Fast-Coding Robust Motion Estimation Model in a GPU

Carlos Garcia®

Guillermo Botella?®

Francisco de Sande?

Manuel Prieto-Matias®

“Complutense University of Madrid, Spain; ’La Laguna University, Spain;

ABSTRACT

Nowadays vision systems are used with countless purposes. Moreover, the motion estimation is a discipline
that allow to extract relevant information as pattern segmentation, 3D structure or tracking objects. However,
the real-time requirements in most applications has limited its consolidation, considering the adoption of high
performance systems to meet response times. With the emergence of so-called highly parallel devices known as
accelerators this gap has narrowed. Two extreme endpoints in the spectrum of most common accelerators are
Field Programmable Gate Array (FPGA) and Graphics Processing Systems (GPU), which usually offer higher
performance rates than general propose processors. Moreover, the use of GPUs as accelerators involves the
efficient exploitation of any parallelism in the target application. This task is not easy because performance
rates are affected by many aspects that programmers should overcome. In this paper, we evaluate OpenACC
standard, a programming model with directives which favors porting any code to a GPU in the context of motion
estimation application. The results confirm that this programming paradigm is suitable for this image processing
applications achieving a very satisfactory acceleration in convolution based problems as in the well-known Lucas
& Kanade method.

Keywords: Motion Estimation, GPU, OpenACC

1. INTRODUCTION

In the modern era, mankind has tried to endow machines, through the computerization process, with a greater
similarity to humans so that machines can help in a better way and perform a larger number of tasks. To
achieve this goal, machines are being equipped with similar senses to humans, facilitating their interaction with
the world around us. One of the senses which has undergone the biggest advances over the last few years is the
sense of vision,' # in an attempt to give machines the ability that humans have for reading the environment and
extracting a large amount of information from it. This interest of the human race in producing machines with
senses such as sight is explained by the ease and the speed with which a machine can analyze information from
the environment.

As part of the sense of vision, we find the motion estimation paradigm becoming of capital importance for
a huge number of applications, such as sport tracking, surveillance, quality control, navigation, cybernetics,
medicine and so on.

An illustrative example in the biomedical field is that of breast MRI, where the most significant information
is acquired from differences in images taken pre-contrast and post-contrast.®® Since we have the handicap that
a typical breast MRI reading takes several minutes, it is highly likely that there will be motion between the
two readings used to compute a difference image, due to the patient moving as well as to sagging breast tissue.
Therefore, many motion artifacts are caused by involuntary patient motion or muscle relaxation during the image
acquisition, affecting any image analysis performed on such perturbed images. A reduction of such artifacts is
thus fundamental for a valid morphological or dynamic image analysis.

Further author information: (Send correspondence to C. Garcia): E-mail: garsanca@ucm.es

Real-Time Image and Video Processing 2015, edited by Nasser Kehtarnavaz, Matthias F. Carlsohn,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 9400, 94000J - © 2015 SPIE-IS&T
CCC code: 0277-786X/15/$18 - doi: 10.1117/12.2077091

Proc. of SPIE-IS&T Vol. 9400 94000J-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

Optical flow is a term that has been widely linked to motion estimation, despite not being exactly the same
concept. The brightness pattern in the image moves as the object that appears in it moves. Optical flow is
the apparent motion of the brightness pattern of entities such as surfaces, edges, and objects in a visual scene,”
caused by the relative motion between an observer (an eye or a camera) and the scene . In the ideal case, optical
flow would correspond with the estimated motion field, despite the fact that apparent motion can be caused
by lighting changes without any actual motion. Optical flow involves a huge and complex signal processing
operation which represents a handicap when a real-time constraint is needed.

