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Abstract
Mitochondrial genome (mitogenome) sequences are being generated with increasing

speed due to the advances of next-generation sequencing (NGS) technology and associ-

ated analytical tools. However, detailed comparisons to explore the utility of alternative

NGS approaches applied to the same taxa have not been undertaken. We compared a ‘tra-

ditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and

non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumi-

na’s HiSeq and MiSeq, Roche’s 454 GS FLX, and Life Technologies’ Ion Torrent) to pro-

duce seven (near-) complete mitogenomes from six species that form a small radiation of

caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining

mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun

sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analy-

ses using seven different partitioning strategies were unable to resolve compellingly all phy-

logenetic relationships among the Seychelles caecilian species, indicating the need for

additional data in this case.

Introduction
Technological advancement and decreasing costs have increased the use of high-throughput
sequencing platforms in evolutionary biology [1]. Several recent studies have generated mito-
genomic data sets for phylogenetics using next-generation sequencing (NGS) [2–5], with either
long-range PCRs [4] or shotgun sequencing [2] and using a variety of sequencing platforms.
Some studies have examined sequencing platform performance [6,7] but detailed comparisons
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and evaluations of different NGS approaches for mitogenomic phylogenetics of the same set of
taxa have not been carried out.

Here we present a comparison of four different NGS approaches for generating (near-)
complete mitogenome DNA sequences. Two primary methods were employed: 1) multiplex
sequencing of pooled, non-indexed long-range PCR products from a multitude of taxa [5]
using three different platforms: HiSeq (Illumina), 454 GS FLX (Roche), and Ion Torrent (Life
Technologies), and 2) individually indexed shotgun sequencing of genomic DNA [8] using the
MiSeq platform (Illumina).

We explored the efficacy of various approaches for generating complete mitogenome DNA
sequences for a clade of caecilian amphibians (Gymnophiona) endemic to the Seychelles. Mito-
genomic data have played an especially important role in recent advances in the understanding
of caecilian phylogeny, systematics, and evolution [9–14]. Caecilian mitogenomes have also
provided the best evidence for tandem duplication and random loss as a mechanism of mito-
chondrial gene order rearrangements [15], and have been used in studies of experimental
design in phylogenetics [9,10]. However, mitogenomes have only partly been applied, thus far,
to the ongoing problem of the relationships among the Seychelles caecilians. The Seychelles
caecilians comprise a radiation [16–21] of six nominal species in three genera (Grandisonia
alternans, G. larvata, G. sechellensis, Hypogeophis brevis,H. rostratus, Praslinia cooperi) within
the family Indotyphlidae (following the classification of Wilkinson et al. [22]). Prior to 2009,
analyses of small fragments of mtDNA sequence data had reached no consensus beyond that
the radiation is monophyletic and that the monotypic Praslinia is sister to all other Seychelles
species [16,17,21,23,24]. More recently, complete [11] or near-complete [14] mitogenomes
have been generated for four of the Seychelles species, but this limited taxon sampling pre-
cluded comprehensive phylogenetic insights. Resolution of the phylogenetic relationships
among the Seychelles caecilians would be beneficial in helping to stabilise their genus-level tax-
onomy [22], and in providing a platform for more detailed analysis of the evolution of repro-
ductive traits within indotyphlids, which likely includes the re-evolution of a larval stage [11].

Methods

Taxon sampling and DNA extraction
Six Sanger-sequenced complete or near-complete mitogenome sequences had been previously
generated for four of the six nominal species of Seychelles caecilians [11,14] (see Table 1).
These mitogenomes were generated using multiple primer pairs designed to amplify 14 [11] or
13 [14] overlapping fragments. We attempted to generate sequences of a further eight mitogen-
omes for five Seychelles species using four NGS approaches. Samples were obtained from the
frozen tissue collection of the University of Michigan Museum of Zoology, USA (voucher spec-
imen codes with the prefix UMMZ; some incompletely accessioned material with RAN prefix).
For three individuals (G. alternansUMMZ240022, G. larvata UMMZ240023,H. brevis
UMMZ192977), mitogenomic data were generated using more than one method. Our sam-
pling (Table 1) included the two Seychelles caecilian species (G. alternans,H. brevis) not previ-
ously sampled for mitogenomes and whose sister taxa are not resolved [16,21,23,24].

