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Abstract We present a new correspondence between a d-
dimensional dynamical system and a family of higher-order
derivative (d + 1)-dimensional systems. This new scale-
holographic relation is built by the explicit introduction of
a dimensionful constant which determines the size of the
additional dimension. Scale holography is particularly use-
ful for studying non-local theories, since the equivalent dual
system on the higher dimensional manifold can be made to
be local, as we illustrate with the specific examples of the
p-adic string theory and the free particle.
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1 Introduction

From the original concept of holography, proposed in 1993 by
Gerard ’t Hooft [1], this idea has become ubiquitous in many
different fields of modern theoretical physics. The pioneer-
ing discussions on black hole thermodynamics drove soon to
the conjecture of the holographic ‘AdS/CFT’ duality [2,3].
These ideas have been intensively analyzed within a gravi-
tational context. In short, they postulate that the study of a
gravitating system defined on a given spacetime is equivalent
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to the study of a non-gravitating quantum system defined on
a lower dimensional spacetime. More precisely, the so-called
holographic duality prescription establishes that vacuum cor-
relators of a quantum field theory defined within a strong cou-
pling regime in a d-dimensional spacetime can be computed
by using appropriate fields in a (d + 1)-dimensional anti-de
Sitter spacetime [2–5]. Thermal states can also be studied
by using the correspondence. In this case, the geometry of
the (d + 1)-dimensional spacetime is provided by an anti-de
Sitter black hole.

However, the diversity of fields with theoretical devel-
opments connected to holography is enormous and not
restricted to the analysis of gravitational systems. The
range of examples reaches from quantum chromodynam-
ics [6,7] to condensed matter [8–10]. Indeed, the impor-
tance of holography goes beyond particular realizations,
and it is related to more foundational questions, which
are not only interesting for a physics discussion but also
from a philosophical approach [11–14]. The duality between
two systems describing the same physics invites to discuss
whether one of them can be considered more fundamental
or whether some elements of the theory are just emergent
[15–18].

In this work, we will present a new scale-holographic rela-
tion between different systems. More specifically, we will
establish a holographic equivalence between ad-dimensional
system and a whole family of systems described by partial
differential equations (PDE) of different orders in (d + 1)

dimensions with appropriate initial and boundary conditions.
The size of the additional dimension is related with the char-
acteristic length scale of the original and hence the name. The
simplicity of the approach can be useful for discussing these
questions. In addition, it provides a tool for solving involved
PDEs such as those associated with non-local systems as we
will see with specific examples.

Useful and insightful holographic duals can also be con-
structed for a variety of models that involve non-local kinetic
operators. Such kind of kinetic operators appear for instance
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in superrenormalizable models for quantum gravity [19,20],
in string field theory [21], and in asymptotically safe theories
of gravity [22], among many others.

We will use the p-adic string theory [23–26] in a (d + 1)-
dimensional spacetime as a particularly interesting work-
ing example. This model provides a tachyon effective action
which reproduces correctly all the tree level bosonic string
amplitudes on a D-brane and it is known to have a holographic
correspondence with an effective string field theory in a d-
dimensional spacetime [27]. Here we will show that this
model is also holographically equivalent not only to a system
described by the heat equation in one additional dimension
(this result is already well known and it has been thoroughly
studied in Refs. [28,29]) but also to a system associated with
gravitational analogues. In both cases the appropriate choice
of boundary conditions constitutes a fundamental piece of
the correspondence as we will analyze in detail.