Due to the drawback of having to provide real-time results, many approaches to accelerating optical flow
algorithms by means of devices such as GPUs have been considered. These devices are based on multi-core
systems with a complex memory hierarchy. These platforms are designed to take advantage of the inherent
parallelism of data rendering 3D scenes. However, currently these platforms are used as parallel coprocessors,
executing a high number of threads simultaneously

The programming paradigm represents the GPU as a coprocessor, which can execute parallel kernels and also
offers extensions for the C language. This paradigm maps the data from the GPU, transfers the data between
the GPU and CPU, and runs the kernels. Usually a kernel runs several code lines over many parallel threads.
This kind of system uses the concept of SIMT (Single Instruction Multiple Threads), so a single instruction is
executed from many threads with different input data. The tasks are organized through the so -called blocks,
which make it possible to run a huge number of cooperating threads, thanks to a low-latency local memory and
the use of synchronization tokens. Some blocks can only be coordinated through the global memory with high
latency. Processors are grouped into multiprocessors, which are assigned to a particular task.®

Regarding a specific paradigm to program the GPU we have used the novel paradigm OpenACC,? it being an
accelerator programming standard that enables C -based programmers to directly take advantage of the power
of heterogeneous CPU /accelerator systems. This paradigm thus allows programmers to use compiler directives
to identify which areas of code to accelerate, without requiring modification to the underlying code itself. By
identifying parallel code segments, OpenACC directives allow the compiler to do the detailed work of mapping
the computation onto the accelerator.

This paper is organized as follows, after the present section. Section 2 addresses the Optical Flow algorithm
to be accelerated. Section 3 presents the specific directive -based paradigm that will be used to program the
accelerator. Section 4 explains the implementation section by means of choosing candidate functions. Section
[sec:results] shows the results obtained and finally Section 6 contains the conclusion and future lines of research.

2. LUCAS & KANADE ALGORITHM

The estimation of the velocity field using optical flow is an ill-posed problem, since there are an infinite number
of velocity fields that can cause the observed changes in the luminance distribution. Additionally, there are an
infinite number of 3-dimensional motions in the real world that could yield a particular velocity field. External
knowledge about the behavior of objects in the real world, such as rigid body motion constraints, are required
in order to make use of optical flow. Despite the problems, the optical flow information is a rich array of vectors
that has both local and global properties.!? The optical flow field can thus be subjected to many higher-level
interpretations.!!

The Lucas & Kanade method!'? is a well-known algorithm, and we have applied the original description
of the model,'® while adding several variations to improve the viability of the hardware implementation. We
present a simplified scheme of the algorithm, below. The Lucas & Kanade model computes optical flow using a
gradient technique that makes use of space-temporal derivative filters. The model comes from the basic intensity
conservation over time (equation 1), where x, y, and t are the coordinates of the sequence. Developing the
expression 1 we reach expression 2:

dl (z(t),y(t),t)) _
e =0 (1)

Proc. of SPIE-IS&T Vol. 9400 94000J-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

I (x(t), y(t), t)

dt

0L (x(t),y(t),t) dz | oI (x(t),y(t).t) dy OI(x(t).y(t).1) @)
ox dt oy dt ot

oI (z(t),y(t),t) ~ OI(x(t),y(t),t) — OI(x(t) y(t),t) _
52 u + 5 v+ 5t =0

The Lucas and Kanade model assumes that the motion vector really does not change in the studied vicinity
V. Considering the error to minimize the motion constraint expression (equation 3):

2
Ewv= Y <5I (2(0),y(®),1) 0L (2(t) y(1). 1) M(x(t),y(t),t))

oz 5y ot (3)

pizeleV

Solving % = 0 % = 0; and grouping them all together, we find an algebraic system expressed by
equation 4, which means the least mean square estimation of the optical flow at the centered pixel of the vicinity
V. The symbol A denotes the estimator of the corresponding magnitude. The resulting optical flow estimated
is dense:

A= |: ZpizelGV I%(pwcel) ZpizelGV Iajly(pl-rel) (4)
Y opizetev Lely(pizel) 3 icicy Iﬁ (pizel)

B = [Zpixelev Ix]t(pljxel)
> pizerev Lylt(pizel)

where a sub-index in the equation means the derivatives computed by separable filtering (Gaussian derivatives

(z(t),y(t).t) 51(m(t6)»y(t)»t) I (z(t),y(t),t)
’ y

S and 5t

or Gabor function), so I, I, and I; correspond to ol respectively.