Liver and/or muscle samples of Seychelles caecilians were obtained during fieldwork
between 1988 and 1991. Animals were collected by digging with hoes and by turning logs and
rocks. Fieldwork was carried out with the permission of Seychelles Bureau of Standards; per-
mission for the collection of specimens and issuing of export permits was provided by Sey-
chelles Department of Environment. No ethical approval was required for this work because
no experimentation was carried out, although, the University of Michigan Animal Care Unit
(UCUCA) approved all methods. At the time of collection none of the species used in this
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study had been assessed by the IUCN Red List of Threatened Species. Specimens were anaes-
thetized with chlorotone and fixed in 5% formalin before being stored in 70% EtOH at the Uni-
versity of Michigan Museum of Zoology, Ann Arbor, USA (UMMZ); fresh tissue samples from
sacrificed animals were frozen at -80°C. Genomic DNA was extracted using the DNeasy Blood
and Tissue Kit (QIAGEN), following manufacturer’s guidelines with the exception of the final
suspension solution, which was modified to 2x100μl of buffer AE (the first elution was used in
all subsequent analyses).

gDNA shotgun sequencing using the MiSeq (Illumina) platform
Next-generation sequencing libraries for six individual samples (two G. alternans; one of each
of G. larvata, G. sechellensis,H. brevis and H. rostratus), destined for shotgun sequencing, were
prepared for Illumina MiSeq sequencing using a standard Illumina Nextera DNA kit. The pri-
mary aim of this sequencing run was to develop anonymous nuclear markers [25]. Paired-end
reads (�251bp long) were sequenced using a 500 cycle v.2 reagent kit on a single MiSeq flow
cell. Each sample was indexed so that all sequences could be individually identified.

The paired-end MiSeq data were combined for each sample and subsequently cleaned with
the Trim Ends function in Geneious v.6.1.4 (Biomatters) using default settings. FASTQ files
containing the paired-end data were run through the MITObim pipeline (100 iterations;—
quick option) using the six previously published Seychelles caecilian mitogenomes [11,14] as a
reference. MitoBim was chosen because of its reported superiority over other mapping tools
[26]. However, initial runs for each sample yielded reconstructed mitogenomes with

Table 1. Voucher specimen (codes refer to vouchers: RAN = RAN’s field numbers; UMMZ = University of Michigan Museum of Zoology, Ann
Arbor; MVZ = Museum of Vertebrate Zoology, Berkeley) and associatedmitogenome sequence information for the six nominal species of Sey-
chelles caecilian (species ofGrandisonia,Hypogeophis, Praslinia). GenBank codes in bold were published previously. bp = base pairs; Av. Cov. = aver-
age read coverage across mitogenome. * = genome sequence not fully complete; (1) = voucher incorrectly identified asG. alternans by Zhang &Wake
(2009: see San Mauro et al. 2014). # = specimen that was excluded from phylogenetic analysis due to the mitogenome sequence being substantially
incomplete.

Species Voucher GenBank
code

Published bp—
total

MiSeq (Av.
Cov.)

