hologram instead of Eq. (2), however, the proposed method allows for focusing much more light along 
the circuit and better controlling of its phase and intensity distributions.

A static diffractive optical element45 can be used instead of a programmable SLM to display the hologram if 
needed. This is particularly important in the case of beam shaping for wavelengths outside of the visible spectrum 
and other types of coherent beams. For example, electron and x-ray vortex beams have been generated by using 
a hologram in the form of binary-amplitude mask46 or spiral plate47. To generate electron and x-ray polymorphic 
beams, as well as arbitrarily structured complex scalar fields, a proper arrangement of pinholes can be used as 
binary mask48.

Optical current in action.  The high intensity gradients of the optical circuits (Fourier transformed pol-
ymorphic beam) are important for single-shot material processing. Moreover, they create an attractive optical 
force on colloidal dielectric particles, with refractive index larger than the one of the surrounding medium, that 
can compensate the repulsive axial scattering force of light providing stable 3D optical trapping. On the other 
hand, the phase gradients along the curve redirect part of the light radiation pressure producing transverse 
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optical forces. These forces are directly related to the optical current providing improved performance for laser 
micro-machining and ablation of materials as well as for driving colloidal dielectric micro-particles along the 
designed curves26,49.

The action of the intensity gradient forces that confine colloidal dielectric particles within the circuit and the 
phase gradient force that propel them along it, is demonstrated here on the example of an Archimedean spiral 
circuit: R(t) =​ ρ0t and q =​ (1, 1, 0, 1, 1, 1) with t ∈​ [π, 3π]. The corresponding polymorphic beam with phase distri-
bution given by Eq. (12), with α =​ 2 and l =​ 34, is projected into the back aperture of a microscope objective lens 

Figure 2.  Setting different optical currents over the same rectangular circuit. Intensity and phase 
distributions of the rectangular polymorphic beam q = (1, 2/3, 15, 15, 15, 4) at the input (top panel) and at the 
Fourier plane (middle panel) for different phase of g(t). The focused beam has uniform intensity distribution in 
all the cases, but different phase distributions (l =​ 34): (a) Uniform phase obtained by using S(t) given by Eq. (9), 
and non-uniform phase by using Eq. (12) with α =​ 2 in (b) and α =​ −​1 in (c). The distinct phase gradients yield 
different optical currents along the same circuit as displayed in the bottom row.
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as sketched in Fig. 4(a). The resulting focused beam traps in 3D several silica spheres of 1 μm within the curve as 
observed in Fig. 4(b–d), see Methods and Supplementary video 1, far from the sample walls (25 μm deep within 
the sample) thanks to the strong intensity gradient forces. The time-lapse image of the trapped particles displayed 
in Fig. 4(d) confirms the strong confinement revealing the shape of the light curve. The particles travel along the 
spiral towards its center according with the circuit shape and the created optical current displayed in the top row 
of Fig. 4(b–d). The motion is reversed in real time by setting the opposite charge l =​ −​34 to avoid losing the par-
ticles when reaching the end points of the spiral, see Supplementary video 1. As it is expected the particles speed 
up when move out from the center of the spiral according with the optical current distribution.

Figure 3.  Experimental intensity distributions of the polymorphic beam (top panel) and of the corresponding 
optical circuits observed in the Fourier domain (bottom panel) for different curve shapes and topological charge 
l =​ 34: (a) circle, (b) rose, (c) modified-square, (d) starfish, and (e) spiral.

Figure 4.  (a) Sketch of the optical trapping setup: The polymorphic beam is projected into the back aperture 
of a high numerical aperture (NA) microscope objective lens (see Methods) that focuses it over the sample 
(silica micro-spheres dispersed in water) in the form of Archimedean spiral. The particles are trapped within 
this curve and their motion is controlled by the optical current prescribed along the spiral circuit, see (b,c) and 
Supplementary Video 1. A time lapse image made by combining the recorded frames is shown in (d) and reveals 
the spiral trajectory of the particles. The optical current, displayed in the top row of (d), predicts the accelerating 
particle motion observed in the experiment, as expected. Note that the particles are optically manipulated far 
enough from the sample walls (25 μm from the bottom glass coverslip), avoiding proximal hydrodynamical 
effects, as reported in ref. 26.
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Discussion
We envision that the introduced concept of polymorphic beam inspired by Nature opens up promising per-
spectives. The polymorphic beam solves the problem of shaping laser light (without using iterative algorithms) 
in a large variety of forms creating closed or open circuits, but also allows for designing the optical current on 
demand. In contrast to the Gaussian vortex beams, these circuits are well-localized and their form as well as size 
are independent on the optical current flowing along as it has been demonstrated. This flexibility is an impor-
tant achievement for all-optical transport and manipulation of small objects, laser micro-machining, study of 
micro-particle dynamics, etc. The versatility in the design of the polymorphic beam could be attractive for devel-
oping information encoding protocols for free-space laser communications based upon different shapes and/
or topological charges50–52. The proposed approach can be used to design lattices of optical vortices required, 
for example, for fabrication of photonic crystals53. Indeed, as it is observed in Fig. 1 (in the input plane, first and 
second rows) for the case of the rose 1(e), starfish 1(g) and spiral 1(h) there exists a complex but well-structured 
vortex lattice field.

We underline that the curve shape can be specified by using other functions apart from the Superformula. 
Moreover, 2D circuits can be transformed into 3D ones by including the spherical phase term 

− + −kz t x R t t y R t texp[i ( )(( ( )cos ) ( ( )sin ) )/2f ]2 2 2  in the integral Eq. (2), where z(t) is the axial coordinate 
of the parametric 3D curve. As in the case of the Bessel beams54 the polymorphic scalar beam concept is extensi-
ble to the vector one. Polymorphic electron and x-ray beams can be created by specific holographic techniques 
based upon structured array of pinholes48, that paves the way to single-shot e-beam lithography adding the ben-
efits of tailored phase gradients.

Methods
The complex field amplitude given by expression Eq. (2) has been encoded for each case as a hologram and 
addressed into a programmable spatial light modulator (SLM, Holoeye PLUTO, pixel size of 8 μm) as reported 
in ref. 49. The SLM was illuminated by a collimated laser beam (Laser Quantum, Ventus, λ =​ 532 nm, 1.5 W, lin-
early polarized) and the resulting beam relayed into the back aperture of the focusing lens: microscope objective 
lens (Olympus UPLSAPO, 1.4 NA, 100×​). An oil immersion with n =​ 1.56 (Cargille Labs Series A) was used to 
mitigate the spherical aberration arising form the glass-water refractive index mismatch as considered in ref. 26. 
The power of the laser beam was ~170 mW at the back aperture of the objective lens. The particles were observed 
in bright-field mode, under white light illumination (LED, SugarCube Ultra), and recorded by a sCMOS cam-
era (Hamamatsu, Orca Flash 4.0, 16-bit gray-level, pixel size of 6.5 μm) at 30 frames per second. A Notch filter 
(Semrock, dichroic beamspliter for 532 nm) redirected the trapping beam into the objective lens, that prevents 
saturating the camera by backscattered laser light. The sample was enclosed into a chamber made by attaching 
two glass coverslip (thickness 0.17 mm). A double-sided Scotch tape (thickness about 100 μm) was used as spacer 
between the coverslips. The 1 μm silica spheres (Bang Labs) were filled into the sample cell directly from an aque-
ous solution (deionized water).
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