3. OPENACC PROGRAMMING

Currently, OpenACC? is one of the most prominent Directive-Based Programming Models, as it is being es-
tablished as a standard for parallel computing for different accelerators. It was developed by the group of
companies PGI, CAPS, NVDIA and CRAY. Its objective is to simplify the programming of heterogeneous sys-
tems (CPU/GPU), to facilitate code migration and to be an intermediate step between automatic parallelization
and manual parallelization.

OpenACC is a directive programming model. The programmer inserts a set of directives to guide the compiler
concerning which parallel regions could be executed in the accelerator.

Regarding the OpenACC execution model, it is based on a host-device model as in OpenCL or CUDA. The
work-flow is managed by the host, and the device is responsible for executing parallel regions. The host is in
charge of memory allocation on the device, sending data, downloading code onto the accelerator and sending the
required arguments in the parallel region. It is also responsible for maintaining a queue with the code that will
be executed on the accelerator and for bringing back the data and results to the host.

The programmer is responsible for exploiting different parallelisms (fine-grained, coarse-grained, SIMD or
vector operations). OpenACC divides the workload into gangs, workers and vector, which may vary depending
on the compiler and target platform. These concepts are linked with the CUDA /OpenCL architectural model.

Proc. of SPIE-IS&T Vol. 9400 94000J-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

One or more gangs are launched on the multiprocessor device; these gangs being composed of several workers,
which are maps to a single processing unit called a core in CUDA.

OpenACC includes directives to define parallel regions: kernel or parallel construction. While kernel con-
struction resembles the description of kernel in OpenCL or CUDA, parallel indicates that source-code does not
present data and control dependencies so could be mapped in a parallel architecture.

In order to illustrate the ease of coding with OpenACC, the well-known convolution operation is used. The
convolution CUDA version is shown in Figure 1. Previously device memory initialization (cudaMemcpy and
cudaMalloc operations) is needed; later, the execution on the device is performed by “kernel” invocation; and
finally, results are returned to host (last cudaMemcpy call).

__global__ void convlD(float xconv, float *xim, float =filter ,
int width, int height, int filter_size)
{

// Block index
int bx = blockldx.x;
int by = blockldx.y;

// Thread index
int tx = threadldx.x;
int ty = threadldx.y;

// Index processed by the block
int i = BLOCK.SIZExby + ty;
int j = BLOCKSIZExbx + tx;

int bi, bj;
int filter_center = (filter_size —1)/2;

conv [ixwidth+j] = 0.0;
for (bj=—filter_center; bj<=filter_center; bj++)
if ((j+bj>=0) & (j+bj<nx))
conv [ixwidth+j] += im[i*width+j+bj]|* filter [bj+filter_center |;

}

int main(int argc, charxx argv)

{

cudaMalloc ((voidx**)&d_im, widthxheight+sizeof(float));

cudaMalloc ((void**)&d_conv, widthxheightxsizeof(float));

cudaMalloc((vmd**)&d fllter , filter_sizexsizeof(float));

cudaMemcpy (d- im, widthxheight*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy (d fllter, filter , filter_sizexsizeof(float), cudaMemcpyHostToDevice);

/* CUDA Kernel x/
convlD<<< 128, 256>>>(d_conv, d_.im, d_filter , width, height, filter_size);

cudaMemcpy (d_conv, conv, widthxheight*sizeof(float), cudaMemcpyHostToDevice);

Figure 1. Source code for convolution operation wrote in NVIDIA-CUDA.

As can be seen in Figure 1, performing a kernel involves rewriting most of the source code with implicit device
memory management. Nevertheless, the use of the OpenACC paradigm simplifies the whole encoding process.