bp—
HiSeq

bp—
454

bp—Ion
Torrent

GC
%

G. alternans RAN31062 KU753811 This study 16,065 20.7 - - - 38.5

G. alternans UMMZ240022 KU974367 This study 14,827 - 14,343 14,019 10,743 36.1

G. alternans UMMZ192945 KU753815 This study 14,836 7.4 - - - 36.6

G. larvata# UMMZ240023 KU753812 This study 6,471 5,846 5,406

G. larvata RAN31203 KU753813 This study 15,388 7.1 - - - 33.6

G. larvata (1) MVZ258026 GQ244470* Zhang & Wake,
2009

15,209 - - - - 34.8

G.
sechellensis

UMMZ193076 KU753816 This study 16,071 20.7 - - - 36.2

G.
sechellensis

UMMZ240024 KF540152 San Mauro et al.,
2014

16,094 - - - - 36.3

H. brevis UMMZ192977 KU753817 This study 16,107 39 15,540 15,578 9,593 35.9

H. rostratus RAN31219 KU753814 This study 10,782 2.5 - - - 26.3

H. rostratus MVZ258025 GQ244472 Zhang & Wake,
2009

16,151 - - - - 35.8

H. rostratus UMMZ240025 KF540154 San Mauro et al.,
2014

16,170 - - - - 35.4

P. cooperi UMMZ192933 GQ244475* Zhang & Wake,
2009

15,218 - - - - 38.4

P. cooperi UMMZ192934 KF540162 San Mauro et al.,
2014

16,192 - - - - 38

doi:10.1371/journal.pone.0156757.t001

Next-Generation Mitogenomics

PLOS ONE | DOI:10.1371/journal.pone.0156757 June 9, 2016 3 / 15



approximately 500 base pairs (bp) missing from the end of the assembly. To combat this,
1,000bp of the linear reference mitogenomes were moved from the end to the start of the align-
ment and analyses were rerun. Both runs for each specimen were then compared, aligned
against each other, trimmed, and a consensus sequence was produced in Geneious.

Multiplex amplicon sequencing using HiSeq (Illumina), 454 GS FLX
(Roche) and Ion Torrent (Life Technologies) platforms
The complete mitogenomes of G. alternans (UMMZ240022) and H. brevis (UMMZ192977)
along with the partial mitogenome (6,471 bp) of G. larvata (UMMZ240023) were sequenced in
parallel with 475 non-indexed long-range mitogenomic PCR amplicons from 270 other animal
taxa (including some caecilians), as part of a larger project.

Long-range PCRs were carried out in 50 μl reaction volumes using the Expand 20kbPLUS

PCR System (Roche) using 4 μl of gDNA following manufacturers’ recommendations. The
mitogenomes were amplified in two overlapping fragments, ~6.4kb and ~10.7kb, using the
primer pairs Amp-12S.F (5’-AAGAAATGGGCTACATTTTCT-3’) + Amp-P3.R (5’-
GCTTCTCARATAATAAATATYAT-3’) and Amp-P4.F (5’-GGMTTTATTCACTGATTYCC-
3’) + Amp-12S.R (5’-TCGATTATAGAACAGGCTCCTCT-3’) [12], respectively, however,
the ~10.7kb fragment failed to amplify for G. larvata (UMMZ240023). Because of the degener-
acy of primers Amp-P3.R and Amp-P4.F, 4 μl of 10 μM primer were added to each reaction,
whereas only 2 μl were used for Amp-12S.F and Amp-12S.R. The PCR cycling profile for
Amp-12S.F + Amp-P3.R was as follows: initial denaturation for 2 min at 92°C, followed by 10
cycles of 15 s at 92°C, 30 s at 45°C, 4 min at 68°C, followed by 30 further cycles in which the
extension time was lengthened by 10 s per cycle, and terminated with a final extension of 10
min at 68°C. The PCR cycling profile for Amp-P4.F + Amp-12S.R was as follows: initial dena-
turation for 2 min at 92°C, followed by 10 cycles of 15 s at 92°C, 30 s at 48°C, 9 min at 68°C, fol-
lowed by 30 further cycles in which the extension time was lengthened by 10 s per cycle, and
terminated with a final extension of 10 min at 68°C. PCR products were purified using QIA-
quick PCR Purification Kit (QIAGEN) and quantified using a NanoDrop spectrophotometer
(Thermo Scientific). An equimolar solution of all 475 amplicons was prepared for NGS
sequencing using the Illumina HiSeq, Roche 454 and Ion Torrent platforms on a single lane or
flow cell. Short fragments of mtDNA (12S and 16S rRNA, cox1, cytb) that had been Sanger
sequenced for each species [16,17] were used as seeds for read assembly (see below) and to pro-
vide amplicon identity.

Initial reduction of Illumina HiSeq dataset
Because the Illumina HiSeq platform produces a vast amount of data (and because the samples
were not individually indexed), the full dataset, which consisted of 270 individual animals, was
subjected to an initial reduction to facilitate mitogenome reconstruction for Seychelles caeci-
lians. Three previously published (Sanger-sequenced) Seychelles caecilian mitogenomes (G.
sechellensis,H. rostratus, P. cooperi; GenBank accessions KF540152, KF540152, KF540162
respectively) plus one of a proximate outgroup (the Indian indotyphlid Indotyphlus maharash-
traensis, GenBank accession KF540157) were aligned using Muscle [27] in Geneious with
default settings. The alignment was checked by eye and obvious mistakes corrected manually.