2 Scale-holographic duals

We will consider the following action for a real scalar field
in d spacetime dimensions,

S = −
∫

dd x

[
1

2
λ−2

0 φ F(λ2
0�)φ + V (φ)

]
, (2.1)

where � is the d-dimensional D’Alembertian operator. We
have added explicitly a constant with dimensions of length
λ0 > 0, so that F is dimensionless, depends on the dimen-
sionless operator λ2

0�, and is normalized F(0) = 1. Then, φ
has dimensions of (length)(2−d)/2. For the case F(0) = 0, we
can replace the kinetic function F(z) with H(z) = F(z) + 1
and the potential V (φ) with Veff(φ) = V (φ)− 1

2λ−2
0 φ2. This

new system satisfies H(0) = 1. The case F(0) = ∞ will be
dealt with later. This action leads to the following equation
of motion,

F(λ2
0�)φ = −λ2

0V
′(φ). (2.2)

Theories with the actions of the form (2.1) have been con-
sidered previously in the flat cases [30–33] as well as non-flat
case [34–36] and refs. therein. In particular, a non-trivial solu-
tion for the case F(z) = exp z and V = φ4 have been con-
structed numerically in [30] and the existence of this solution
has been proven in [31]. For the case F(z) = (z + μ) exp z
the solution has been analyzed in [32]. The case of general
F(z) has been considered in [33]. Finally, the non-flat case
has been considered in different contexts in [34–36].

Let us introduce the new field u(a, x), definined in d + 1
dimensions as,

u(a, x) = F(a�)φ(x). (2.3)

Since we have assumed that F(0) = 1 we immediately see
that φ is the initial condition in a = 0 of the (d + 1)-field u,
i.e. u(0, x) = φ(x). Therefore, the differential equation of
motion (2.2) acquires the algebraic form,

u(λ2
0, x) = −λ2

0V
′[u(0, x)], (2.4)

that relates the value of u(a, x) at two different values of a,
namely a = λ2

0, the original length scale, and a = 0.
If we now differentiate Eq. (2.3) with respect to a we see

that u must satisfy the PDE,

∂au(a, x) − �b(a�)u(a, x) = 0, (2.5)

where the function b(z) is just the logarithmic derivative of
the kinetic function F(z), that is, b = F ′/F .

To summarize, we have transformed the original problem
into the following boundary problem,

{
∂au(a, x) − � b(a�)u(a, x) = 0,

u(λ2
0, x) = −λ2

0V
′[u(0, x)], (2.6)

where the first equation is a structural consequence of the
definition of the (d + 1)-field u(a, x) and the second comes
from the original equation of motion (2.2). We will call this
PDE boundary value problem the scale-holographic dual of
the original (2.2).

We now prove that there is a one-to-one correspondence
between the solutions of both problems. Indeed any solu-
tion of the original d-dimensional problem trivially leads via
the definition (2.3) to a solution of the (d + 1)-dimensional
scale-holographic dual. On the other hand, it is straightfor-
ward to see that the operator F(a�) evolves in the extra
dimension a according to the differential operator equation
∂a F(a�) − �b(a�)F(a�) = 0, with F(0) = 1. There-
fore F(a�) generates the a-evolution according to Eq. (2.5),
i.e. any solution of (2.5) must be of the form F(a�)φ(x)
for some initial condition φ. The boundary conditions of
the scale-holographic dual problem ensure that φ is a solu-
tion of the original problem. Note also that, by construction,
(2πa)−d/2Ĝ

(
x/

√
a
)
, where Ĝ(x) is the Fourier transform

of F(−k2), is a fundamental solution of Eq. (2.5).
The scale-holographic dual of a non-linear system is still

non-linear (the non-linearity being transferred to the bound-
ary condition, which explicitly depends on the potential
V ) and no significant gain can be expected in this sense.
However, for several kinetic functions, the scale-holographic
duals turn out to be much simpler. Indeed, we will show below
that the scale-holographic duals of several non-local systems
of physical relevance are local. More explicitly a local the-
ory defined on a certain volume with boundary conditions,
when restricted only to (part of) its boundary, can reduce to
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a non-local theory, thus establishing the above-defined dual-
ity between a non-local system in d dimensions, and a local
one in d + 1 dimensions. In the opposite direction, we can
view this duality as providing a scale for the lower dimen-
sional system associated with the size of the extra dimen-
sion. This mechanism is analogous to the standard compact-
ification used to obtain four observable dimensions in string
theories [37]. This method can also be used for kinetic func-
tions not defined in 0. When doing radiative corrections, it
is common to obtain kinetic functions that behave in certain
energy scales as �−1 or �−2 [38–40]. The problem with
these kinetic functions is that we can no longer apply the
method developed here, since F(0) = ±∞. However, this
kinetic functions usually vanish at infinity, or at least tend
to a constant value that can be normalized. Then, we can
recover the original function, either with F or H , as previ-
ously defined, not for a = 0 but for a → ∞. Then, for these
cases the holographic dual is given by (2.6) with the right
hand side of the second equation evaluated at a = ∞ and
not at a = 0.