Proc. of SPIE-IS&T Vol. 9400 94000J-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

As illustrated in Figure 2, it is only necessary to insert #pragma acc kernels loop where the im and filter array
are copied to device and conv is copied back to host.

int main(int argc, charxx argv)
{
#Hpragma acc data copyin(im[0: widthxheight], filter [0: filter_size])\
copyout (conv [0: widthxheight])
{
#pragma acc kernels loop independent
for (i=0; i<height; i4++){
#pragma acc loop independent
for (j=0; j<width; j++){
conv [i*xwidth+j] = 0.0;
#pragma acc loop seq
for (bj=filter_center; bj<=filter_center; bj++)
if ((j+bj>=0) & (j+bj<width))
conv [ixwidth+j] += im[ixwidth+j+bj]=* filter [bj+filter_center];
}
}
}
}

Figure 2. Convolution operation coded using OpenACC paradigm.

4. IMPLEMENTATION

This section addresses the Lucas & Kanade algorithm by means of OpenACC. Candidate functions are selected
according to the degree of data parallelism available. These are necessary to adapt the source code in order to
exploit accelerator features.

The first transformation performed consists in a reduction of data transfers between host and GPU, and a
single data region is coded. Sequence images, and filters are uploaded by means of the copyin clause. Finally,
velocity information is downloaded at the end of the data region. Algorithm 1 shows the main OpenACC
codification.

The pseudocode in Algorithm 1 shows the data region that contains the functions to compute the Lu-
cas&Kanade method. As can be seen, data transfers are performed by copyin/copyout clauses. Furthermore,
temporal memory allocations on the GPU are needed in derivatives and summations (create clause).

Algorithm 1 also shows the Horizontal Spacial Derivative pseudocode. The convolution performs the calcula-
tion of derivatives on the x-axis by means of fissioned loops. Most of the code is written using nested loops and
conditional branches (in left and right edges filtering). Furthermore, OpenACC kernel construction is defined
(#pragma acc kernel) with present to request that data which is already allocated on the GPU. Loop iterations
are also marked as independent by means of the #pragma acc loop independent directive. As the inner loop
workload does not have a sufficient degree of parallelism to be exploited successfully on a GPU, it is advisable
to perform it in a single CUDA-thread way (#pragma acc loop seq directive). Although a more common choice
would be to fission the loops of the convolutions to avoid conditional branches, OpenACC does not create effi-
cient kernels (in terms of performance). This is due to the fact that loops that perform edges contain very little
computational workload in comparison with the main loop, which performs the center frame. Consequently, it
is not worth generating kernels without enough parallel data workload.

Finally, we would like to mention two more transformations that provide successful speedups:

Proc. of SPIE-IS&T Vol. 9400 94000J-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

Algorithm 1 [U, V] = lk(movie, filters)
filterx = get_hor_filter(filters)
filtery = get_vert_filter(filters)

> ms,fs.fils are movie, frame and filter size

#pragma acc data copyout(U[0:ms], U[0:ms])
copyin(movie[0:ms], filterX[0:fils], filterY[0:fils])
create(Ix[0:fs], Iy[0:fs], It[0:fs],

I2[0:fs], I2[0:fs], I,4[0:s], 1,,4[0:fs],
sum?_[0:fs], sum?, [0:fs],

Iz Iy
sumpgre[0:48], sumpyr,[0:1s])

{

for z=0 to nFrames-1 do
f0 = movie[z * fs]
f1 = movie|z x fs]

I, = spacial derivative(f0, filterX)

I, = spacial_derivative(f0, filterY")

I, = temporal _derivative(f0, f1)

sum?, = calculate_sum(I, I,)

sumi, = calculate_sum(I,, 1)

sumpg = calculate_sum(I,, I})

sumpy = calculate_sum(I,, Iy)

[U.,V,] = solve_system(sumI2, sumlg, SUM gty SUMLTt)
end for

}

function I, =SPACIAL_DERIVATIVE(frame, filterX)
#pragma acc kernel present (frame[0:fs], filterX][0:fils],
I.[0:As])