The alignment was then viewed in Geneious with a sliding window in order to partition it
into blocks within which the four mitogenomes had similar magnitudes of sequence (dis)simi-
larity. Separate sub-alignments were generated for each of 16 such regions, the sub-alignments
ranging in size from 289–2,525bp (each overlapping by at least 50bp with neighbouring align-
ments to counter potential loss of reads) (Table 2). The maximum sequence divergence (p-
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distance) among the four mitogenomes was calculated from the sliding window for each of the
16 sub-alignments. A consensus sequence was generated for each sub-alignment and used as
references for mapping assemblies in order to extract caecilian reads from the raw, non-
indexed HiSeq data, using a mismatch threshold of the maximum divergence among the four
mitogenome sequences in each sub-alignment, plus an additional 10% allowance, per read. The
additional 10% allowance was an arbitrary threshold that intended to ensure that all of the Sey-
chelles caecilian sequence reads were pulled from the raw data. Reference assemblies were car-
ried out in Geneious with the following parameters: single iteration mapping assembly, 15%
gaps allowed per read, maximum gap size 50, word length 14, index word length 12, maximum
ambiguity 4 (allowing 1 ambiguous base per read) and the number of mismatches allowed per
read as described above. From this point, these initially reduced Illumina HiSeq data were sub-
ject to the same treatment as the Roche 454 and Ion Torrent data.

Mitogenome reconstruction from Roche 454, Ion Torrent and distilled
Illumina HiSeq data
Each of the three amplicon data sets were assembled in Geneious using the “map to reference”
function with the four Sanger sequenced seeds used as references (see above). The assemblies
were performed for 100 iterations with the following settings: 3% mismatches per read, maxi-
mum gap size of 15, maximum overlap identity of 80%, maximum ambiguity 1, and multiple
best matches mapped randomly.

In order to locate relevant reads that might have been discounted in assemblies generated
from the starting Sanger seeds (especially for the lower-coverage Ion Torrent data), we used
mitogenomes of the same species (previously published Sanger-sequenced data available in
every case, except MiSeq indexed for G. alternans) as references for the “map to reference”
option in Geneious, and used the same settings described in the previous paragraph, except for
a maximum mismatches per read of 1% and maximum ambiguity of 2. These setting modifica-
tions were applied in order to accommodate intraspecific variation.

Table 2. Size ranges used to partition the Illumina HiSeq dataset into a manageable size based on a
sliding window analysis. Position 0 refers to the start of the trnF(gaa) tRNA gene.

Position in alignment (bp) Maximum sequence divergence (%)

0–1,076 22

976–2,855 21

2,779–4,036 20

3,823–5,073 24

4,973–5,461 20

5,361–7,146 18

7,043–7,837 19

7,787–8,076 27

8,004–8,753 24

8,653–9,604 19

9,537–10,328 26

10,228–11,789 24

11,689–14,214 24

14,114–15,427 21

15,327–16,440 35

16,087–354 30

doi:10.1371/journal.pone.0156757.t002
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Mitogenome annotation and alignment
Alignments of mitogenomic data generated from different platforms for single specimens
(available for three specimens: G. alternansUMMZ240022, G. larvataUMMZ240023,H. brevis
UMMZ192977) were created using the de novo assembler in Geneious v.6.1.6. No major errors
were detected by eye and a consensus sequence for each specimen was accepted as the final
sequence for further annotation and analysis.

The six previously published (Sanger-sequenced) Seychelles caecilian mitogenome
sequences were aligned using Muscle in Geneious with default settings; any obvious misalign-
ments within tRNA genes were corrected manually. The newly generated sequences were then
added and aligned using Geneious Consensus Align, maintaining existing gaps, with 70% simi-
larity, gap open penalty of 12, and a gap extension penalty of 3. All novel mitogenomes were
compared with those previously published and Sanger seeds (see above) to increase the likeli-
hood of correct reconstruction of the data. When checked, only the new tRNA gene sequences
had (very small) obvious mistakes that were attributable to misalignment rather than sequenc-
ing or reconstruction error, and these were sought and removed using GBlocks [28] using the
“with half” setting.