Let us now analyze some specific cases of physical inter-
est.

3 The free particle

Let us start with the simple case of a massive free particle
described by the action

S = −
∫

dd x
1

2
φ(−� + m2)φ, (3.1)

for which F(z) = −z+1 and λ−2
0 = m2. Then u satisfies the

following PDE boundary value problem in d+1 dimensions:

{
(1 − a�)∂au(a, x) + �u(a, x) = 0,

u(λ2
0, x) = 0,

(3.2)

Note that we have applied (1−a�) on the resulting equation
in order to eliminate non-local operators. Although this oper-
ation could lead to additional spurious solutions, this is not
the case as we will see, since the solutions do not lie in the
kernel of (1−a�). We can solve this equation in momentum
space. The solution has the following form

û(a, k) = B(k)(1 + ak2), (3.3)

with B(k) being determined by the boundary condition,
which implies that

B(k) = δ
(

1 + λ2
0k

2
)
A(k), (3.4)

where A(k) is an arbitrary function. Transforming back to
position space and evaluating at a = 0 we obtain the solution
to the original problem,

φ(x) = u(0, x) = 1

(2π)d/2

∫
ddk A(k)δ

(
1 + λ2

0k
2
)
eikx ,

(3.5)

which is the standard – explicitly Lorentz invariant – solution
in terms of plane waves, as expected.

For the massless case, F(z) = −z. As discussed above,
the process is entirely analogous, now with H(z) = F(z)+1
and Veff = − 1

2λ−2
0 φ2. The solution is û(a, k) = A(k)δ(k2),

with A(k) being an arbitrary function.

4 The p-adic string theory

Let us consider now the non-trivial case of the p-adic string
defined (after an appropriate definition of fields and variables
[41–43]) by

S = −
∫

dd x

[
1

2
φ eλ2

0�φ − �

p + 1
φ p+1

]
. (4.1)

Here p > 1 and � has dimensions of (length)(1−p)(d−2)/2.
Then the kinetic function is F(z) = ez , and the equation of
motion is

eλ2
0�φ(x) = �φ p(x), (4.2)

a PDE which is both non-linear and non-local. Its scale-
holographic dual problem turns out to be a second-order PDE
with a non-linear boundary condition as can be seen straight-
forwardly:

{
∂au − �u = 0,

u(λ2
0, x) = �u p(0, x), φ(x) = u(0, x).

(4.3)

We can perform now a Wick rotation on the time variable
xμ = (t, x) → xae = (iτ, x), so that � → �e = ∂2

τ + ∇2

and transform this equation into a (d + 1)-dimensional heat
equation. It should be noted that this relation between a p-
adic string and the heat equation has already been made by
some authors (see e.g. [44–46]) but it has not been solved yet
without an explicit Ansatz, not even in one dimension.

We will now provide a general method to find solutions of
the (Wick-rotated) holographic dual (4.3) in 1+1 dimensions,
i.e. for the p-adic string action (4.1) in one dimension. This
dual has the form

{
ua − uττ = 0,

u(λ2
0, τ ) = �u p(0, τ ).