> Horizontal Spacial Derivative

{

#pragma acc loop independent
for i=0 to vs do
#pragma acc loop independent

> vs is vertical size

for j=0 to hs do > hs is horizontal size
tmp =0
if j < fs/2 then > left border

#pragma acc loop seq
for k=0 to fs do
tmp+ = frameli|[j + (k — fs/2)] * filter X [k]
end for
else if j > hs-fs/2 then > right border
#pragma acc loop seq
for k=0 to fs/2-hs-j do
tmp+ = frameli|[j + (k — fs/2)] * filter X [k]
end for
else
#pragma acc loop seq
for k=0 to fs do
tmp+ = frameli|[j + (k — fs/2)] * filter X [k]

> center

end for
end if
I [i][j] = tmp
end for

end for

}

end function

Proc. of SPIE-IS&T Vol. 9400 94000J-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

e The first one consists in making an inline expansion within the kernels (inserting source code instead of a
function call), since the compiler does not allow function calls inside these constructions.

e The second one avoids the use of matrix or vector structures because the compiler does not generate a
consistent kernel. Data are expressed as scalar

5. RESULTS
5.1 Work Environment

To carry out the tests on the implementation developed in OpenMP *, we have used a system with two Intel
Xeon E5530 processors with 4 cores each , at 2.40GHz, with 8MB of cache and Hyperthreading technology;
performing such tests in configurations of 2, 4, 8 cores and 8 cores + SMT, and making use of the gcc compiler
in its 4.7.2 version . Regarding the implementation of OpenACC, the accelerator used has been a GPU Tesla
K20c from NVIDIA (Kepler GK110 architecture). It includes 2496 CUDA cores with 5GB GDDR5 memory and
a floating point performance of 3.52Tflops. The OpenACC compiler used was PGI-pgcc, version 14.6.

5.2 Convolution Performance

In this subsection, it’s evaluated GPU behavior with the well-known convolution operator using the OpenACC
standard. Table 1 show the speedups obtained in a modern NVIDIA GPU using OpenACC standard varying
image and filtering size. As a baseline code, we have considered the 2D separable convolution developed in
C language. GPU version was performed adding OpenACC’s pragmas which means inserting only 3% of new
source code lines. As was expected, successful accelerations are reached in most configuration with a range of
1 x —153x for PGI compiler.

Table 1. Speedups achieved in Tesla K20c device using both OpenACC compilers.

Image size 1282 2562 5122 10242

Filtersize | 7 [15 [31 || 7 [15[31 | 7] 15 | 31 7T 15] 3
CAPS 02[03]57 [14]24[229[1.6] 9.6 [71.7 [98 [25.5 [134.1
PGI 1.0[25[241]3.6|80[705]9.1[165 | 113.9 [[182 [29.7 | 153.7

We would like to mention that most of motion estimation algorithms are based on temporal and spatial
derivatives implemented by convolve filtering.

5.3 Lukas&Kanade accuracy

The first experiment consists in a study of the accuracy of the Lucas & Kanade algorithm. The metric used is
the well-known Barron’s angle.'* The synthetic stimuli used are Diverging Tree and Translating Tree.!® The
calculated error is obtained as the average error per pixel between the estimated optical flow and the ground
truth.

Error results are performed using a different parameter configuration: varying spatial filter sizes (3, 5, 7 and
9) and block neighbourhood sizes (5, 9, 15, 19, 26 and 30). We have also considered the accuracy for different
density ranges (with/without the edge region). As summary, tables 2 and 3 show the best configuration obtained
with Diverging and Translating Tree stimuli. The whole frame has 100% density, and a density of 93% for an
image of 150 x 150 with a filter of size 5 corresponds to the following calculation: (150 — 5)2/150% = 0.93.
Therefore, in this study we test the trade-off solution between accuracy and density. ‘error without correction’
notation refers to a density of 100%.

*OpenMP: www.openmp.org

Proc. of SPIE-IS&T Vol. 9400 94000J-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

Table 2. Metric Barron error in DivergingTree for different corrections with their densities.

. Angular .
Type Block | Filter Ercor Density
Without [5 14.46° | 100%
correction
Filter 15 9 11.67° 89%
correction

Table 3. Metric Barron error in TranslatingTree for different corrections with their densities.