The initial annotation of the newly reconstructed mitogenomes was carried out using
MITOS [29], BLASTn [30], and by alignment against the six previously published Seychelles
caecilian mitogenomes [11,14]. The final annotation was undertaken manually in Geneious.
When annotating protein-coding genes, information was incorporated from codon position
determined using MEGA v.6.06 [31]. GenBank accession numbers for newly generated
sequences can be found in Table 1.

Phylogenetic analysis
Following San Mauro et al. [9–11], the regulatory, non-coding L-strand replication and control
regions were removed from the alignment. Best-fit models of nucleotide substitution and data-
partition schemes were determined using PartitionFinder v.1.1.1 [32] for five datasets, com-
prising all or subsets of the concatenated first, second and third codon positions of protein cod-
ing genes, concatenated rRNA genes, and concatenated tRNA genes (total of 15,399 aligned bp
excluding ambiguously aligned sites which were removed).

Phylogenetic trees were inferred using Bayesian inference (BI) and maximum likelihood
(ML) algorithms implemented in the programs MrBayes v.3.2.2 [33] and RaxML v.8.0.24 [34],
respectively and run through the CIPRES Science Gateway server [35]. For BI, the five datasets
described in the previous paragraph were each subjected to two independent analyses. Optimal
partitioning strategies and best-fit models as determined by PartitionFinder are given in
Table 3. The BI analysis was run for 107generations and sampled every 10,000 generations with
one cold and three heated chains, with the first 10% of trees discarded as burn-in. Chains were
checked for convergence using Tracer v1.5 [36] by assessing ESS scores and by visualization of
mixing on the trace. For the ML analyses the Blackbox option was employed using default
options [37].

Potential saturation of third-codon positions was assessed using the method described by
Xia et al. [38] in DAMBE v.5 [39]; PAUP� v.4.0a136 [40] was used to test for base composition
heterogeneity and, where found, bootstrap (1000 replicates) LogDet/paralinear [41,42] distance
analyses using the minimum evolution algorithm with default parameters were also carried
out.

BI of the amino acid dataset was conducted using PhyloBayes [43]. PhyloBayes implements
the CAT model [44] which allows for site-specific rates of mutation and is often considered a
more realistic model of amino acid evolution, and being well suited to larger multigene
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alignments. Two independent runs were carried out implementing the CAT and the GTRCAT
models. MCMC chains ran for at least 40,000 cycles and convergence was assessed when the
“maxdiff” parameter was< 0.1. Approximately 25% of trees were discarded as burn-in and
remaining trees were sampled every 100 generations.

Phylogenies were rooted with Praslinia cooperi based on prior evidence that this taxon is sis-
ter to all other Seychelles caecilians. This phylogenetic relationship has been recovered by all
published analyses of molecular data [10,11,16,17,21,23,24], except those of Pyron &Wiens
[45] and Pyron [46], who recovered Grandisonia alternans as the sister group instead. We con-
sider the latter problematic due in part to the extensive outgroups used (MW, unpublished)
and disregard them here.

To investigate taxon instability and any impact this might have upon support, we interro-
gated sets of bootstrap or Bayesian trees with the intersection algorithm described by Wilkin-
son [47] and implemented in REDCON 3.0 (http://www.nhm.ac.uk/research-curation/
research/projects/software/), which returns a comprehensive summary of the support (fre-
quency of occurrence) for all full and partial (i.e., not including all taxa) splits in a set of trees.
These analyses were performed on subsamples of 1,000 trees drawn randomly from the full
samples of Bayesian trees.

Results

Next-generation mitochondrial genome sequences
Seven near-complete mitogenomes were reconstructed with varying degrees of quality and cov-
erage. All of the trialled methods used in this study provided reasonable coverage of the mito-
genomes, apart from the Ion Torrent multiplex approach. The Illumina HiSeq multiplex data
produced the greatest coverage, followed by the shotgun-sequenced Illumina MiSeq and Roche
454 data (Table 4).

For the G. larvata sample sequenced using the multiplex methods (UMMZ 240023),
approximately only one third (i.e. 5,787 bp; see Table 1) of the mitogenome was obtained,
which represented a single long amplicon. This single amplicon did however have a high cover-
age of reads for it—the highest of any sample when compared to the length of the final
sequence (Table 4).