(4.4)
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An analysis of the Lie symmetry group structure of the heat
equation [47] shows that, given a solution u0(a, τ ), we can
obtain a 6-parameter family of solutions acting on it with the
symmetry group [47]:

u = u1(a, τ )×u0

(
e−ε4(τ − ε3a)

1 − ε1τ
− ε5,

e−2ε4a

1 − ε1a/4
− ε6

)
,

u1 = eε2

√
1 − ε1a

exp

(
−ε3τ − ε1τ

2/4 − ε2
3a

1 − ε1a

)
. (4.5)

If the seed solution u0 is constant only three of these param-
eters are relevant. More explicitly, given the trivial solu-
tion u0 = 1, the parameters ε4, ε5, ε6 are irrelevant and the
requirement that u satisfies the boundary condition implies
that only one parameter τ0 is arbitrary:

ε1 = p − 1

pλ2
0

, ε2 = ln p − 2 ln �

2(p − 1)
+ 1

4
ε1τ

2
0 , ε3 = 1

2
τ0ε1.

(4.6)

Finally, the solution to the original p-adic problem can be
obtained Wick-rotating back this solution and evaluating it
at a = 0:

φ(t) = u1(0, t) =
(√

p

�

) 1
p−1

exp
[
−p ε1(t − t0)

2
]
, (4.7)

where t0 ≡ iτ0, which had already been obtained in [44,46].

5 Higher-order scale-holographic duals

So far, we have mapped our very general system into a PDE
boundary problem that is of first order in an emergent dimen-
sion, whose range is related to the scale of the original prob-
lem. However, we could have mapped our original system to
a higher order one too. Let us consider for instance the p-adic
string theory again. As we said before, the kinetic function
satisfies F ′(z) − F(z) = 0. However, this kinetic function
satisfies a whole family of ODE of the form

F (q)(z) − F(z) = 0. (5.1)

The question now is whether or not we can map our original
non-local system into more than one PDE boundary problem.
To illustrate the answer, let us consider the case q = 2. As we
discussed before, F(a�) is the a-evolution operator of the
scale-holographic dual PDE of our problem. However, for a
second order differential equation, there is not one propagator
but two. The general solution of our scale-holographic dual
will be a linear combination of the initial condition evolved
with both propagators. To obtain at the end just one solution,
another condition must be imposed to the problem. Now, to
obtain the only solution we demand F to satisfy

{
F ′′(z) − F(z) = 0,

F(0) = 1, F ′(0) = 1.
(5.2)

Then, the only possible solution for the problem will be
F(z) = ez , which is the kinetic function we are looking
for. By defining again u as u(a, x) = F(a�)φ(x), we obtain
the following PDE boundary problem for u:

{
∂2
a u(a, x) − �2u(a, x) = 0,

u(λ2
0, x) = �u p(0, x), ∂au(a, x)|a=0 = �u(0, x).

(5.3)

We see, that with the method developed in this work, we
can map the original problem into a whole family of higher
dimensional problems. In the specific case of the non-local
p-adic string theory, it is not only equivalent to the heat equa-
tion with specific boundary conditions but it is also equiva-
lent (in two spatial dimensions and after performing a Wick’s
rotation) to gravitational analogues in condensed matter sys-
tems described by Eq. (5.3) [48]. In this last case, not only
boundary conditions but also initial conditions in the addi-
tional dimension need to be fixed as required by the scale
holographic duality (5.3).

In the case of a general kinetic operator F(a�), for each
order, there is a one-to-one equivalence between the original
system and its scale holographic dual. Indeed the prove that
we gave for the lowest order can be generalized straightfor-
wardly to higher orders.

6 Conclusions

By extracting explicitly the length scale of the system, we
have provided a method for mapping a very general system
into a family of systems defined with an additional emergent
dimension. This new holographic family allow us to interpret
the solution of the original lower dimensional problem as a
boundary condition for the new higher dimensional system.
These correspondence is particularly interesting for solving
non-local problems since they can be solved by studying
their scale holographic duals. In this sense, it is interesting
to realize that if the original non-local problem was non-
linear, the resulting local higher dimensional boundary-value
problem will also be non-linear.
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