. Angular .
Type Block | Filter Ercor Density
Without |4, 5 26.21° | 100%
correction
Filter 30 9 15.11° 93%
correction

5.4 Lukas&Kanade performance

In the performance study, the most accurate configuration has been chosen (size filter=5 and blocks neighbor-
hood=15). Figure 3 shows the performance measured in frames per second (fps) with varying frame resolutions
(from 1502 to 2400%) on both multicore CPU and GPU.

As can be observed, the non-parallel version (blue bar denoted as ‘Linear’) only achieves real-time ratios
(about 20 or 25fps) for low resolution rates (1502). As expected, the exploitation of task-level parallelism
on a multicore processor using OpenMP reported better performance. The use of a multicore system with
8 cores+SMT (SMT means Intel’s HyperThreading enabled) provides real time response for 6002 resolutions.
However, using the novel OpenACC paradigm, we obtain real time with upto 1200? resolutions, getting closer
to real time with 14 fps for FullHD resolution (1920 x 1080). These encouraging results suggest that the use of
a single GPU in the context of motion estimation can offer improvements of between 3 — 4x with respect to the
best multicore version without significant variations in the programming task.

800
700
600
500
1 Core
400 OMP (2 cores)
FPS
B OMP (4 cores)
300 OMP (8 cores)
200 OMP (8 cores + SMT)
OpenACC
100 I

1502 3002 6002 12002 19202 24002

Image Resolution
Figure 3. Performance (fps) with different resolutions for DivergingTree using filter=5 and block=15 configuration.

The speedups achieved (see Figure 4) with OpenMP in multicore are in a range between 2 — 10x. However,
there is a successful scalability of more than 70% when physical cores are available, while that is reduced to 50%
with 8 cores+SMT. Nevertheless, the GPU version with OpenACC achieves better speedups, in a range of 22x
to 40x with respect to its serial CPU counterpart. We can notice that when increasing the image resolution,
OpenMP does not provide a great improvement because it is reaching the maximum parallelism that can be
supplied. However, the GPU version with OpenACC continues increasing the speedup in huge images, as GPUs

Proc. of SPIE-IS&T Vol. 9400 94000J-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

provide their maximum performance with a great amount of data, and at this point they take advantage of their
highest parallelism. In high definition resolutions it seems to reach the OpenACC limit, where the increase of
its speedup levels off.

40
30
o B OMP (2 cores)
SpeedUp OMP (4 cores)
B OMP (8 cores)
OMP (8 cores + SMT)
1 m OpenACC
o I || I || I || I || I || I
1502 3002 6002

12002 19202 24007

(=}

o

Image Resolution
Figure 4. Speedup with different resolutions for DivergingTree using filter=>5 and block=15 configuration.

We would like to emphasize that the use of a GPU programmed by applying the OpenACC paradigm not
only makes it possible to obtain a satisfactory performance, but it also involves a programming task that is
perfectly affordable. As an example, we can state that the total number of lines in the source code added or
changed only represents 8% (5% of source code added and 3% modified).

5.5 Performance Analysis in other gradient models

In this subsection, we analyse the behaviour of the fists stages of other motion estimation models such as Multi-
channel Gradient Model (McGM)'6:17 which is also based on temporal and spatial filtering stages. Due to the
analogy in the filtering operation in both models, this analysis allows to extrapolate the maximum achievable
throughput using based-directive coding in more complex algorithms.

In particular, McGM is based on FIR-Filtering Temporal stage where three different temporal channels are
computed according to the experiments carried out by Hess and Snowden'® about visual channels discovered
in human beings: one low-pass filter and two band-pass filters with a center frequency of 10 Hz and 18 Hz,
respectively. The FIR-Spatial Derivatives stage is based on space domain computation where the shape of the
receptive fields from the primitive visual cortex is modelled using either Gabor functions or a derivative set of
Gaussians.!?