Of the three multiplex sequencing methods, the Ion Torrent approach was least successful.
Considerably fewer reads were obtained and single phantom nucleotides were present (as
determined by comparison with data generated using Illumina HiSeq and MiSeq, Roche 454,
and Sanger sequencing). The phantom single nucleotides comprised between 0.28 and 0.43%
of the total reconstructed sequences (Table 5). Conversely, the mitogenome of H. brevis
(UMMZ192977), reconstructed from Roche 454 multiplex data, contained eight phantom sin-
gle nucleotide insertions (as judged by comparison with data generated from the Illumina

Table 3. Summary information for mitogenome data partitions and their best-fit models. All data are for nucleotides, except “Amino Acid”.
CS = number of constant sites, PI = number of parsimony informative sites, CP1, 2, 3 = protein-coding codon position 1, 2 and 3.

Data Sites CS PI Partitions and models

All 15,399 10,534 4,241 CP1, rRNA, tRNA (GTR+G); CP2, CP3 (GTR+I+G)

Protein Coding genes 11,272 7,224 3,425 CP1, CP2, CP3 (GTR+I+G)

tRNAs 1,600 1,241 300 GTR+I+G

rRNAs 2,527 1,927 516 GTR+I+G

Amino Acid 3,746 2,996 617

doi:10.1371/journal.pone.0156757.t003
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HiSeq and MiSeq, and Ion Torrent platforms used for the same sample), accounting for only
0.05% of the reconstructed sequence (Table 5). All other mitogenome reconstructions that we
generated with the multiplex approach (regardless of sequencing platform) and the MiSeq
shotgun sequencing approach lacked evidence of phantom nucleotide insertions. The newly
generated mitochondrial genome sequences (H. brevis and G. alternans) conform to the verte-
brate consensus organization [48, 49] in terms of gene content and order.

Mitogenomic phylogeny of Seychelles caecilians
We found no evidence of sequence saturation, but both the protein-coding and the full nucleo-
tide datasets showed significant base compositional heterogeneities (not shown) and were thus
analysed also with LogDet distances. For each dataset and partitioning strategy, the BI and ML
analyses recovered the same set of phylogenetic relationships (Fig 1). All analyses agreed in
providing maximal support for the monophyly of each species that was represented by more
than one individual (i.e., all Seychelles species except Hypogeophis brevis) and for a sister group
relationship between Grandisonia larvata and G. sechellensis, but otherwise relationships
among the species were resolved variably in the different analyses and generally with only low
support. Accepting the rooting of the Seychelles caecilian tree with Praslinia cooperi and col-
lapsing G. larvata + G. sechellensis into a single taxon reduces the remaining interrelationships
to a four-taxon problem, for which there are 10 possible clades and 15 distinct rooted trees.
Table 6 summarises the support for these 10 clades across different analyses. All 10 possible
clades occur across the bootstrap/Bayesian trees but several clades are never supported by
more than 50% of the trees from any single analysis. Using the notation A = G. alternans; B =
H. brevis; L = G. larvata + G. sechellensis; R =H. rostratus, the groupings that never receive

Table 4. Coverage data and total length of mitogenome sequences generated by different platforms. Coverage data for each platform is reported as
number of sequence reads used and approximate number of bp in parentheses based on the mean read length (RL). The total lengths of reconstructed mito-
genomes are reported under the MtL (mitogenome length in bp) column. Numbers in parentheses within the header row refer to mean RL for each platform.

Species Sample code MtL MiSeq (448 bp) HiSeq (95 bp) 454 (523 bp) Ion Torrent (98 bp)

G. alternans RAN31062 16,065 6,008 (2,691,584) - - -

G. larvata UMMZ240023 - 442,600 (42,047,000) 2,481 (1,297,563) 264 (25,872)

G. larvata RAN31203 15,388 562 (251,776) - - -

H. rostratus RAN31219 10,782 284 (127,232) - - -

G. alternans UMMZ240022 14,827 - 512,609 (48,697,855) 1,178 (616,064) 367 (35,966)

G. sechellensis UMMZ193076 16,071 1,655 (741,440) - - -

G. alternans UMMZ192945 14,836 583 (261,184) - - -

H. brevis UMMZ192977 16,107 3,092 (1,385,216) 670,560 (63,703,200) 2,148 (1,123,404) 375 (36,750)

doi:10.1371/journal.pone.0156757.t004

Table 5. Number of single base pairs (bp) that were incorrectly called in the three long-ampliconmultiplexedmitogenome sequences, as inferred
from consensus reads across the sequencing platform data.