Figure 5 shows the speedups achieved using OpenACC programming paradigm in the first stage of the
algorithm McGM. Bars correspond to the different programming models considered, directive-based models as
OpenACC supported by CAPS and PGI compilers, and hand coding by means of CUDA. Figure 5 shows the
performance rates varying images sizes (from 322 to 2562) and different temporal filter sizes (L=7, 11, 15 and
19). The speedups are satisfactory for all cases considered. As expected, higher resolution images or larger filter
sizes report higher speedups due to the higher degree of parallelism that can be exploited. GPU exploitation
based on directive programming is advisable in terms of speedups, reporting ratios close to the performance
peak only achievable by means of hand-tuned codified by means of CUDA. We would like to remark that PGI
executable is the most efficient based on directives compiler.

Figure 6 shows the performance rates observed in the spacial filtering stage of McGM algorithm. Although
OpenACC programming reports acceptable gains, the accelerations are substantially lower than those achieved at
the stage of temporal filtering. Version developed in CUDA produces again the best performance figures because
it is based on the convolution that efficiently exploit GPU’s shared and constant memory.2? Performance drop
in the CAPS and PGI counterparts respect CUDA is due both compilers are not able to exploit efficiently GPU

Proc. of SPIE-IS&T Vol. 9400 94000J-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

Stage 1. Temporal filtering

Speedup

64 128 256 32 64 128 256

32 64 128 256 32 64 128 256 32
(square frame)

Frame dimensions

Figure 5. Temporal Filtering speedups with different resolutions varying temporal filter size (L).

memory hierarchy. However, speedups observed outperform 30x for configurations of spacial filter size of T' = 31

in 2562 images.

Stage 2. Spactial filtering

Speedup

32 64 128 256

128 256 32 64 128 256

32 64 128 256 32 64
(square frame)

Frame dimensions

Figure 6. Spacial Filtering speedups with varying spatial filter size (T).

6. CONCLUSIONS

The results observed using a directive-based language for GPUs determined that the use of accelerators is an
efficient solution not only in terms of performance but also in power consumption (watts/fps).

This work initially evaluates the performance gains for convolution operator using the programming paradigm
OpenACC. The gains achieved are impressive. Using this first approach, GPU implementation using the directive

paradigm of a optical flow algorithm also reports satisfactory performance rates.

Proc. of SPIE-IS&T Vol. 9400 94000J-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

The time required to estimate motion increases with the quality and resolution of the input image. The
trend is to have higher and higher resolutions in multimedia environments, as we can appreciate in the new 4K
resolution, which quadruples the resolution of the current FullHD video coding format (1920x1080).

Because of the need to achieve greater efficiency in implementations and due to the intrinsic parallelism
inherent in the images to be exploited by the accelerator, we have used an NVIDIA card for our heterogeneous
system.

One of the main potential handicaps to the wider acceptance of the use of accelerators by unskilled program-
mers is the know-how of the specific architectures involved, which implies a long learning curve. For this reason,
the directive programming models such as standard OpenMP and the more recent OpenACC have been designed
to exploit the accelerator independently of the architecture.

After evaluating our results, we can state that OpenACC is a promising alternative to consider, as it is
affordable in terms of the learning required and it is possible to migrate C code in a straightforward way without
making too many modifications (modifying and adding only 8% of code lines from their C source, which is
negligible).

Finally, from a performance perspective, we can summarize as follows:

e The non-parallel version only provides a real-time response for a 150x150 resolution.

e The OpenMP version of a system based on 8 cores+SMT provides a real time response for 600x600
resolutions, which means a top speedup of 10x.

e The implementation based on the OpenACC paradigm is the only implementation which achieves real-
time rates for 1200x1200 and close to the FullHD resolution (1920x1080), which again suggests that it is a
serious option to consider. It achieves accelerations of upto 40x with respect to its serial CPU counterpart.
Moreover, it offers improvements of between 3 — 4x with respect to the best multicore version.

e Analyzing the behavior of another motion estimation algorithm as McGM, the first two stages based on
temporal and spatial filtering also good performance are observed:

— PGI version is the most successfully implementation based on directives programming.

— Performance drop in the CAPS and PGI counterparts respect CUDA is due to the compiler is not
able to exploit efficiently GPU memory hierarchy.

6.1 Acknowledgments

This work has been supported by Spanish Project TIN2012-32180 and partially supported by CAPAP-H4 Net-
work (TIN2011-15734-E).

REFERENCES

[1] Chalmers, D. J., [Conscious Ezperience], Imprint Academic (1995).

[2] Bruce, V., Georgeson, M. A., Green, P. R., and Georgeson, M. A., [Visual Perception: Physiology, Psychology
and Ecology], Psychology Press, 3 ed. (Sept. 1996).

[3] Zhaoping, L., [Understanding Vision Theory, Models, and Data], Oxford (2014).

[4] Anderson, A. J., Bruni, E., Bordignon, U., Poesio, M., and Baroni, M., “Of words, eyes and brains: Corre-
lating image-based distributional semantic models with neural representations of concepts.,” in [EMNLP],
1960-1970, ACL (2013).

[5] Behrens, S., Laue, H., Althaus, M., Bhler, T., Kuemmerlen, B., Hahn, H. K., and Peitgen, H.-O., “Computer
assistance for mr based diagnosis of breast cancer: Present and future challenges.,” Comp. Med. Imag. and
Graph. 31(4-5), 236-247 (2007).

[6] Garcia, C., Botella, G., Ayuso, F., Gonzalez, D., Prieto-Matias, M., and Tirado, F., “Implementation of a
low-cost mobile devices to support medical diagnosis.,” Comp. Math. Methods in Medicine 2013 (2013).

[7] Horn, B. K. P. and Schunck, B. G., “Determining optical flow,” Artificial Inteligence 17, 185-203 (1981).

Proc. of SPIE-IS&T Vol. 9400 94000J-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

[8] “CUDA: Compute Unified Device Architecture..” NVIDIA Corporation. (2007).
[9] “OpenACC Application Programming Interface v2.0.” OpenACC Standard (2013).
[1

Nakayama, K., “Biological image motion processing: a review.,” Vision research 25(5), 625-660 (1985).

Baker, S., Gross, R., and Matthews, 1., “Lucas-kanade 20 years on: A unifying framework: Part 3,”

International Journal of Computer Vision 56, 221-255 (2002).

[13] Lucas, B. D. and Kanade, T., “An iterative image registration technique with an application to stereo
vision,” in [Proc. of 7th Int. Joint Conf. on Artificial Intelligence (IJCAI ’81)], 674-679 (April 1981).

[14] Barron, J. L., Fleet, D. J., and Beauchemin, S. S., “Performance of optical flow techniques,” International
Journal of Computer Vision 12, 43-77 (1994).

[15] Fleet, D. J., [Measurement of Image Velocity], Kluwer Academic Publishers, Norwell, MA, USA (1992).

[16] P. W. McOwan, C. P. B. and Johnston, A., “Robust velocity computation from a biologically motivated
model of motion perception,” Proceedings of the Royal Society B 266, 509-518 (1999).

[17] Liang, X., McOwan, P. W., and Johnston, A., “Biologically inspired framework for spatial and spectral
velocity estimations,” J. Opt. Soc. Am. A 28, 713-723 (Apr 2011).

[18] Snowden, R. J. and Hess, R. F., “Temporal frequency filters in the human peripheral visual field.,” Vision
Res 32(1), 61-72 (1992).

[19] J.J, K., “Optic flow,” Vision Res 26, 161-180 (1996).

[20] Ayuso, F., Botella, G., Garca, C., Prieto, M., and Tirado, F., “Gpu-based acceleration of bio-inspired motion

estimation model.,” Concurrency and Computation: Practice and Experience 25(8), 1037-1056 (2013).

]
]
0] Koenderink, J. J., “Optic flow,” Vision research 26(1), 161-179 (1986).
]
]

Proc. of SPIE-IS&T Vol. 9400 94000J-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/16/2015 Terms of Use: http://spiedl.or g/terms