UMMZ240023 Ion Torrent UMMZ240022 Ion Torrent UMMZ192977 Ion Torrent UMMZ192977 454

A 4 11 6 1

C 1 5 5 3

G 2 2

T 2 12 10 2

N 8 16 6 2

Insertions added 5

Total bp 5406 10746 9593 15540

doi:10.1371/journal.pone.0156757.t005
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Fig 1. The four phylogenetic tree topologies inferred from the five data sets. (a) for both the complete nucleotide data and the protein-coding
nucleotide data (b) rRNA, (c) tRNA (d) amino acids. In (a) numbers above branches are support for the complete nucleotide data and below for the
protein-coding nucleotides (BI/ML). In (b) and (c) numbers above branches are for analyses with BI/ML. In (d) values above branches are Bayesian
posterior probabilities for the unpartitioned CAT and CATGTR analyses run on PhyloBayes/ and BI/ML support for the gene-partitioned dataset. Maximal
support is indicated by a single * and support values below 0.5/50% (BI/ML) are indicated by “-”(or by collapsed branches in the PhyloBayes tree (d)).
Symbols at terminals refer to genus: stars = Praslinia; squares = Hypogeophis; circles =Grandisonia. Colours refer to species: black = P. cooperi; red = H.
rostratus; turquoise = H. brevis; brown =G. alternans; yellow =G. larvata; blue =G. sechellensis. All trees were rooted with Praslinia cooperi. Source trees
and branch lengths are deposited online with the Natural History Museum data repository.

doi:10.1371/journal.pone.0156757.g001
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majority support are AL, AR, ARL, ABR, BR, and BLR (Fig 2). Two hypotheses, AB and LR,
have majority support only in LogDet analyses, highlighting the potential for the moderate to
high support for some conflicting hypotheses (e.g. ALR and BL) to be an artefact of base com-
positional biases in these data. Unsurprisingly, analyses of the smallest dataset (tRNA) yield
the smallest maximum support values for any clade. Fig 2 provides a complementary summary
of the frequency of occurrence of all possible 15 rooted trees. Note that only two of the 15 trees
(trees 2 and 13) ever form a majority in any of the bootstrap analyses. Overall, the pattern of
low to moderate support (that is not sustained across multiple analyses) suggests that the data
are simply not sufficient for resolving relationships among these four taxa.

Comparisons of support for full and partial splits across the various analyses (Table 6) pro-
vide no indication that instability associated with any specific 'rogue’ taxon is obfuscating sup-
port for otherwise well-supported partial splits.

Discussion

NGSmitogenomics
In our experience, the overall most cost-effective method for obtaining mitochondrial genomes
when total time and accuracy were taken into account was the shotgun sequencing approach
with the Illumina MiSeq platform (Table 7). Although sequencing costs are much lower for
generating complete mitogenomes with long-amplicon, multiplex and Sanger sequencing, it is
more time intensive in terms of bench work and sequence handling. The multiplex data pro-
vide a much more enriched sample set but they require a large amount of time and, particularly
for the Illumina HiSeq data, more computing power to process the data. Our multiplex data
were not individually indexed, which increased the time required to reconstruct mitogenomes,
and made it impossible to ensure with absolute certainty that all the constituent fragments in
each reconstructed mitogenome pertain to a single individual specimen. In our case, we were
able to partly address the latter concern because our multiplex datasets included only one sam-
ple of each species and because mitogenome sequences of the same specimen and/or conspecif-
ics or close relatives were available as references. The performance of the long-amplicon
approach could be improved by individually indexing samples, and although more accurate
mitogenomic reconstructions could be accomplished, it must be noted that this would be with
increased cost. Although the Illumina MiSeq is probably the most expensive method that we
used per sample (~$430, in a total sample of six), it is fast for generating mitogenomes in terms
of time required for lab work, sequencing and post-sequencing analysis and reconstruction.
However, some MiSeq samples lacked high sequence coverage (<10x) when compared with
multiplex sequencing on the Illumina HiSeq, so we would not recommend sequencing

Table 6. Summary of percentage of support for clades presented in Fig 2. A =G. alternans, B = H. brevis, L =G. larvata +G. sechellensis, R = H. rostra-
tus.—indicates zero support. Abbreviations in column 1 are as follows: BI = Bayesian Inference analysis; LD = LogDet analysis; All = complete nucleotide
dataset; rRNA = rRNA dataset; tRNA = tRNA dataset; PC = protein coding nucleotide dataset; AA = amino acid dataset.

Analysis AB AL AR ABL ABR ALR BL BR BLR LR

BI All 15.1 - 8.2 88.9 6.8 3.9 76.4 0.6 0.1 -

LD All 95.3 0.2 1.2 33.4 9.8 3 1.5 - 0.5 55.1

BI rRNA 1.2 46.1 39.5 1.9 1.1 94.3 0.7 2.4 0.8 12,0

BI tRNA 10.2 27.6 9.6 35.6 14.2 24 22.9 26.3 22.2 7.4

BI PC 16.2 - 21 71.2 22.4 0.8 67.9 - 0.5 -

BI AA 1 - 36.4 61.2 11.5 26.7 60.8 2.4 - -

LD PC 78.4 - 12.1 5.4 30.2 8.5 8.7 - 4.6 52.1

doi:10.1371/journal.pone.0156757.t006
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Fig 2. The fifteen rooted trees for the four taxa used to assess taxon instability and their percentage
frequency of occurrence in 1000 Bayesian or Bootstrap (LogDet) trees. Taxa abbreviated as follows:
Grandisonia alternans (A),Hypogeophis brevis (B)Grandisonia larvata +Grandisonia sechellensis (LS) and
Hypogeophis rostratus (R). Numbers below trees are support values for analyses of: all nucleotides / protein-
coding nucleotides / tRNAs / rRNAs /amino acids / LogDet for all data / LogDet for protein-coding data. < = less
than 1% support,— = zero support.

doi:10.1371/journal.pone.0156757.g002
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additional samples in organisms with similar genome sizes to reduce costs. In addition, and
because the samples were indexed, our MiSeq approach allowed us to attribute sequenced frag-
ments to the mitogenome of each individual with almost complete certainty (assuming lack of
contamination). This shotgun sequencing method also provides data that can be used for other
purposes, such as development of anonymous nuclear loci [25], future development of micro-
satellite markers [50] or for SNP identification [51].

Molecular phylogeny and systematics of Seychelles caecilians
Our analyses suggest that mitogenomic data alone are not sufficient for resolving all phyloge-
netic relationships among Seychelles caecilians. One potential problem is substantial base-
composition heterogeneity in the protein-coding genes, something that can mislead phyloge-
netic inference [52]. That LogDet, which can overcome base-composition heterogeneity, pro-
duced substantially different results to other methods (Table 6) does not allow us to discount
this possibility. It is noteworthy that the pairing of Hypogeophis rostratus and H. brevis is
almost never supported, and this calls into question the taxonomy proposed by Wilkinson
et al. [22]. However the inadequacy of the data seems to preclude ruling out anything at this
stage other than relationships that contradict the well-supported sister-group relationship
between Grandisonia larvata and G. sechellensis that was found in many previous analyses also
[16,17,21,23,24]. With additional sampling (e.g., a second individual ofH. brevis) there is the
potential to improve the resolution of Seychelles caecilian phylogeny based on mitogenomes,
but it seems more likely that the remaining phylogenetic problems will require additional
sequence data from nuclear genes.
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Table 7. Comparison of performance of five approaches for generating our mitogenome sequence data from eight samples of Seychelles caeci-
lians. Approximate relative ‘values’ depicted are * = low, ** = moderate, *** = high.

Method Sequencing Sample
preparation time

Sample
preparation cost

Sequencing
running time

Sequencing
cost

Mitogenome
reconstruction time

Total time
expenditure

Traditional Sanger *** ** * * *** ***

Shotgun Illumina
MiSeq

* * ** ** * *

Multiplex Illumina
HiSeq

*** ** *** *** *** **

Multiplex Roche 454 *** ** ** ** ** **

Multiplex Ion Torrent *** ** * * ** **

doi:10.1371/journal.pone.0156757.t007
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